Journal Home > Volume 17 , Issue 3

Intelligent electromagnetic interference (EMI) shielding modulators with a wide tuning range and cyclic stability are urgently needed but their fabrication remains challenging. A gel-like MXene/norepinephrine ink is developed and multifunctional MXene gratings with wide EMI shielding effectiveness (SE) tuning range, superior reversibility, and high mechanical flexibility are constructed by direct ink writing approach for dynamic EMI shielding and patterned Joule heating applications. The modulable MXene/norepinephrine grating with a high conductivity of 3510 S·cm−1 can conveniently realize the seamless modulation of the EMI SE by adjusting the angle between the MXene grating filaments and the electric field of the incident electromagnetic waves, offering highly reversible switching between shielding “On” (28.0 dB) and “Off” (0.5 dB) states. Notably, due to the optimized integration of the MXene ink and the rationally designed pattern, a superior specific EMI SE of 95,688.2 dB·cm2·g−1 is achieved in the “On” state. Furthermore, the MXene/norepinephrine ink can be used to fabricate many complex patterned gratings with superior stability, instant responsibility, and superb mechanical flexibility, exhibiting a unique patterned Joule heating behavior. Direct writing of multifunctional gratings paves a means for developing intelligent EMI shielding materials, wearable electronic devices, and advanced thermal management materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Direct ink writing of multifunctional gratings with gel-like MXene/norepinephrine ink for dynamic electromagnetic interference shielding and patterned Joule heating

Show Author's information Pei-Zhu Jiang1,2Zhiming Deng1Peng Min2( )Lvxuan Ye1Cheng-Zhang Qi1Hao-Yu Zhao2Ji Liu3Hao-Bin Zhang1( )Zhong-Zhen Yu2( )
Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
School of Chemistry, CRANN and AMBER, Trinity College Dublin, Dublin D02PN40, Ireland

Abstract

Intelligent electromagnetic interference (EMI) shielding modulators with a wide tuning range and cyclic stability are urgently needed but their fabrication remains challenging. A gel-like MXene/norepinephrine ink is developed and multifunctional MXene gratings with wide EMI shielding effectiveness (SE) tuning range, superior reversibility, and high mechanical flexibility are constructed by direct ink writing approach for dynamic EMI shielding and patterned Joule heating applications. The modulable MXene/norepinephrine grating with a high conductivity of 3510 S·cm−1 can conveniently realize the seamless modulation of the EMI SE by adjusting the angle between the MXene grating filaments and the electric field of the incident electromagnetic waves, offering highly reversible switching between shielding “On” (28.0 dB) and “Off” (0.5 dB) states. Notably, due to the optimized integration of the MXene ink and the rationally designed pattern, a superior specific EMI SE of 95,688.2 dB·cm2·g−1 is achieved in the “On” state. Furthermore, the MXene/norepinephrine ink can be used to fabricate many complex patterned gratings with superior stability, instant responsibility, and superb mechanical flexibility, exhibiting a unique patterned Joule heating behavior. Direct writing of multifunctional gratings paves a means for developing intelligent EMI shielding materials, wearable electronic devices, and advanced thermal management materials.

Keywords: electromagnetic interference shielding, Joule heating, direct ink writing, MXene ink, multifunctional gratings

References(71)

[1]

Zheng, S. H.; Wang, H.; Das, P.; Zhang, Y.; Cao, Y. X.; Ma, J. X.; Liu, S. F.; Wu, Z. S. Multitasking MXene inks enable high-performance printable microelectrochemical energy storage devices for all-flexible self-powered integrated systems. Adv. Mater. 2021, 33, 2005449.

[2]

Liang, X. P.; Li, H. F.; Dou, J. X.; Wang, Q.; He, W. Y.; Wang, C. Y.; Li, D. H.; Lin, J. M.; Zhang, Y. Y. Stable and biocompatible carbon nanotube ink mediated by silk protein for printed electronics. Adv. Mater. 2020, 32, 2000165.

[3]

Zhou, Z. H.; Song, Q. C.; Huang, B. X.; Feng, S. Y.; Lu, C. H. Facile fabrication of densely packed Ti3C2 MXene/nanocellulose composite films for enhancing electromagnetic interference shielding and electro-/photothermal performance. ACS Nano 2021, 15, 12405–12417.

[4]

Chen, Z. P.; Xu, C.; Ma, C. Q.; Ren, W. C.; Cheng, H. M. Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 2013, 25, 1296–1300.

[5]

Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609.

[6]

Song, P.; Liu, B.; Qiu, H.; Shi, X. T.; Cao, D. P.; Gu, J. W. MXenes for polymer matrix electromagnetic interference shielding composites: A review. Compos. Commun. 2021, 24, 100653.

[7]

Lu, D. W.; Mo, Z. C.; Liang, B. H.; Yang, L. L.; He, Z. F.; Zhu, H.; Tang, Z. K.; Gui, X. C. Flexible, lightweight carbon nanotube sponges and composites for high-performance electromagnetic interference shielding. Carbon 2018, 133, 457–463.

[8]

Liu, J.; Yu, M. Y.; Yu, Z. Z.; Nicolosi, V. Design and advanced manufacturing of electromagnetic interference shielding materials. Mater. Today 2023, 66, 245–272.

[9]

Wang, Y.; Gao, Y. N.; Yue, T. N.; Chen, X. D.; Wang, M. Achieving high-performance and tunable microwave shielding in multi-walled carbon nanotubes/polydimethylsiloxane composites containing liquid metals. Appl. Surf. Sci. 2021, 563, 150255.

[10]

Kuila, C.; Maji, A.; Murmu, N. C.; Kuila, T.; Srivastava, S. K. Recent advancements in carbonaceous nanomaterials for multifunctional broadband electromagnetic interference shielding and wearable devices. Carbon 2023, 210, 118075.

[11]

Xu, J. D.; Li, R. S.; Ji, S. R.; Zhao, B. C.; Cui, T. R.; Tan, X. C.; Gou, G. Y.; Jian, J. M.; Xu, H. K.; Qiao, Y. C. et al. Multifunctional graphene microstructures inspired by honeycomb for ultrahigh performance electromagnetic interference shielding and wearable applications. ACS Nano 2021, 15, 8907–8918.

[12]

Zhang, Y. L.; Ruan, K. P.; Zhou, K.; Gu, J. W. Controlled distributed Ti3C2Tx hollow microspheres on thermally conductive polyimide composite films for excellent electromagnetic interference shielding. Adv. Mater. 2023, 35, e2211642.

[13]

Cheng, M. L.; Ying, M. F.; Zhao, R. Z.; Ji, L. Z.; Li, H. X.; Liu, X. G.; Zhang, J.; Li, Y. X.; Dong, X. L.; Zhang, X. F. Transparent and flexible electromagnetic interference shielding materials by constructing sandwich AgNW@MXene/wood composites. ACS Nano 2022, 16, 16996–17007.

[14]

Kim, Y.; Hyeong, S. K.; Choi, Y.; Lee, S. K.; Lee, J. H.; Yu, H. K. Transparent and flexible electromagnetic interference shielding film using ITO nanobranches by internal scattering. ACS Appl. Mater. Interfaces 2021, 13, 61413–61421.

[15]

Meng, F. B.; Chen, Y.; Liu, W. H.; Zhang, L. K.; Deng, W. T.; Zhao, Z. C. Multifunctional RGO-based films with “brick-slurry” structure: High-efficiency electromagnetic shielding performance, high strength and excellent environmental adaptability. Carbon 2022, 200, 156–165.

[16]

Wang, Y. N.; Cheng, X. D.; Song, W. L.; Ma, C. J.; Bian, X. M.; Chen, M. J. Hydro-sensitive sandwich structures for self-tunable smart electromagnetic shielding. Chem. Eng. J. 2018, 344, 342–352.

[17]

Zhu, R. Q.; Li, Z. Y.; Deng, G.; Yu, Y. H.; Shui, J. L.; Yu, R. H.; Pan, C. F.; Liu, X. F. Anisotropic magnetic liquid metal film for wearable wireless electromagnetic sensing and smart electromagnetic interference shielding. Nano Energy 2022, 92, 106700.

[18]

Ma, Z. L.; Xiang, X. L.; Shao, L.; Zhang, Y. L.; Gu, J. W. Multifunctional wearable silver nanowire decorated leather nanocomposites for Joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem., Int. Ed. 2022, 61, e202200705.

[19]

Deng, Z. M.; Li, L. L.; Tang, P. P.; Jiao, C. Y.; Yu, Z. Z.; Koo, C. M.; Zhang, H. B. Controllable surface-grafted MXene inks for electromagnetic wave modulation and infrared anti-counterfeiting applications. ACS Nano 2022, 16, 16976–16986.

[20]

Liu, X. F.; Li, Y.; Sun, X.; Tang, W. K.; Deng, G.; Liu, Y. J.; Song, Z. M.; Yu, Y. H.; Yu, R. H.; Dai, L. M. et al. Off/on switchable smart electromagnetic interference shielding aerogel. Matter 2021, 4, 1735–1747.

[21]

Han, M. K.; Zhang, D. Z.; Shuck, C. E.; McBride, B.; Zhang, T.; Wang, R. C.; Shevchuk, K.; Gogotsi, Y. Electrochemically modulated interaction of MXenes with microwaves. Nat. Nanotechnol. 2023, 18, 373–379.

[22]

Cai, J. H.; Tang, X. H.; Chen, X. D.; Wang, M. Temperature and strain-induced tunable electromagnetic interference shielding in polydimethylsiloxane/multi-walled carbon nanotube composites with temperature-sensitive microspheres. Compos. Part A Appl. Sci. Manuf. 2021, 140, 106188.

[23]

Alhabeb, M.; Maleski, K.; Anasori, B.; Lelyukh, P.; Clark, L.; Sin, S.; Gogotsi, Y. Guidelines for synthesis and processing of two-dimensional titanium carbide (Ti3C2Tx MXene). Chem. Mater. 2017, 29, 7633–7644.

[24]

Abdolhosseinzadeh, S.; Jiang, X. T.; Zhang, H.; Qiu, J. S.; Zhang, C. F. Perspectives on solution processing of two-dimensional MXenes. Mater. Today 2021, 48, 214–240.

[25]

Shahzad, F.; Alhabeb, M.; Hatter, C. B.; Anasori, B.; Hong, S. M.; Koo, C. M.; Gogotsi, Y. Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 2016, 353, 1137–1140.

[26]

Fu, Z. H.; Wang, N.; Legut, D.; Si, C.; Zhang, Q. F.; Du, S. Y.; Germann, T. C.; Francisco, J. S.; Zhang, R. F. Rational design of flexible two-dimensional MXenes with multiple functionalities. Chem. Rev. 2019, 119, 11980–12031.

[27]

Shao, Y. Z.; Wei, L. S.; Wu, X. Y.; Jiang, C. M.; Yao, Y.; Peng, B.; Chen, H.; Huangfu, J. T.; Ying, Y. B.; Zhang, C. J. et al. Room-temperature high-precision printing of flexible wireless electronics based on MXene inks. Nat. Commun. 2022, 13, 3223.

[28]

Song, D. K.; Zeng, M. J.; Min, P.; Jia, X. Q.; Gao, F. L.; Yu, Z. Z.; Li, X. F. Electrically conductive and highly compressible anisotropic MXene-wood sponges for multifunctional and integrated wearable devices. J. Mater. Sci. Technol. 2023, 144, 102–110.

[29]

Orangi, J.; Hamade, F.; Davis, V. A.; Beidaghi, M. 3D printing of additive-free 2D Ti3C2Tx (MXene) ink for fabrication of micro-supercapacitors with ultra-high energy densities. ACS Nano 2020, 14, 640–650.

[30]

Zhang, C. F.; Ma, Y. L.; Zhang, X. T.; Abdolhosseinzadeh, S.; Sheng, H. W.; Lan, W.; Pakdel, A.; Heier, J.; Nüesch, F. Two-dimensional transition metal carbides and nitrides (MXenes): Synthesis, properties, and electrochemical energy storage applications. Energy Environ. Mater. 2020, 3, 29–55.

[31]

Iqbal, A.; Sambyal, P.; Koo, C. M. 2D MXenes for electromagnetic shielding: A review. Adv. Funct. Mater. 2020, 30, 2000883.

[32]

Iqbal, A.; Hassan, T.; Gao, Z. G.; Shahzad, F.; Koo, C. M. MXene-incorporated 1D/2D nano-carbons for electromagnetic shielding: A review. Carbon 2023, 203, 542–560.

[33]

Shi, M. K.; Shen, M. M.; Guo, X. Y.; Jin, X. X.; Cao, Y. X.; Yang, Y. Y.; Wang, W. J.; Wang, J. F. Ti3C2Tx MXene-decorated nanoporous polyethylene textile for passive and active personal precision heating. ACS Nano 2021, 15, 11396–11405.

[34]

Du, X. Y.; Li, X. X.; Zhang, Y. X.; Guo, X. Y.; Li, Z. J.; Cao, Y. X.; Yang, Y. Y.; Wang, W. J.; Wang, J. F. Visible transparent, infrared stealthy polymeric films with nanocoating of ITO@MXene enable efficient passive radiative heating and solar/electric thermal conversion. Nano Res. 2023, 16, 3326–3332.

[35]

Wang, Z. W.; Kim, H.; Alshareef, H. N. Oxide thin-film electronics using all-MXene electrical contacts. Adv. Mater. 2018, 30, 1706656.

[36]

Deng, W.; Huang, H. C.; Jin, H. M.; Li, W.; Chu, X.; Xiong, D.; Yan, W.; Chun, F.; Xie, M. L.; Luo, C. et al. All-sprayed-processable, large-area, and flexible perovskite/MXene-based photodetector arrays for photocommunication. Adv. Opt. Mater. 2019, 7, 1801521.

[37]

Montazeri, K.; Currie, M.; Verger, L.; Dianat, P.; Barsoum, M. W.; Nabet, B. Beyond gold: Spin-coated Ti3C2-based MXene photodetectors. Adv. Mater. 2019, 31, 1903271.

[38]

Hernandez, J. L.; Deb, N.; Wolfe, R. M. W.; Lo, C. K.; Engmann, S.; Richter, L. J.; Reynolds, J. R. Simple transfer from spin coating to blade coating through processing aggregated solutions. J. Mater. Chem. A 2017, 5, 20687–20695.

[39]

Zhou, L.; Yu, M. J.; Chen, X. L.; Nie, S. H.; Lai, W. Y.; Su, W. M.; Cui, Z.; Huang, W. Screen-printed poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) grids as ITO-free anodes for flexible organic light-emitting diodes. Adv. Funct. Mater. 2018, 28, 1705955.

[40]

Abdolhosseinzadeh, S.; Schneider, R.; Verma, A.; Heier, J.; Nüesch, F.; Zhang, C. F. Turning trash into treasure: Additive free MXene sediment inks for screen-printed micro-supercapacitors. Adv. Mater. 2020, 32, 2000716.

[41]

Zhang, J. Z.; Kong, N.; Uzun, S.; Levitt, A.; Seyedin, S.; Lynch, P. A.; Qin, S.; Han, M. K.; Yang, W. R.; Liu, J. Q. et al. Scalable manufacturing of free-standing, strong Ti3C2Tx MXene films with outstanding conductivity. Adv. Mater. 2020, 32, 2001093.

[42]

Guo, T. Z.; Zhou, D.; Deng, S. G.; Jafarpour, M.; Avaro, J.; Neels, A.; Heier, J.; Zhang, C. F. Rational design of Ti3C2Tx MXene inks for conductive, transparent films. ACS Nano 2023, 17, 3737–3749.

[43]

Sol, J. A. H. P.; Smits, L. G.; Schenning, A. P. H. J.; Debije, M. G. Direct ink writing of 4D structural colors. Adv. Funct. Mater. 2022, 32, 2201766.

[44]

Zhang, C. F.; McKeon, L.; Kremer, M. P.; Park, S. H.; Ronan, O.; Seral-Ascaso, A.; Barwich, S.; Coileáin, C. Ó.; McEvoy, N.; Nerl, H. C. et al. Additive-free MXene inks and direct printing of micro-supercapacitors. Nat. Commun. 2019, 10, 1795.

[45]

Wu, X. Y.; Tu, T. X.; Dai, Y.; Tang, P. P.; Zhang, Y.; Deng, Z. M.; Li, L. L.; Zhang, H. B.; Yu, Z. Z. Direct ink writing of highly conductive MXene frames for tunable electromagnetic interference shielding and electromagnetic wave-induced thermochromism. Nano-Micro Lett. 2021, 13, 148.

[46]

Akuzum, B.; Maleski, K.; Anasori, B.; Lelyukh, P.; Alvarez, N. J.; Kumbur, E. C.; Gogotsi, Y. Rheological characteristics of 2D titanium carbide (MXene) dispersions: A guide for processing MXenes. ACS Nano 2018, 12, 2685–2694.

[47]

Fan, Z. D.; Jin, J.; Li, C.; Cai, J. S.; Wei, C. H.; Shao, Y. L.; Zou, G. F.; Sun, J. Y. 3D-printed Zn-ion hybrid capacitor enabled by universal divalent cation-gelated additive-free Ti3C2 MXene ink. ACS Nano 2021, 15, 3098–3107.

[48]

Liu, J.; McKeon, L.; Garcia, J.; Pinilla, S.; Barwich, S.; Möbius, M.; Stamenov, P.; Coleman, J. N.; Nicolosi, V. Additive manufacturing of Ti3C2-MXene-functionalized conductive polymer hydrogels for electromagnetic-interference shielding. Adv. Mater. 2022, 34, 2106253.

[49]

Wu, Z. T.; Shang, T. X.; Deng, Y.; Tao, Y. Q.; Yang, Q. H. The assembly of MXenes from 2D to 3D. Adv. Sci. 2020, 7, 1903077.

[50]

Zhou, G. Q.; Li, M. C.; Liu, C. Z.; Wu, Q. L.; Mei, C. T. 3D printed Ti3C2Tx MXene/cellulose nanofiber architectures for solid-state supercapacitors: Ink rheology, 3D printability, and electrochemical performance. Adv. Funct. Mater. 2021, 32, 2109593.

[51]

Yang, W. J.; Yang, J.; Byun, J. J.; Moissinac, F. P.; Xu, J. Q.; Haigh, S. J.; Domingos, M.; Bissett, M. A.; Dryfe, R. A. W.; Barg, S. 3D printing of freestanding MXene architectures for current-collector-free supercapacitors. Adv. Mater. 2019, 31, 1902725.

[52]

Cuomo, F.; Cofelice, M.; Lopez, F. Rheological characterization of hydrogels from alginate-based nanodispersion. Polymers 2019, 11, 259.

[53]

Li, L.; Meng, J.; Bao, X. R.; Huang, Y. P.; Yan, X. P.; Qian, H. L.; Zhang, C.; Liu, T. X. Direct-ink-write 3D printing of programmable micro-supercapacitors from MXene-regulating conducting polymer inks. Adv. Energy Mater. 2023, 13, 2203683.

[54]

Zeng, Z. H.; Wang, C. X.; Siqueira, G.; Han, D. X.; Huch, A.; Abdolhosseinzadeh, S.; Heier, J.; Nüesch, F.; Zhang, C. F.; Nyström, G. Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 2020, 7, 2000979.

[55]

Lee, D. W.; Park, J.; Kim, B. J.; Kim, H.; Choi, C.; Baughman, R. H.; Kim, S. J.; Kim, Y. T. Enhancement of electromagnetic interference shielding effectiveness with alignment of spinnable multiwalled carbon nanotubes. Carbon 2019, 142, 528–534.

[56]

Wei, Y. Y.; Hu, C. S.; Dai, Z. H.; Zhang, Y. F.; Zhang, W. W.; Lin, X. Y. Highly anisotropic MXene@wood composites for tunable electromagnetic interference shielding. Compos. Part A Appl. Sci. Manuf. 2023, 168, 107476.

[57]

Li, M. K.; Sun, Y. Y.; Feng, D. Y.; Ruan, K. P.; Liu, X.; Gu, J. W. Thermally conductive polyvinyl alcohol composite films via introducing hetero-structured MXene@silver fillers. Nano Res. 2023, 16, 7820–7828.

[58]

Pendry, J. B.; Holden, A. J.; Stewart, W. J.; Youngs, I. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 1996, 76, 4773–4776.

[59]

Dankov, P. I. Experimental characterization of positive and negative dielectric constants and artificial anisotropy of meta-materials in the microwave range. J. Phys. Conf. Ser. 2020, 1598, 012002.

[60]

Wu, Z. C.; Cheng, H. W.; Jin, C.; Yang, B. T.; Xu, C. Y.; Pei, K.; Zhang, H. B.; Yang, Z. Q.; Che, R. C. Dimensional design and core-shell engineering of nanomaterials for electromagnetic wave absorption. Adv. Mater. 2022, 34, 2107538.

[61]

Li, T.; Li, J. Z.; Xu, Z. K.; Tian, Y. R.; Li, J. T.; Du, J. N.; Meng, F. B. Electromagnetic response of multistage-helical nano-micro conducting polymer structures and their enhanced attenuation mechanism of multiscale-chiral synergistic effect. Small 2023, 19, e2300233.

[62]

Tian, Y. R.; Zhi, D. D.; Li, T.; Li, J. Z.; Li, J. T.; Xu, Z. K.; Kang, W.; Meng, F. B. Graphene-based aerogel microspheres with annual ring-like structures for broadband electromagnetic attenuation. Chem. Eng. J. 2023, 464, 142644.

[63]

Li, B.; Wu, N.; Yang, Y. F.; Pan, F.; Wang, C. X.; Wang, G.; Xiao, L.; Liu, W.; Liu, J. R.; Zeng, Z. H. Graphene oxide-assisted multiple cross-linking of MXene for large-area, high-strength, oxidation-resistant, and multifunctional films. Adv. Funct. Mater. 2023, 33, 2213357.

[64]

Liang, C. B.; He, J.; Zhang, Y. L.; Zhang, W.; Liu, C. L.; Ma, X. T.; Liu, Y. Q.; Gu, J. W. MOF-derived CoNi@C-silver nanowires/cellulose nanofiber composite papers with excellent thermal management capability for outstanding electromagnetic interference shielding. Compos. Sci. Technol. 2022, 224, 109445.

[65]

Yun, T.; Kim, H.; Iqbal, A.; Cho, Y. S.; Lee, G. S.; Kim, M. K.; Kim, S. J.; Kim, D.; Gogotsi, Y.; Kim, S. O. et al. Electromagnetic shielding of monolayer MXene assemblies. Adv. Mater. 2020, 32, 1906769.

[66]

Hu, P. Y.; Lyu, J.; Fu, C.; Gong, W. B.; Liao, J. H.; Lu, W. B.; Chen, Y. P.; Zhang, X. T. Multifunctional aramid nanofiber/carbon nanotube hybrid aerogel films. ACS Nano 2020, 14, 688–697.

[67]

Ren, Z. C.; Xu, G. P.; Wang, B.; Song, S. S.; Hao, T. T.; Liu, D. Q.; Zhang, Y. K.; Zhao, J. P.; Zhang, L. P.; Li, Y. Polyaniline-based infrared dynamic patterned encoder with multiple thermal radiation characteristics. ACS Appl. Mater. Interfaces 2023, 15, 14740–14747.

[68]

Zhang, X. Z.; Hou, Y.; Yang, Y.; Wang, Z. Y.; Liang, X. S.; He, Q. Q.; Xu, Y. F.; Sun, X. L.; Ma, H. Y.; Liang, J. et al. Stamp-like energy harvester and programmable information encrypted display based on fully printable thermoelectric devices. Adv. Mater. 2023, 35, 2207723.

[69]

Hu, R.; Huang, S. Y.; Wang, M.; Luo, X. B.; Shiomi, J.; Qiu, C. W. Encrypted thermal printing with regionalization transformation. Adv. Mater. 2019, 31, 1807849.

[70]

Zhang, Q. Q.; Yu, Y. K.; Yang, K. C.; Zhang, B. Q.; Zhao, K. R.; Xiong, G. P.; Zhang, X. Y. Mechanically robust and electrically conductive graphene-paper/glass-fibers/epoxy composites for stimuli-responsive sensors and Joule heating deicers. Carbon 2017, 124, 296–307.

[71]

Zhao, W. W.; Yu, W. J.; Jiang, Y.; Yu, Z. Q.; Wang, G. Y.; Liu, X. Q. Patterning of thermosetting resins via laser engraving towards efficient thermal management. Nano Energy 2022, 100, 107477.

Video
12274_2023_6044_MOESM2_ESM.mp4
File
12274_2023_6044_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 July 2023
Revised: 21 July 2023
Accepted: 26 July 2023
Published: 30 August 2023
Issue date: March 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The financial support from the National Natural Science Foundation of China (Nos. 51922020, 52090034 and 52221006), and the Open Fund of State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology (No. OIC-202201001) is gratefully acknowledged.

Return