Journal Home > Volume 17 , Issue 4

Two-dimensional transition metal chalcogenides (2D-TMDs) have attracted much attention because of their unique layered structure and physical properties for transistor applications. Mechanically transferred metal contacts on these low-dimensional materials or their homogeneous and heterogeneous multilayers have generated huge interest to avoid deposition damages. In this paper, we show that there are large physical gaps at both the edge contact and surface contact between the transferred electrodes and the 2D materials. A method called laser shock induced superplastic deformation (LSISD) is proposed to tackle this issue and enhance the performance of the transistors. The enhancement mechanism was investigated by molecular dynamics (MD) simulations of the nanoforming process, atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) characterizations of the interfaces, and density functional theory (DFT) modeling. The force effect of laser shock can reduce the contact gap between metals and semiconductors. The electrical performances of the transistors before and after LSISD, along with MD simulations, are used to find the optimal process parameters. In addition, this paper applies the LSISD method to the short-channel MoS2/graphene vertical transistors to show potential improvement in interface contact and electrical properties. This paper demonstrates the first report on using mechanical force induced by laser shock to enhance metal–semiconductor interfaces and transistor performances.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Nanoforming of transferred metal contacts for enhanced two-dimensional field effect transistors

Show Author's information Shuoheng Xu1Zheng Huang1Jie Guan3Yaowu Hu1,2( )
The Institute of Technological Sciences, Wuhan University, Wuhan 430072, China
School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
School of Physics, Southeast University, Nanjing 211189, China

Abstract

Two-dimensional transition metal chalcogenides (2D-TMDs) have attracted much attention because of their unique layered structure and physical properties for transistor applications. Mechanically transferred metal contacts on these low-dimensional materials or their homogeneous and heterogeneous multilayers have generated huge interest to avoid deposition damages. In this paper, we show that there are large physical gaps at both the edge contact and surface contact between the transferred electrodes and the 2D materials. A method called laser shock induced superplastic deformation (LSISD) is proposed to tackle this issue and enhance the performance of the transistors. The enhancement mechanism was investigated by molecular dynamics (MD) simulations of the nanoforming process, atomic force microscopy (AFM), scanning electron microscopy (SEM), transmission electron microscopy (TEM) characterizations of the interfaces, and density functional theory (DFT) modeling. The force effect of laser shock can reduce the contact gap between metals and semiconductors. The electrical performances of the transistors before and after LSISD, along with MD simulations, are used to find the optimal process parameters. In addition, this paper applies the LSISD method to the short-channel MoS2/graphene vertical transistors to show potential improvement in interface contact and electrical properties. This paper demonstrates the first report on using mechanical force induced by laser shock to enhance metal–semiconductor interfaces and transistor performances.

Keywords: electronics, laser shock nanoforming, metal-semiconductor contact, two-dimensional transistors

References(40)

[1]

Liu, Y.; Duan, X. D.; Huang, Y.; Duan, X. F. Two-dimensional transistors beyond graphene and TMDCs. Chem. Soc. Rev. 2018, 47, 6388–6409.

[2]

Li, M. Y.; Su, S. K.; Wong, H. S. P.; Li, L. J. How 2D semiconductors could extend Moore’s law. Nature 2019, 567, 169–170.

[3]

Liu, X. L.; Hersam, M. C. 2D materials for quantum information science. Nat. Rev. Mater. 2019, 4, 669–684.

[4]

Fang, H.; Tosun, M.; Seol, G.; Chang, T. C.; Takei, K.; Guo, J.; Javey, A. Degenerate n-doping of few-layer transition metal dichalcogenides by potassium. Nano Lett. 2013, 13, 1991–1995.

[5]

McDonnell, S.; Addou, R.; Buie, C.; Wallace, R. M.; Hinkle, C. L. Defect-dominated doping and contact resistance in MoS2. ACS Nano 2014, 8, 2880–2888.

[6]

Das, S.; Chen, H. Y.; Penumatcha, A. V.; Appenzeller, J. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett. 2013, 13, 100–105.

[7]

Tung, R. T. Chemical bonding and Fermi level pinning at metal-semiconductor interfaces. Phys. Rev. Lett. 2000, 84, 6078–6081.

[8]

Kim, C.; Moon, I.; Lee, D.; Choi, M. S.; Ahmed, F.; Nam, S.; Cho, Y.; Shin, H. J.; Park, S.; Yoo, W. J. Fermi level pinning at electrical metal contacts of monolayer molybdenum dichalcogenides. ACS Nano 2017, 11, 1588–1596.

[9]

Liu, Y.; Guo, J.; Zhu, E. B.; Liao, L.; Lee, S. J.; Ding, M. N.; Shakir, I.; Gambin, V.; Huang, Y.; Duan, X. F. Approaching the Schottky–Mott limit in van der Waals metal-semiconductor junctions. Nature 2018, 557, 696–700.

[10]

Kim, C.; Lee, K. Y.; Moon, I.; Issarapanacheewin, S.; Yoo, W. J. Metallic contact induced van der Waals gap in a MoS2 FET. Nanoscale 2019, 11, 18246–18254.

[11]

Wang, J. L.; Yao, Q.; Huang, C. W.; Zou, X. M.; Liao, L.; Chen, S. S.; Fan, Z. Y.; Zhang, K.; Wu, W.; Xiao, X. H. et al. High mobility MoS2 transistor with low Schottky barrier contact by using atomic thick h-BN as a tunneling layer. Adv. Mater. 2016, 28, 8302–8308.

[12]

Cui, X.; Shih, E. M.; Jauregui, L. A.; Chae, S. H.; Kim, Y. D.; Li, B. C.; Seo, D.; Pistunova, K.; Yin, J.; Park, J. H. et al. Low-temperature ohmic contact to monolayer MoS2 by van der Waals bonded Co/h-BN electrodes. Nano Lett. 2017, 17, 4781–4786.

[13]

Chen, J. R.; Odenthal, P. M.; Swartz, A. G.; Floyd, G. C.; Wen, H.; Luo, K. Y.; Kawakami, R. K. Control of Schottky barriers in single layer MoS2 transistors with ferromagnetic contacts. Nano Lett. 2013, 13, 3106–3110.

[14]

Wang, Y.; Kim, J. C.; Wu, R. J.; Martinez, J.; Song, X. J.; Yang, J.; Zhao, F.; Mkhoyan, A.; Jeong, H. Y.; Chhowalla, M. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 2019, 568, 70–74.

[15]

Liu, L. T.; Kong, L. G.; Li, Q. Y.; He, C. L.; Ren, L. W.; Tao, Q. Y.; Yang, X. D.; Lin, J.; Zhao, B.; Li, Z. W. et al. Transferred van der Waals metal electrodes for sub-1-nm MoS2 vertical transistors. Nat. Electron. 2021, 4, 342–347.

[16]

Chuang, H. J.; Chamlagain, B.; Koehler, M.; Perera, M. M.; Yan, J. Q.; Mandrus, D.; Tománek, D.; Zhou, Z. X. Low-resistance 2D/2D ohmic contacts: A universal approach to high-performance WSe2, MoS2, and MoSe2 transistors. Nano Lett. 2016, 16, 1896–1902.

[17]

Allain, A.; Kang, J. H.; Banerjee, K.; Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 2015, 14, 1195–1205.

[18]

Schauble, K.; Zakhidov, D.; Yalon, E.; Deshmukh, S.; Grady, R. W.; Cooley, K. A.; McClellan, C. J.; Vaziri, S.; Passarello, D.; Mohney, S. E. et al. Uncovering the effects of metal contacts on monolayer MoS2. ACS Nano 2020, 14, 14798–14808.

[19]

Kang, J. H.; Liu, W.; Sarkar, D.; Jena, D.; Banerjee, K. Computational study of metal contacts to monolayer transition-metal dichalcogenide semiconductors. Phys. Rev. X 2014, 4, 031005.

[20]

Ahmed, F.; Choi, M. S.; Liu, X. C.; Yoo, W. J. Carrier transport at the metal–MoS2 interface. Nanoscale 2015, 7, 9222–9228.

[21]

Kwon, J.; Lee, J. Y.; Yu, Y. J.; Lee, C. H.; Cui, X.; Hone, J.; Lee, G. H. Thickness-dependent Schottky barrier height of MoS2 field-effect transistors. Nanoscale 2017, 9, 6151–6157.

[22]

Min, K. A.; Park, J.; Wallace, R. M.; Cho, K.; Hong, S. Reduction of Fermi level pinning at Au–MoS2 interfaces by atomic passivation on Au surface. 2D Mater. 2017, 4, 015019.

[23]

Tsai, M. Y.; Tarasov, A.; Hesabi, Z. R.; Taghinejad, H.; Campbell, P. M.; Joiner, C. A.; Adibi, A.; Vogel, E. M. Flexible MoS2 field-effect transistors for gate-tunable piezoresistive strain sensors. ACS Appl. Mater. Interfaces 2015, 7, 12850–12855.

[24]

Hu, Y. W.; Lee, S.; Kumar, P.; Nian, Q.; Wang, W. Q.; Irudayaraj, J.; Cheng, G. J. Water flattens graphene wrinkles: Laser shock wrapping of graphene onto substrate-supported crystalline plasmonic nanoparticle arrays. Nanoscale 2015, 7, 19885–19893.

[25]

Huang, Z.; Lu, N.; Wang, Z. F.; Xu, S. H.; Guan, J.; Hu, Y. W. Large-scale ultrafast strain engineering of CVD-grown two-dimensional materials on strain self-limited deformable nanostructures toward enhanced field-effect transistors. Nano Lett. 2022, 22, 7734–7741.

[26]

Kumar, P.; Liu, J.; Motlag, M.; Tong, L.; Hu, Y. W.; Huang, X. Y.; Bandopadhyay, A.; Pati, S. K.; Ye, L.; Irudayaraj, J. et al. Laser shock tuning dynamic interlayer coupling in graphene-boron nitride moiré superlattices. Nano Lett. 2019, 19, 283–291.

[27]

Hu, Y. W.; Li, J.; Tian, J. F.; Xuan, Y.; Deng, B. W.; McNear, K. L.; Lim, D. G.; Chen, Y.; Yang, C.; Cheng, G. J. Parallel nanoshaping of brittle semiconductor nanowires for strained electronics. Nano Lett. 2016, 16, 7536–7544.

[28]

Namgung, S. D.; Yang, S.; Park, K.; Cho, A. J.; Kim, H.; Kwon, J. Y. Influence of post-annealing on the off current of MoS2 field-effect transistors. Nanoscale Res. Lett. 2015, 10, 62.

[29]

Hu, Y. W.; Zhang, F.; Titze, M.; Deng, B. W.; Li, H. B.; Cheng, G. J. Straining effects in MoS2 monolayer on nanostructured substrates: Temperature-dependent photoluminescence and exciton dynamics. Nanoscale 2018, 10, 5717–5724.

[30]

Kwon, H.; Choi, W.; Lee, D.; Lee, Y.; Kwon, J.; Yoo, B.; Grigoropoulos, C. P.; Kim, S. Selective and localized laser annealing effect for high-performance flexible multilayer MoS2 thin-film transistors. Nano Res. 2014, 7, 1137–1145.

[31]

Liu, C.; Li, G. T.; Di Pietro, R.; Huang, J.; Noh, Y. Y.; Liu, X. Y.; Minari, T. Device physics of contact issues for the overestimation and underestimation of carrier mobility in field-effect transistors. Phys. Rev. Appl. 2017, 8, 034020.

[32]

Di Felice, D.; Dappe, Y. J. 2D vertical field-effect transistor. Nanotechnology 2018, 29, 505708.

[33]

Yu, W. J.; Li, Z.; Zhou, H. L.; Chen, Y.; Wang, Y.; Huang, Y.; Duan, X. F. Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 2013, 12, 246–252.

[34]

Liu, Y.; Zhang, Q.; Zhang, W. D.; Zhang, R. G.; Wang, B. J.; Ji, C.; Pei, Z.; Sang, S. B. Tuning Schottky barrier and contact type of metal-semiconductor in Ti3C2T2/MoS2 (T = F, O, OH) by strain: A first-principles study. J. Phys. Chem. C 2021, 125, 16200–16210.

[35]

Pan, Y. Y.; Wang, Y. Y.; Ye, M.; Quhe, R. G.; Zhong, H. X.; Song, Z. G.; Peng, X. Y.; Yu, D. P.; Yang, J. B.; Shi, J. J. et al. Monolayer phosphorene-metal contacts. Chem. Mater. 2016, 28, 2100–2109.

[36]

Wang, Q.; Deng, B.; Shi, X. Q. A new insight for ohmic contacts to MoS2: By tuning MoS2 affinity energies but not metal work-functions. Phys. Chem. Chem. Phys. 2017, 19, 26151–26157.

[37]

Liu, B.; Wu, L. J.; Zhao, Y. Q.; Wang, L. Z.; Cai, M. Q. Tuning the Schottky barrier height of the Pd-MoS2 contact by different strains. Phys. Chem. Chem. Phys. 2015, 17, 27088–27093.

[38]

Yang, L.; Cui, X. D.; Zhang, J. Y.; Wang, K.; Shen, M.; Zeng, S. S.; Dayeh, S. A.; Feng, L.; Xiang, B. Lattice strain effects on the optical properties of MoS2 nanosheets. Sci. Rep. 2014, 4, 5649.

[39]

Conley, H. J.; Wang, B.; Ziegler, J. I.; Haglund, R. F.; Pantelides, S. T.; Bolotin, K. I. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 2013, 13, 3626–3630.

[40]
Liu, W.; Kang, J. H.; Cao, W.; Sarkar, D.; Khatami, Y.; Jena, D.; Banerjee, K. High-performance few-layer-MoS2 field-effect-transistor with record low contact-resistance. In 2013 IEEE International Electron Devices Meeting, Washington, USA, 2013, pp 19.4.1–19.4.4.
File
12274_2023_6040_MOESM1_ESM.pdf (3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 May 2023
Revised: 07 July 2023
Accepted: 24 July 2023
Published: 12 September 2023
Issue date: April 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work is supported by the National Natural Science Foundation of China (No. 51901162). The authors thank the support of the Chinese National Talent Program. We thank the Core Facility of Wuhan University for access to analytical equipment.

Return