Journal Home > Volume 17 , Issue 4

The development of perovskite photoelectric devices with excellent performance is largely dependent on the defects in the perovskite films. To address this issue, a specific drug, leflunomide (LF, C12H9F3N2O2), was incorporated into the perovskite to reduce defects and improve its photoelectric properties. It is believed that the C=O bond on LF molecule can interact with the uncoordinated Pb2+ of the perovskite, thereby reducing non-radiative recombination. This novel approach of incorporating LF into perovskite films has the potential to revolutionize the development of high-performance perovskite photoelectric devices. The trifluoromethyl functional (–CF3) group on LF can form a protective layer on the surface of the perovskite film, shielding it from water erosion. Moreover, LF can be utilized to alter the nucleation position of perovskite, thus minimizing the number of defects and optimizing the film quality. Consequently, the LF-doped perovskite film displays low trap density and high photoelectric performance. The LF-doped perovskite film showed a trap density of 8.28 × 1011, which is notably lower than the 2.04 × 1012 of the perovskite film without LF. The responsivity and detectivity of the LF-doped perovskite photodetector were 0.771 A/W and 2.81 × 1011 Jones, respectively, which are much higher than the 0.23 A/W and 1.06 × 1010 Jones of the LF-undoped perovskite photodetector. Meanwhile, the LF-doped photodetector maintained an initial photocurrent of 86% after 30 days of storage in air, indicating drastically increased environmental stability. This strongly suggests that LF is an effective additive for perovskites utilized in optoelectronic devices with high performance.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Leflunomide: A versatile additive for defect reduction, enhanced optoelectronic properties and environmental stability of perovskite films

Show Author's information Dingyue Sun1Ming Peng1Taijin Wang1Longju Yi2Shizuo Zhang1Feng Liu1,2( )Gary J. Cheng1,3( )
The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
School of Industrial Engineering, Purdue University, West Lafayette, IN 47906, USA

Abstract

The development of perovskite photoelectric devices with excellent performance is largely dependent on the defects in the perovskite films. To address this issue, a specific drug, leflunomide (LF, C12H9F3N2O2), was incorporated into the perovskite to reduce defects and improve its photoelectric properties. It is believed that the C=O bond on LF molecule can interact with the uncoordinated Pb2+ of the perovskite, thereby reducing non-radiative recombination. This novel approach of incorporating LF into perovskite films has the potential to revolutionize the development of high-performance perovskite photoelectric devices. The trifluoromethyl functional (–CF3) group on LF can form a protective layer on the surface of the perovskite film, shielding it from water erosion. Moreover, LF can be utilized to alter the nucleation position of perovskite, thus minimizing the number of defects and optimizing the film quality. Consequently, the LF-doped perovskite film displays low trap density and high photoelectric performance. The LF-doped perovskite film showed a trap density of 8.28 × 1011, which is notably lower than the 2.04 × 1012 of the perovskite film without LF. The responsivity and detectivity of the LF-doped perovskite photodetector were 0.771 A/W and 2.81 × 1011 Jones, respectively, which are much higher than the 0.23 A/W and 1.06 × 1010 Jones of the LF-undoped perovskite photodetector. Meanwhile, the LF-doped photodetector maintained an initial photocurrent of 86% after 30 days of storage in air, indicating drastically increased environmental stability. This strongly suggests that LF is an effective additive for perovskites utilized in optoelectronic devices with high performance.

Keywords: additive engineering, leflunomide, defect passivation perovskite

References(67)

[1]

Zhao, Y. X.; Zhu, K. Organic-inorganic hybrid lead halide perovskites for optoelectronic and electronic applications. Chem. Soc. Rev. 2016, 45, 655–689.

[2]

Zhang, F. Y.; Yang, B.; Mao, X.; Yang, R. X.; Jiang, L.; Li, Y. J.; Xiong, J.; Yang, Y.; He, R. X.; Deng, W. Q. et al. Perovskite CH3NH3PbI3−xBrx single crystals with charge-carrier lifetimes exceeding 260 μs. ACS Appl. Mater. Interfaces 2017, 9, 14827–14832.

[3]

Herz, L. M. Charge-carrier mobilities in metal halide perovskites: Fundamental mechanisms and limits. ACS Energy Lett. 2017, 2, 1539–1548.

[4]

Chen, Q.; De Marco, N.; Yang, Y.; Song, T. B.; Chen, C. C.; Zhao, H. X.; Hong, Z. R.; Zhou, H. P.; Yang, Y. Under the spotlight: The organic-inorganic hybrid halide perovskite for optoelectronic applications. Nano Today 2015, 10, 355–396.

[5]

Ning, W. H.; Wang, F.; Wu, B.; Lu, J.; Yan, Z. B.; Liu, X. J.; Tao, Y. T.; Liu, J. M.; Huang, W.; Fahlman, M. et al. Long electron–hole diffusion length in high-quality lead-free double perovskite films. Adv. Mater. 2018, 30, 1706246.

[6]

Li, Z.; Klein, T. R.; Kim, D. H.; Yang, M. J.; Berry, J. J.; Van Hest, M. F. A. M.; Zhu, K. Scalable fabrication of perovskite solar cells. Nat. Rev. Mater. 2018, 3, 18017.

[7]

Azmi, R.; Ugur, E.; Seitkhan, A.; Aljamaan, F.; Subbiah, A. S.; Liu, J.; Harrison, G. T.; Nugraha, M. I.; Eswaran, M. K.; Babics, M. et al. Damp heat-stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions. Science 2022, 376, 73–77.

[8]

Cheng, H. Y.; Liu, C. K.; Zhuang, J.; Cao, J. P.; Wang, T. Y.; Wong, W. Y.; Yan, F. KBF4 additive for alleviating microstrain, improving crystallinity, and passivating defects in inverted perovskite solar cells. Adv. Funct. Mater. 2022, 32, 2204880.

[9]

Liu, M.; Zhong, G. H.; Yin, Y. M.; Miao, J. S.; Li, K.; Wang, C. Q.; Xu, X. R.; Shen, C.; Meng, H. Aluminum-doped cesium lead bromide perovskite nanocrystals with stable blue photoluminescence used for display backlight. Adv. Sci. 2017, 4, 1700335.

[10]

Chen, R.; Shen, L. N.; Zheng, L. Y.; Zhu, T.; Liu, Y. H.; Liu, L.; Zheng, J.; Gong, X. Two-/three-dimensional perovskite bilayer thin films post-treated with solvent vapor for high-performance perovskite photovoltaics. ACS Appl. Mater. Interfaces 2021, 13, 49104–49113.

[11]

Guo, H.; Wang, H. Y.; Fan, H. B.; Ye, Q.; Zhang, J.; Cao, F. R.; Li, L.; Tong, Y.; Wang, H. Q. Embedding of Ti3C2Tx nanocrystals in MAPbI3 microwires for improved responsivity and detectivity of photodetector. Small 2021, 17, 2101954.

[12]

Mei, L. Y.; Huang, R. F.; Shen, C. R.; Hu, J. G.; Wang, P.; Xu, Z. J.; Huang, Z. F.; Zhu, L. Hybrid halide perovskite-based near-infrared photodetectors and imaging arrays. Adv. Opt. Mater. 2022, 10, 2102656.

[13]

Gu, Z. K.; Wang, Y.; Wang, S. H.; Zhang, T.; Zhao, R. D.; Hu, X. T.; Huang, Z. D.; Su, M.; Xu, Q.; Li, L. H. et al. Controllable printing of large-scale compact perovskite films for flexible photodetectors. Nano Res. 2022, 15, 1547–1553.

[14]

Kim, H. P.; Kim, J.; Kim, B. S.; Kim, H. M.; Kim, J.; Yusoff, A. R. B. M.; Jang, J.; Nazeeruddin, M. K. Retracted: High-efficiency, blue, green, and near-infrared light-emitting diodes based on triple cation perovskite. Adv. Opt. Mater. 2017, 5, 1600920.

[15]

Xing, J.; Yan, F.; Zhao, Y. W.; Chen, S.; Yu, H. K.; Zhang, Q.; Zeng, R. G.; Demir, H. V.; Sun, X. W.; Huan, A. et al. High-efficiency light-emitting diodes of organometal halide perovskite amorphous nanoparticles. ACS Nano 2016, 10, 6623–6630.

[16]

Ye, Y.; Zhang, W. C.; Zhang, Y. D.; Li, K.; Han, J. J.; Liu, C. CsPbBr3 nanocrystals embedded glass enables highly stable and efficient light-emitting diodes. Chem. Eng. J. 2022, 445, 136867.

[17]

Lee, D. S.; Heo, J. H.; Park, J. K.; Kim, B. W.; Lee, H. J.; Song, Y. M.; Im, S. H. Enhanced weak-light detection of perovskite photodetectors through perovskite/hole-transport material interface treatment. ACS Appl. Mater. Interfaces 2021, 13, 16775–16783.

[18]

Fu, C.; Li, Z. Y.; Wang, J.; Zhang, X.; Liang, F. X.; Lin, D. H.; Shi, X. F.; Fang, Q. L.; Luo, L. B. A simple-structured perovskite wavelength sensor for full-color imaging application. Nano Lett. 2023, 23, 533–540.

[19]

Qiu, F. Z.; Sun, J. Y.; Qi, J. J. Crystal growth, defect passivation and strain release via in-situ self-polymerization strategy enables efficient and stable perovskite solar cells. Chem. Eng. J. 2022, 430, 132869.

[20]

Shen, C.; Wu, Y. Z.; Zhang, S.; Wu, T. H.; Tian, H.; Zhu, W. H.; Han, L. Y. Stabilizing formamidinium lead iodide perovskite by sulfonyl-functionalized phenethylammonium salt via crystallization control and surface passivation. Sol. RRL 2020, 4, 2000069.

[21]

Han, Q. W.; Bai, Y. S.; Liu, J.; Du, K. Z.; Li, T. Y.; Ji, D.; Zhou, Y. H.; Cao, C. Y.; Shin, D.; Ding, J. et al. Additive engineering for high-performance room-temperature-processed perovskite absorbers with micron-size grains and microsecond-range carrier lifetimes. Energy Environ. Sci. 2017, 10, 2365–2371.

[22]

Zhang, Y.; Zhuang, X. H.; Zhou, K.; Cai, C.; Hu, Z. Y.; Zhang, J.; Zhu, Y. J. Amorphous polymer with C=O to improve the performance of perovskite solar cells. J. Mater. Chem. C 2017, 5, 9037–9043.

[23]

Wang, H. R.; Zhang, X. Y.; Wu, Q. Q.; Cao, F.; Yang, D. W.; Shang, Y. Q.; Ning, Z. J.; Zhang, W.; Zheng, W. T.; Yan, Y. F. et al. Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices. Nat. Commun. 2019, 10, 665.

[24]

Wang, P.; Zhao, J. J.; Liu, J. X.; Wei, L. Y.; Liu, Z. H.; Guan, L. H.; Cao, G. Z. Stabilization of organometal halide perovskite films by SnO2 coating with inactive surface hydroxyl groups on ZnO nanorods. J. Power Sources 2017, 339, 51–60.

[25]

Xie, J. S.; Yan, K. Y.; Zhu, H. Y.; Li, G. X.; Wang, H.; Zhu, H. P.; Hang, P. J.; Zhao, S. H.; Guo, W. Y.; Ye, D. Q. et al. Identifying the functional groups effect on passivating perovskite solar cells. Sci. Bull. 2020, 65, 1726–1734.

[26]

Yang, L. K.; Xiong, Q.; Li, Y. B.; Gao, P.; Xu, B.; Lin, H.; Li, X.; Miyasaka, T. Artemisinin-passivated mixed-cation perovskite films for durable flexible perovskite solar cells with over 21% efficiency. J. Mater. Chem. A. 2021, 9, 1574–1582.

[27]

Wang, R.; Xue, J. J.; Meng, L.; Lee, J. W.; Zhao, Z. P.; Sun, P. Y.; Cai, L.; Huang, T. Y.; Wang, Z. X.; Wang, Z. K. et al. Caffeine improves the performance and thermal stability of perovskite solar cells. Joule 2019, 3, 1464–1477.

[28]

Wang, X. B.; Sun, W. H.; Tu, Y. G.; Xiong, Q.; Li, G. D.; Song, Z. Y.; Wang, Y.; Du, Y. T.; Chen, Q.; Deng, C. Y. et al. Lansoprazole, a cure-four, enables perovskite solar cells efficiency exceeding 24%. Chem. Eng. J. 2022, 446, 137416.

[29]

Hou, Y. C.; Wu, C. C.; Yang, D.; Wang, K.; Ye, T.; Brownlie, L.; Wang, K.; Priya, S. Artemisinin (ART)-induced “perovskite/perovskite” bilayer structured photovoltaics. Nano Energy 2020, 78, 105133.

[30]

Smolen, J. S.; Kalden, J. R.; Scott, D. L.; Rozman, B.; Kvien, T. K.; Larsen, A.; Loew-Friedrich, I.; Oed, C.; Rosenburg, R. Efficacy and safety of leflunomide compared with placebo and sulphasalazine in active rheumatoid arthritis: A double-blind, randomised, multicentre trial. Lancet 1999, 353, 259–266.

[31]

Manna, S. K.; Mukhopadhyay, A.; Aggarwal, B. B. Leflunomide suppresses TNF-induced cellular responses: Effects on NF-κB, activator protein-1, c-Jun N-terminal protein kinase, and apoptosis. J. Immunol. 2000, 165, 5962–5969.

[32]

Van Roon, E. N.; Hoekstra, M.; Tobi, H.; Jansen, T. L. T. A.; Bernelot Moens, H. J.; Brouwers, J. R. B. J.; Van De Laar, M. A. F. J. Leflunomide in the treatment of rheumatoid arthritis. An analysis of predictors for treatment continuation. Br. J. Clin. Pharmacol. 2005, 60, 319–325.

[33]

Zhou, J. J.; Li, M. H.; Wang, S. Y.; Tan, L. G.; Liu, Y.; Jiang, C. F.; Zhao, X.; Ding, L. M.; Yi, C. Y. 2-CF3-PEAI to eliminate Pb0 traps and form a 2D perovskite layer to enhance the performance and stability of perovskite solar cells. Nano Energy 2022, 95, 107036.

[34]

Cho, S. P.; Kwon, S. N.; Choi, M. J.; Seo, Y. H.; Kim, S. S.; Na, S. I. Enhanced device performances of MAFACsPb(IxBr1−x) perovskite solar cells with dual-functional 2-chloroethyl acrylate additives. ACS Appl. Mater. Interfaces 2020, 12, 46846–46853.

[35]

Zhang, H.; Zhuang, J.; Liu, X. C.; Ma, Z.; Guo, H.; Zheng, R. H.; Zhao, S. S.; Zhang, F.; Xiao, Z.; Wang, H. Y. et al. Defect passivation strategy for inorganic CsPbI2Br perovskite solar cell with a high-efficiency of 16.77%. J. Mater. Sci. Technol. 2021, 82, 40–46.

[36]

Li, X.; Du, J. Y.; Duan, H.; Wang, H. Y.; Fan, L.; Sun, Y. F.; Sui, Y. R.; Yang, J. H.; Wang, F. Y.; Yang, L. L. Moisture-preventing MAPbI3 solar cells with high photovoltaic performance via multiple ligand engineering. Nano Res. 2022, 15, 1375–1382.

[37]

Sun, C. J.; Wei, J. L.; Zhao, J.; Jiang, Y. Z.; Wang, Y. L.; Hu, H. Q.; Wang, X.; Zhang, Y. Q.; Yuan, M. J. Hard and soft Lewis-base behavior for efficient and stable CsPbBr3 perovskite light-emitting diodes. Nanophotonics 2021, 10, 2157–2166.

[38]

Glaser, T.; Müller, C.; Sendner, M.; Krekeler, C.; Semonin, O. E.; Hull, T. D.; Yaffe, O.; Owen, J. S.; Kowalsky, W.; Pucci, A. et al. Infrared spectroscopic study of vibrational modes in methylammonium lead halide perovskites. J. Phys. Chem. Lett. 2015, 6, 2913–2918.

[39]

Yang, D. P.; Yang, Y. G.; Liu, Y. F. A theoretical study on the red- and blue-shift hydrogen bonds of cis-trans formic acid dimer in excited states. Open Chem. 2013, 11, 171–179.

[40]

Song, J. Z.; Fang, T.; Li, J. H.; Xu, L. M.; Zhang, F. J.; Han, B. N.; Shan, Q. S.; Zeng, H. B. Organic-inorganic hybrid passivation enables perovskite QLEDs with an EQE of 16.48%. Adv. Mater. 2018, 30, 1805409.

[41]

Cao, X. B.; Li, Y. H.; Fang, F.; Cui, X.; Yao, Y. W.; Wei, J. Q. High quality perovskite films fabricated from Lewis acid–base adduct through molecular exchange. RSC Adv. 2016, 6, 70925–70931.

[42]

Wang, L. G.; Zhou, H. P.; Hu, J. N.; Huang, B. L.; Sun, M. Z.; Dong, B. W.; Zheng, G. H. J.; Huang, Y.; Chen, Y. H.; Li, L. et al. A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science 2019, 363, 265–270.

[43]

Dou, J.; Zhu, C.; Wang, H.; Han, Y.; Ma, S.; Niu, X. X.; Li, N. X.; Shi, C. B.; Qiu, Z. W.; Zhou, H. P. et al. Synergistic effects of Eu-MOF on perovskite solar cells with improved stability. Adv. Mater. 2021, 33, 2102947.

[44]

Cao, F. R.; Tian, W.; Meng, L. X.; Wang, M.; Li, L. Ultrahigh-performance flexible and self-powered photodetectors with ferroelectric P(VDF-TrFE)/perovskite bulk heterojunction. Adv. Funct. Mater. 2019, 29, 1808415.

[45]

Cao, F. R.; Meng, L. X.; Wang, M.; Tian, W.; Li, L. Gradient energy band driven high-performance self-powered perovskite/CdS photodetector. Adv. Mater. 2019, 31, 1806725.

[46]

Zhou, H.; Song, Z. N.; Grice, C. R.; Chen, C.; Yang, X. H.; Wang, H.; Yan, Y. F. Pressure-assisted annealing strategy for high-performance self-powered all-inorganic perovskite microcrystal photodetectors. J. Phys. Chem. Lett. 2018, 9, 4714–4719.

[47]

Cheng, W. J.; Tian, W.; Cao, F. R.; Li, L. Self-powered bifunctional perovskite photodetectors with both broadband and narrowband photoresponse. InfoMat 2022, 4, e12348.

[48]

Zuleeg, R.; Knoll, P. Space-charge-limited currents in heteroepitaxial films of silicon grown on sapphire. Appl. Phys. Lett. 1967, 11, 183–185.

[49]

Shao, D. L.; Yu, M. P.; Sun, H. T.; Hu, T.; Lian, J.; Sawyer, S. High responsivity, fast ultraviolet photodetector fabricated from ZnO nanoparticle-graphene core-shell structures. Nanoscale 2013, 5, 3664–3667.

[50]

Wang, H. L.; Haroldson, R.; Balachandran, B.; Zakhidov, A.; Sohal, S.; Chan, J. Y.; Zakhidov, A.; Hu, W. Nanoimprinted perovskite nanograting photodetector with improved efficiency. ACS Nano 2016, 10, 10921–10928.

[51]

Li, M. H.; Zhou, J. J.; Tan, L. G.; Li, H.; Liu, Y.; Jiang, C. F.; Ye, Y. R.; Ding, L. M.; Tress, W.; Yi, C. Y. Multifunctional succinate additive for flexible perovskite solar cells with more than 23% power-conversion efficiency. Innovation 2022, 3, 100310.

[52]

Klotz, D.; Tumen-Ulzii, G.; Qin, C. J.; Matsushima, T.; Adachi, C. Detecting and identifying reversible changes in perovskite solar cells by electrochemical impedance spectroscopy. RSC Adv. 2019, 9, 33436–33445.

[53]

Byranvand, M. M.; Kim, T.; Song, S.; Kang, G.; Ryu, S. U.; Park, T. p-type CuI islands on TiO2 electron transport layer for a highly efficient planar-perovskite solar cell with negligible hysteresis. Adv. Energy Mater. 2018, 8, 1702235.

[54]

Bi, D. Q.; Yi, C. Y.; Luo, J. S.; Décoppet, J. D.; Zhang, F.; Zakeeruddin, S. M.; Li, X.; Hagfeldt, A.; Grätzel, M. Polymer-templated nucleation and crystal growth of perovskite films for solar cells with efficiency greater than 21%. Nat. Energy 2016, 1, 16142.

[55]

Wu, J. P.; Liu, S. C.; Li, Z. B.; Wang, S.; Xue, D. J.; Lin, Y.; Hu, J. S. Strain in perovskite solar cells: Origins, impacts and regulation. Natl. Sci. Rev. 2021, 8, nwab047.

[56]

Yuan, Q.; Tang, X. X.; Shu, Q. W.; Zhu, B. T.; Cai, J. H.; He, Y. P.; Zhou, D. Y.; Feng, L. Double-side healing at CsPbI2Br/ZnO interface by bipyrimidine hydroiodide enables inverted solar cells with enhanced efficiency and stability. Chem. Eng. J. 2022, 435, 134760.

[57]

Kim, G.; Min, H.; Lee, K. S.; Lee, D. Y.; Yoon, S. M.; Seok, S. I. Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science 2020, 370, 108–112.

[58]

Mahapatra, A.; Prochowicz, D.; Kruszyńska, J.; Satapathi, S.; Akin, S.; Kumari, H.; Kumar, P.; Fazel, Z.; Tavakoli, M. M.; Yadav, P. Effect of bromine doping on the charge transfer, ion migration and stability of the single crystalline MAPb(BrxI1-x)3 photodetector. J. Mater. Chem. C 2021, 9, 15189–15200.

[59]

Mathur, A.; Fan, H.; Maheshwari, V. Soft polymer-organolead halide perovskite films for highly stretchable and durable photodetectors with Pt-Au nanochain-based electrodes. ACS Appl. Mater. Interfaces 2021, 13, 58956–58965.

[60]

Wu, D. J.; Zhou, H.; Song, Z. H.; Zheng, M.; Liu, R. H.; Pan, X. Y.; Wan, H. Z.; Zhang, J.; Wang, H.; Li, X. M. et al. Welding perovskite nanowires for stable, sensitive, flexible photodetectors. ACS Nano 2020, 14, 2777–2787.

[61]

Zhang, Y.; Qin, Z. L.; Nie, W. Q.; Li, Y. Q.; Huo, X. M.; Song, D. D.; Qiao, B.; Xu, Z.; Wageh, S.; Al-Ghamdi, A. et al. High-performance MAPbI3/PM6: Y6 perovskite/organic hybrid photodetectors with a broadband response. Adv. Opt. Mater. 2022, 10, 2200648.

[62]

Jia, C.; Liu, H. L.; Zhang, X. Y.; Wang, S. R.; Li, X. G. A high performance Au/CH3NH3PbI3/Cu planar-type self-powered photodetector. J. Mater. Chem. C 2022, 10, 12602–12609.

[63]

Zi, L.; Xu, W.; Sun, R.; Li, Z. M.; Zhang, J. W.; Liu, L.; Wang, N.; Wang, Y.; Ding, N.; Hu, J. H. et al. Lanthanide-doped MAPbI3 single crystals: Fabrication, optical and electrical properties, and multi-mode photodetection. Chem. Mater. 2022, 34, 7412–7423.

[64]

Li, N. X.; Tao, S. X.; Chen, Y. H.; Niu, X. X.; Onwudinanti, C. K.; Hu, C.; Qiu, Z. W.; Xu, Z. Q.; Zheng, G. H. J.; Wang, L. G. et al. Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells. Nat. Energy 2019, 4, 408–415.

[65]

Zhu, C.; Niu, X. X.; Fu, Y. H.; Li, N. X.; Hu, C.; Chen, Y. H.; He, X.; Na, G. R.; Liu, P. F.; Zai, H. C. et al. Strain engineering in perovskite solar cells and its impacts on carrier dynamics. Nat. Commun. 2019, 10, 815.

[66]

Ahn, N.; Song, D. Y.; Jang, I. H.; Kang, S. M.; Choi, M.; Park, N. G. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead(II) iodide. J. Am. Chem. Soc. 2015, 137, 8696–8699.

[67]

Song, C. P.; Tong, L.; Liu, F.; Ye, L.; Cheng, G. J. Addressing the reliability and electron transport kinetics in halide perovskite film via pulsed laser engineering. Adv. Funct. Mater. 2020, 30, 1906781.

File
12274_2023_6048_MOESM1_ESM.pdf (709.1 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 June 2023
Revised: 23 July 2023
Accepted: 27 July 2023
Published: 25 September 2023
Issue date: April 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

We thank the Core Facility of Wuhan University for materials characterization support.

Return