Journal Home > Volume 16 , Issue 12

Integration and synergy of the unique functions of different components have been developed into one of the most convenient and effective ways to construct the composite advanced materials with collective properties and improved performances. In this work, the mace-like tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ)/HKUST-1 composite structures with single single-crystalline TTF-TCNQ submicrorods covered by ordered HKUST-1 nanosheet arrays were successfully constructed by an efficient TTF-TCNQ seed-mediated growth approach. Impressively, thanks to the synergetic and complementary effects between TTF-TCNQ and HKUST-1, the sensors based on such mace-like TTF-TCNQ/HKUST-1 composite structures not only displayed an experimental detection limit of 10 part per billion (ppb) for NO2 detection, but also exhibited outstanding selectivity even if the concentration of the interfering gases was 10 times that of NO2. Meanwhile, good reproducibility and rapid response were also achieved. This work opens the avenue for creation of novel high-performance sensing materials for application in gas sensing.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Mace-like TTF-TCNQ/HKUST-1 composite structures for rapid NO2 detection: Synergistically induced ultrahigh sensitivity and outstanding selectivity

Show Author's information Chaoxin Lin1,2,§Kumchol Kim1,2,§Zuochao Wang1,3Zhuang Yan1,2Zhiyong Tang1,2Yaling Liu1,2( )
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

§ Chaoxin Lin and Kumchol Kim contributed equally to this work.

Abstract

Integration and synergy of the unique functions of different components have been developed into one of the most convenient and effective ways to construct the composite advanced materials with collective properties and improved performances. In this work, the mace-like tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ)/HKUST-1 composite structures with single single-crystalline TTF-TCNQ submicrorods covered by ordered HKUST-1 nanosheet arrays were successfully constructed by an efficient TTF-TCNQ seed-mediated growth approach. Impressively, thanks to the synergetic and complementary effects between TTF-TCNQ and HKUST-1, the sensors based on such mace-like TTF-TCNQ/HKUST-1 composite structures not only displayed an experimental detection limit of 10 part per billion (ppb) for NO2 detection, but also exhibited outstanding selectivity even if the concentration of the interfering gases was 10 times that of NO2. Meanwhile, good reproducibility and rapid response were also achieved. This work opens the avenue for creation of novel high-performance sensing materials for application in gas sensing.

Keywords: integration and synergy, excellent sensing performance, tetrathiafulvalene-tetracyanoquinodimethane (TTF-TCNQ)/HKUST-1, NO2 detection

References(80)

[1]

Guan, W. J.; Zheng, X. Y.; Chung, K. F.; Zhong, N. S. Impact of air pollution on the burden of chronic respiratory diseases in China: Time for urgent action. Lancet 2016, 388, 1939–1951.

[2]

Kampa, M.; Castanas, E. Human health effects of air pollution. Environ. Pollut. 2008, 151, 362–367.

[3]

Kwon, Y. J.; Kang, S. Y.; Wu, P.; Peng, Y.; Kim, S. S.; Kim, H. W. Selective improvement of NO2 gas sensing behavior in SnO2 nanowires by ion-beam irradiation. ACS Appl. Mater. Interfaces 2016, 8, 13646–13658.

[4]

Zhang, D. H.; Liu, Z. Q.; Li, C.; Tang, T.; Liu, X. L.; Han, S.; Lei, B.; Zhou, C. W. Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices. Nano Lett. 2004, 4, 1919–1924.

[5]

Miller, D. R.; Akbar, S. A.; Morris, P. A. Nanoscale metal oxide-based heterojunctions for gas sensing: A review. Sens. Actuators B:Chem. 2014, 204, 250–272.

[6]

Ou, J. Z.; Ge, W. Y.; Carey, B.; Daeneke, T.; Rotbart, A.; Shan, W.; Wang, Y. C.; Fu, Z. Q.; Chrimes, A. F.; Wiodarski, W. et al. Physisorption-based charge transfer in two-dimensional SnS2 for selective and reversible NO2 gas sensing. ACS Nano 2015, 9, 10313–10323.

[7]

Perkins, F. K.; Friedman, A. L.; Cobas, E.; Campbell, P. M.; Jernigan, G. G.; Jonker, B. T. Chemical vapor sensing with monolayer MoS2. Nano Lett. 2013, 13, 668–673.

[8]

Cho, S. Y.; Kim, S. J.; Lee, Y.; Kim, J. S.; Jung, W. B.; Yoo, H. W.; Kim, J.; Jung, H. T. Highly enhanced gas adsorption properties in vertically aligned MoS2 layers. ACS Nano 2015, 9, 9314–9321.

[9]

Yuan, W. J.; Shi, G. Q. Graphene-based gas sensors. J. Mater. Chem. A 2013, 1, 10078–10091.

[10]

Fowler, J. D.; Allen, M. J.; Tung, V. C.; Yang, Y.; Kaner, R. B.; Weiller, B. H. Practical chemical sensors from chemically derived graphene. ACS Nano 2009, 3, 301–306.

[11]

Singh, E.; Meyyappan, M.; Nalwa, H. S. Flexible graphene-based wearable gas and chemical sensors. ACS Appl. Mater. Interfaces 2017, 9, 34544–34586.

[12]

Anichini, C.; Czepa, W.; Pakulski, D.; Aliprandi, A.; Ciesielski, A.; Samorì, P. Chemical sensing with 2D materials. Chem. Soc. Rev. 2018, 47, 4860–4908.

[13]

Broza, Y. Y.; Vishinkin, R.; Barash, O.; Nakhleh, M. K.; Haick, H. Synergy between nanomaterials and volatile organic compounds for non-invasive medical evaluation. Chem. Soc. Rev. 2018, 47, 4781–4859.

[14]

Mao, S.; Chang, J. B.; Pu, H. H.; Lu, G. H.; He, Q. Y.; Zhang, H.; Chen, J. H. Two-dimensional nanomaterial-based field-effect transistors for chemical and biological sensing. Chem. Soc. Rev. 2017, 46, 6872–6904.

[15]

Wales, D. J.; Grand, J.; Ting, V. P.; Burke, R. D.; Edler, K. J.; Bowen, C. R.; Mintova, S.; Burrows, A. D. Gas sensing using porous materials for automotive applications. Chem. Soc. Rev. 2015, 44, 4290–4321.

[16]

Yao, M. S.; Xiu, J. W.; Huang, Q. Q.; Li, W. H.; Wu, W. W.; Wu, A. Q.; Cao, L. A.; Deng, W. H.; Wang, G. E.; Xu, G. Van der Waals heterostructured MOF-on-MOF thin films: Cascading functionality to realize advanced chemiresistive sensing. Angew. Chem., Int. Ed. 2019, 58, 14915–14919.

[17]

Liu, Y. L.; Tang, Z. Y. Multifunctional nanoparticle@MOF core–shell nanostructures. Adv. Mater. 2013, 25, 5819–5825.

[18]

Stassen, I.; Burtch, N.; Talin, A.; Falcaro, P.; Allendorf, M.; Ameloot, R. An updated roadmap for the integration of metal-organic frameworks with electronic devices and chemical sensors. Chem. Soc. Rev. 2017, 46, 3185–3241.

[19]

Hu, Z. C.; Deibert, B. J.; Li, J. Luminescent metal-organic frameworks for chemical sensing and explosive detection. Chem. Soc. Rev. 2014, 43, 5815–5840.

[20]

Koo, W. T.; Jang, J. S.; Kim, I. D. Metal-organic frameworks for chemiresistive sensors. Chem 2019, 5, 1938–1963.

[21]

Yuvaraja, S.; Surya, S. G.; Chernikova, V.; Vijjapu, M. T.; Shekhah, O.; Bhatt, P. M.; Chandra, S.; Eddaoudi, M.; Salama, K. N. Realization of an ultrasensitive and highly selective OFET NO2 sensor: The synergistic combination of PDVT-10 polymer and porphyrin-MOF. ACS Appl. Mater. Interfaces 2020, 12, 18748–18760.

[22]

Canepa, P.; Tan, K.; Du, Y. J.; Lu, H. B.; Chabal, Y. J.; Thonhauser, T. Structural, elastic, thermal, and electronic responses of small-molecule-loaded metal-organic framework materials. J. Mater. Chem. A 2015, 3, 986–995.

[23]

Jo, Y. M.; Lim, K.; Yoon, J. W.; Jo, Y. K.; Moon, Y. K.; Jang, H. W.; Lee, J. H. Visible-light-activated type II heterojunction in Cu3(hexahydroxytriphenylene)2/Fe2O3 hybrids for reversible NO2 sensing: Critical role of π–π* transition. ACS Cent. Sci. 2021, 7, 1176–1182.

[24]

Tan, K.; Zuluaga, S.; Gong, Q. H.; Gao, Y. Z.; Nijem, N.; Li, J.; Thonhauser, T.; Chabal, Y. J. Competitive coadsorption of CO2 with H2O, NH3, SO2, NO, NO2, N2, O2, and CH4 in M-MOF-74 (M = Mg, Co, Ni): The role of hydrogen bonding. Chem. Mater. 2015, 27, 2203–2217.

[25]

Tan, K.; Zuluaga, S.; Wang, H.; Canepa, P.; Soliman, K.; Cure, J.; Li, J.; Thonhauser, T.; Chabal, Y. J. Interaction of acid gases SO2 and NO2 with coordinatively unsaturated metal organic frameworks: M-MOF-74 (M = Zn, Mg, Ni, Co). Chem. Mater. 2017, 29, 4227–4235.

[26]

Bhardwaj, S. K.; Bhardwaj, N.; Kaur, R.; Mehta, J.; Sharma, A. L.; Kim, K. H.; Deep, A. An overview of different strategies to introduce conductivity in metal-organic frameworks and miscellaneous applications thereof. J. Mater. Chem. A 2018, 6, 14992–15009.

[27]

He, L. C.; Liu, Y.; Liu, J. Z.; Xiong, Y. S.; Zheng, J. Z.; Liu, Y. L.; Tang, Z. Y. Core-shell noble-metal@metal-organic-framework nanoparticles with highly selective sensing property. Angew. Chem., Int. Ed. 2013, 52, 3741–3745.

[28]

Li, Y. T.; Liu, J. M.; Wang, Z. C.; Jin, J.; Liu, Y. L.; Chen, C. Y.; Tang, Z. Y. Optimizing energy transfer in nanostructures enables in vivo cancer lesion tracking via near-infrared excited hypoxia imaging. Adv. Mater. 2020, 32, 1907718.

[29]

Zhao, M. T.; Yuan, K.; Wang, Y.; Li, G. D.; Guo, J.; Gu, L.; Hu, W. P.; Zhao, H. J.; Tang, Z. Y. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature 2016, 539, 76–80.

[30]

Talin, A. A.; Centrone, A.; Ford, A. C.; Foster, M. E.; Stavila, V.; Haney, P.; Kinney, R. A.; Szalai, V.; El Gabaly, F.; Yoon, H. P. et al. Tunable electrical conductivity in metal-organic framework thin-film devices. Science 2014, 343, 66–69.

[31]

Zhou, J.; Cheng, X. F.; Gao, B. J.; Yu, C.; He, J. H.; Xu, Q. F.; Li, H.; Li, N. J.; Chen, D. Y.; Lu, J. M. Detection of NO2 down to one ppb using ion-in-conjugation-inspired polymer. Small 2019, 15, 1803896.

[32]

Wang, Z.; Huang, L. Z.; Zhu, X. F.; Zhou, X.; Chi, L. F. An ultrasensitive organic semiconductor NO2 sensor based on crystalline TIPS-pentacene films. Adv. Mater. 2017, 29, 1703192.

[33]

Yao, M. S.; Li, W. H.; Xu, G. Metal-organic frameworks and their derivatives for electrically-transduced gas sensors. Coord. Chem. Rev. 2021, 426, 213479.

[34]

Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; Van Duyne, R. P.; Hupp, J. T. Metal-organic framework materials as chemical sensors. Chem. Rev. 2012, 112, 1105–1125.

[35]

Campbell, M. G.; Liu, S. F.; Swager, T. M.; Dincă, M. Chemiresistive sensor arrays from conductive 2D metal-organic frameworks. J. Am. Chem. Soc. 2015, 137, 13780–13783.

[36]

Bronstein, H.; Nielsen, C. B.; Schroeder, B. C.; McCulloch, I. The role of chemical design in the performance of organic semiconductors. Nat. Rev. Chem. 2020, 4, 66–77.

[37]

Yu, S. H.; Girma, H. G.; Sim, K. M.; Yoon, S.; Park, J. M.; Kong, H.; Chung, D. S. Polymer-based flexible NOx sensors with ppb-level detection at room temperature using breath-figure molding. Nanoscale 2019, 11, 17709–17717.

[38]

Park, H.; Kim, D. H.; Ma, B. S.; Shin, E.; Kim, Y.; Kim, T. S.; Kim, F. S.; Kim, I. D.; Kim, B. J. High-performance, flexible NO2 chemiresistors achieved by design of imine-incorporated n-type conjugated polymers. Adv. Sci. 2022, 9, 2200270.

[39]

Qin, Y. X.; Wang, L. P.; Wang, X. F. A high performance sensor based on PANI/ZnTi-LDHs nanocomposite for trace NH3 detection. Org. Electron. 2019, 66, 102–109.

[40]

Yang, Z. J.; Wei, J. J.; Sobolev, Y. I.; Grzybowski, B. A. Systems of mechanized and reactive droplets powered by multi-responsive surfactants. Nature 2018, 553, 313–318.

[41]

Qi, X. Q.; Lu, Z. H.; You, E. M.; He, Y.; Zhang, Q. E.; Yi, H. J.; Li, D. Y.; Ding, S. Y.; Jiang, Y.; Xiong, X. P. et al. Nanocombing effect leads to nanowire-based, in-plane, uniaxial thin films. ACS Nano 2018, 12, 12701–12712.

[42]

Xie, L.; Liu, J. R.; Bao, X. B.; Chen, J. D.; Zheng, X. Z.; He, Y. J.; Zhang, W.; Zeng, J.; Wang, Y.; Kong, B. Interfacial assembly of nanowire arrays toward carbonaceous mesoporous nanorods and superstructures. Small 2022, 18, 2104477.

[43]

Park, S.; Lim, J. H.; Chung, S. W.; Mirkin, C. A. Self-assembly of mesoscopic metal-polymer amphiphiles. Science 2004, 303, 348–351.

[44]

Zheng, J. Z.; Pang, K. L.; Liu, X.; Li, S. X.; Song, R.; Liu, Y. L.; Tang, Z. Y. Integration and synergy of organic single crystals and metal-organic frameworks in core–shell heterostructures enables outstanding gas selectivity for detection. Adv. Funct. Mater. 2020, 30, 2005727.

[45]

Liao, J. Y.; Ho, K. C. A study of partially irreversible characteristics in a TTF-TCNQ gas sensing system. Sens. Actuators B:Chem. 2008, 130, 343–350.

[46]

Jouve, C.; Jullien, D.; Remaki, B. Conductive polyethylene as sensitive layer for gas detection. Sens. Actuators B:Chem. 1995, 28, 75–80.

[47]
Ho, K. C.; Liao, J. Y. NO2 gas sensing based on vacuum-deposited TTF-TCNQ thin films. Sens. Actuators B: Chem. 2003, 93, 370–378.
DOI
[48]

Wang, C.; Wu, N.; Jacobs, D. L.; Xu, M.; Yang, X. M.; Zang, L. Discrimination of alkyl and aromatic amine vapors using TTF-TCNQ based chemiresistive sensors. Chem. Commun. 2017, 53, 1132–1135.

[49]

Petit, C.; Levasseur, B.; Mendoza, B.; Bandosz, T. J. Reactive adsorption of acidic gases on MOF/graphite oxide composites. Micropor. Mesopor. Mater. 2012, 154, 107–112.

[50]

Liu, H. B.; Li, J. B.; Lao, C. S.; Huang, C. S.; Li, Y. L.; Wang, Z. L.; Zhu, D. B. Morphological tuning and conductivity of organic conductor nanowires. Nanotechnology 2007, 18, 495704.

[51]

Kistenmacher, T. J.; Phillips, T. E.; Cowan, D. O. The crystal structure of the 1: 1 radical cation-radical anion salt of 2, 2'-bis-l, 3-dithiole (TTF) and 7, 7, 8, 8-tetracyanoquinodimethane (TCNQ). Acta Crystallogr. Sec. B 1974, 30, 763–768.

[52]

Moitra, N.; Fukumoto, S.; Reboul, J.; Sumida, K.; Zhu, Y.; Nakanishi, K.; Furukawa, S.; Kitagawa, S.; Kanamori, K. Mechanically stable, hierarchically porous Cu3(btc)2 (HKUST-1) monoliths via direct conversion of copper(II) hydroxide-based monoliths. Chem. Commun. 2015, 51, 3511–3514.

[53]

Wang, Q. E.; Lian, M. L.; Zhu, X. W.; Chen, X. Excellent humidity sensor based on ultrathin HKUST-1 nanosheets. RSC Adv. 2021, 11, 192–197.

[54]

Dey, K. K.; Kumar, A.; Shanker, R.; Dhawan, A.; Wan, M.; Yadav, R. R.; Srivastava, A. K. Growth morphologies, phase formation, optical & biological responses of nanostructures of CuO and their application as cooling fluid in high energy density devices. RSC Adv. 2012, 2, 1387–1403.

[55]

Ba, N. N.; Zhu, L. J.; Li, H. B.; Zhang, G. Z.; Li, J. F.; Sun, J. F. 3D rod-like copper oxide with nanowire hierarchical structure: Ultrasound assisted synthesis from Cu2(OH)3NO3 precursor, optical properties and formation mechanism. Solid State Sci. 2016, 53, 23–29.

[56]
Li, Y. Synthesis of copper (II) oxide particle and detection of photoelectrochemically generated hydrogen. In Proceedings of 2008 NNIN REU Research Accomplishments, 2008, pp 46–47.
[57]

Feng, Y. F.; Jiang, H.; Li, S. N.; Wang, J.; Jing, X. Y.; Wang, Y. R.; Chen, M. Metal-organic frameworks HKUST-1 for liquid-phase adsorption of uranium. Colloids Surf. A:Physicochem. Eng. Asp. 2013, 431, 87–92.

[58]

Kumar, R. S.; Kumar, S. S.; Kulandainathan, M. A. Efficient electrosynthesis of highly active Cu3(BTC)2-MOF and its catalytic application to chemical reduction. Micropor. Mesopor. Mater. 2013, 168, 57–64.

[59]

Xu, X. M.; Liu, Y. X.; Wang, T.; Ji, H. D.; Chen, L.; Li, S.; Liu, W. Co-adsorption of ciprofloxacin and Cu(II) onto titanate nanotubes: Speciation variation and metal-organic complexation. J. Mol. Liq. 2019, 292, 111375.

[60]

Arul, C.; Moulaee, K.; Donato, N.; Iannazzo, D.; Lavanya, N.; Neri, G.; Sekar, C. Temperature modulated Cu-MOF based gas sensor with dual selectivity to acetone and NO2 at low operating temperatures. Sens. Actuators B:Chem. 2021, 329, 129053.

[61]

Small, L. J.; Henkelis, S. E.; Rademacher, D. X.; Schindelholz, M. E.; Krumhansl, J. L.; Vogel, D. J.; Nenoff, T. M. Near-zero power MOF-based sensors for NO2 detection. Adv. Funct. Mater. 2020, 30, 2006598.

[62]

Liu, Y. S.; Wang, R.; Zhang, T.; Liu, S.; Fei, T. Zeolitic imidazolate framework-8 (ZIF-8)-coated In2O3 nanofibers as an efficient sensing material for ppb-level NO2 detection. J. Colloid Interface Sci. 2019, 541, 249–257.

[63]

Ko, W. C.; Kim, M. S.; Kwon, Y. J.; Jeong, J.; Kim, W. R.;Choi, H.; Park, J. K.; Jeong, Y. K. Two-dimensional semiconducting covalent organic nanosheets for highly sensitive and stable NO2 sensing under humid conditions. J. Mater. Chem. A 2020, 8, 19246–19253.

[64]

Zhan, M. M.; Ge, C. X.; Hussain, S.; Alkorbi, A. S.; Alsaiari, R.; Alhemiary, N. A.; Qiao, G. J.; Liu, G. W. Enhanced NO2 gas-sensing performance by core–shell SnO2/ZIF-8 nanospheres. Chemosphere 2022, 291, 132842.

[65]

Zhan, M. M.; Hussain, S.; AlGarni, T. S.; Shah, S.; Liu, J. L.; Zhang, X. Z.; Ahmad, A.; Javed, M. S.; Qiao, G. J.; Liu, G. W. Facet controlled polyhedral ZIF-8 MOF nanostructures for excellent NO2 gas-sensing applications. Mater. Res. Bull. 2021, 136, 111133.

[66]

Li, Z.; Zhang, Y.; Zhang, H.; Jiang, Y.; Yi, J. X. Superior NO2 sensing of MOF-derived Indium-doped ZnO porous hollow cages. ACS Appl. Mater. Interfaces 2020, 12, 37489–37498.

[67]

Fan, J. L.; Hu, X. F.; Qin, W. W.; Liu, Z. Y.; Liu, Y. S.; Gao, S. J.; Tan, L. P.; Yang, J. L.; Luo, L. B.; Zhang, W. UV-light-assisted gas sensor based on PdSe2/InSe heterojunction for ppb-level NO2 sensing at room temperature. Nanoscale 2022, 14, 13204–13213.

[68]

Ji, W. T.; Yang, F.; Sun, J. H.; Xu, R. P.; Li, P.; Jing, L. Q. Improved performance of g-C3N4 for optoelectronic detection of NO2 gas by coupling metal-organic framework nanosheets with coordinatively unsaturated Ni(II) Sites. ACS Appl. Mater. Interfaces 2023, 15, 11961–11969.

[69]

Li, Y. Y.; Liu, Y. Z.; Lu, Y.; Liu, Z. Q.; Sui, C. M.; Wang, Y. L.; Yang, L.; Liu, F. M.; Sun, P.; Liu, F. M. et al. Preparation of BiOI-functionalized ZnO nanorods for ppb-Level NO2 detection at room temperature. ACS Sens. 2022, 7, 3915–3922.

[70]

Pham, T.; Li, G. H.; Bekyarova, E.; Itkis, M. E.; Mulchandani, A. MoS2-based optoelectronic gas sensor with sub-parts-per-billion limit of NO2 gas detection. ACS Nano 2019, 13, 3196–3205.

[71]

Kwon, E. H.; Kim, M.; Lee, C. Y.; Kim, M.; Park, Y. D. Metal-organic-framework-decorated carbon nanofibers with enhanced gas sensitivity when incorporated into an organic semiconductor-based gas sensor. ACS Appl. Mater. Interfaces 2022, 14, 10637–10647.

[72]

Lee, J. I.; Kim, M.; Park, K. C.; Lee, C. Y.; Park, Y. D. Polythiophene hybrid film with zirconium-porphyrin metal-organic framework for improved charge carrier transport and NO2 gas sensing. Mater. Chem. Phys. 2022, 278, 125661.

[73]

Koo, W. T.; Kim, S. J.; Jang, J. S.; Kim, D. H.; Kim, I. D. Catalytic metal nanoparticles embedded in conductive metal-organic frameworks for chemiresistors: Highly active and conductive porous materials. Adv. Sci. 2019, 6, 1900250.

[74]

Park, C.; Koo, W. T.; Chong, S.; Shin, H.; Kim, Y. H.; Cho, H. J.; Jang, J. S.; Kim, D. H.; Lee, J.; Park, S. et al. Confinement of ultrasmall bimetallic nanoparticles in conductive metal-organic frameworks via site-specific nucleation. Adv. Mater. 2021, 33, 2101216.

[75]

Kim, J. O.; Koo, W. T.; Kim, H.; Park, C.; Lee, T.; Hutomo, C. A.; Choi, S. Q.; Kim, D. S.; Kim, I. D.; Park, S. Large-area synthesis of nanoscopic catalyst-decorated conductive MOF film using microfluidic-based solution shearing. Nat. Commun. 2021, 12, 4294.

[76]

Kang, Y.; Kwak, D. H.; Kwon, J. E.; Kim, B. G.; Lee, W. H. NO2-affinitive conjugated polymer for selective sub-parts-per-billion NO2 detection in a field-effect transistor sensor. ACS Appl. Mater. Interfaces 2021, 13, 31910–31918.

[77]

Khan, M. W.; Sadiq, M. M.; Gopalsamy, K.; Xu, K.; Jannat, A.; Zhang, B. Y.; Mohiuddin, M.; Haris, M.; Ou, R.; Afrin, S. et al. Hetero-metallic metal-organic frameworks for room-temperature NO2 sensing. J. Colloid Interface Sci. 2022, 610, 304–312.

[78]

Fan, J. L.; Hu, X. F.; Qin, W. W.; Zhou, M.; Liu, Y. S.; Cheng, S.; Gao, S. J.; Tan, L. P.; Wang, G. Q.; Zhang, W. Room-temperature sensing performance of binary Co-Zn doped MoS2/graphite composites toward ppb-level NO2. J. Mater. Chem. C 2023, 11, 2364–2374.

[79]

Gardner, D. W.; Gao, X.; Fahad, H. M.; Yang, A. T.; He, S.; Javey, A.; Carraro, C.; Maboudian, R. Transistor-based work-function measurement of metal-organic frameworks for ultra-low-power, rationally designed chemical sensors. Chem. -Eur. J. 2019, 25, 13176–13183.

[80]

Zhang, L. Z.; Fang, Q. L.; Huang, Y. H.; Xu, K. W.; Chu, P. K.; Ma, F. Oxygen vacancy enhanced gas-sensing performance of CeO2/graphene heterostructure at room temperature. Anal. Chem. 2018, 90, 9821–9829.

File
12274_2023_6046_MOESM1_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 April 2023
Revised: 26 July 2023
Accepted: 26 July 2023
Published: 08 September 2023
Issue date: December 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The authors acknowledge the financial support from the National Key Research and Development Program of China (Nos. 2022YFB3805203 and 2021YFA1200302), Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000), and the National Natural Science Foundation of China (Nos. 22073021, 92056204, 21890381, and 21721002).

Return