Journal Home > Volume 17 , Issue 4

By adjusting the coordination environment of single-atom catalysts, the enzyme-like activity can be finely tuned for highly sensitive biosensing. Herein, we demonstrated that coordinatively unsaturated cobalt-nitrogen sites doped within porous carbon (SA-CoN3) could serve as highly efficient oxidase mimic. Compared with the typical planar four-coordination structure (SA-CoN4), the as-obtained single-atom Co nanozymes anchored by three nitrogen atoms are found to display much higher oxidase-like catalytic efficiency. Combined theoretical and experimental analysis revealed that the coordinatively unsaturated Co sites could facilitate adsorption and activation of O2 molecule and thus improve their oxidase-like activity. Based on the enhanced oxidase-like activity of SA-CoN3, a paper/smartphone sensor for organophosphorus pesticides (OPs) was successfully constructed and used to quantify glyphosate in environmental and food samples with a low detection limit of 0.66 μM. This work not only highlights the important role of coordination unsaturation of SA nanozymes for promoting oxidase-like activity, but also provides an easy and cost-effective way to conduct effective quantification of OPs in the field.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Coordinatively unsaturated cobalt single-atom nanozymes for visual pesticides detection by smartphone-based platform

Show Author's information Fangning Liu,§Zhe Li,§Hengya WeiPeng XuGe KangShicheng ZhuTingting WangRuxue HeChuanxia Chen( )Yizhong Lu( )
School of Materials Science and Engineering, University of Jinan, Jinan 250022, China

§ Fangning Liu and Zhe Li contributed equally to this work.

Abstract

By adjusting the coordination environment of single-atom catalysts, the enzyme-like activity can be finely tuned for highly sensitive biosensing. Herein, we demonstrated that coordinatively unsaturated cobalt-nitrogen sites doped within porous carbon (SA-CoN3) could serve as highly efficient oxidase mimic. Compared with the typical planar four-coordination structure (SA-CoN4), the as-obtained single-atom Co nanozymes anchored by three nitrogen atoms are found to display much higher oxidase-like catalytic efficiency. Combined theoretical and experimental analysis revealed that the coordinatively unsaturated Co sites could facilitate adsorption and activation of O2 molecule and thus improve their oxidase-like activity. Based on the enhanced oxidase-like activity of SA-CoN3, a paper/smartphone sensor for organophosphorus pesticides (OPs) was successfully constructed and used to quantify glyphosate in environmental and food samples with a low detection limit of 0.66 μM. This work not only highlights the important role of coordination unsaturation of SA nanozymes for promoting oxidase-like activity, but also provides an easy and cost-effective way to conduct effective quantification of OPs in the field.

Keywords: smartphone, oxygen adsorption, single-atom nanozymes, organophosphorus pesticides, asymmetric

References(53)

[1]

Yan, X.; Li, H.; Yan, Y.; Su, X. Selective detection of parathion-methyl based on near-infrared CuInS2 quantum dots. Food Chem. 2015, 173, 179–184.

[2]

Chen, G.; Liu, G.; Jia, H.; Cui, X.; Wang, Y.; Li, D.; Zheng, W.; She, Y.; Xu, D.; Huang, X.; Abd El-Aty, A. M.; Sun, J.; Liu, H.; Zou, Y.; Wang, J.; Jin, M.; Hammock, B. D. A sensitive bio-barcode immunoassay based on bimetallic Au@Pt nanozyme for detection of organophosphate pesticides in various agro-products. Food Chem. 2021, 362, 130118.

[3]

Thistle, J. E.; Ramos, A.; Roell, K. R.; Choi, G.; Manley, C. K.; Hall, A. M.; Villanger, G. D.; Cequier, E.; Sakhi, A. K.; Thomsen, C.; Zeiner, P.; Reichborn-Kjennerud, T.; Øvergaard, K. R.; Herring, A.; Aase, H.; Engel, S. M. Prenatal organophosphorus pesticide exposure and executive function in preschool-aged children in the norwegian mother, father and child cohort study (MoBa). Environ. Res. 2022, 212, 113555.

[4]

Maggi, F.; Tang, F. H. M.; Black, A. J.; Marks, G. B.; McBratney, A. The pesticide health risk index-an application to the world's countries. Sci. Total Environ. 2021, 801, 149731.

[5]

Catalá-Icardo, M.; Lahuerta-Zamora, L.; Torres-Cartas, S.; Meseguer-Lloret, S. Determination of organothiophosphorus pesticides in water by liquid chromatography and post-column chemiluminescence with cerium(IV). J. Chromatogr. A 2014, 1341, 31–40.

[6]

Wang, J.; Zhang, J.; Wang, J.; Fang, G.; Liu, J.; Wang, S. Fluorescent peptide probes for organophosphorus pesticides detection. J. Hazard. Mater. 2020, 389, 122074.

[7]

Chen, J.; Zhang, W.-T.; Shu, Y.; Ma, X.-H.; Cao, X.-Y. Detection of organophosphorus pesticide residues in leaf lettuce and cucumber through molecularly imprinted solid-phase extraction coupled to gas chromatography. Food Anal. Methods 2017, 10, 3452–3461.

[8]

Zheng, Q.; Chen, Y.; Fan, K.; Wu, J.; Ying, Y. Exploring pralidoxime chloride as a universal electrochemical probe for organophosphorus pesticides detection. Anal. Chim. Acta 2017, 982, 78–83.

[9]

Karbelkar, A. A.; Reynolds, E. E.; Ahlmark, R.; Furst, A. L. A microbial electrochemical technology to detect and degrade organophosphate pesticides. ACS Cent. Sci. 2021, 7, 1718–1727.

[10]

Li, Z.; Liu, W.; Ni, P.; Zhang, C.; Wang, B.; Duan, G.; Chen, C.; Jiang, Y.; Lu, Y. Carbon dots confined in N-doped carbon as peroxidase-like nanozyme for detection of gastric cancer relevant D-amino acids. Chem. Eng. J. 2022, 428, 131396.

[11]

Chen, T.; Zhou, D.; Hou, S.; Li, Y.; Liu, Y.; Zhang, M.; Zhang, G.; Xu, H. Designing hierarchically porous single atoms of Fe-N5 catalytic sites with high oxidase-like activity for sensitive detection of organophosphorus pesticides. Anal. Chem. 2022, 94, 15270–15279.

[12]

Chen, C.; Zhao, D.; Jiang, Y.; Ni, P.; Zhang, C.; Wang, B.; Yang, F.; Lu, Y.; Sun, J. Logically regulating peroxidase-like activity of gold nanoclusters for sensing phosphate-containing metabolites and alkaline phosphatase activity. Anal. Chem. 2019, 91, 15017–15024.

[13]

Li, H.; Sun, M.; Gu, H.; Huang, J.; Wang, G.; Tan, R.; Wu, R.; Zhang, X.; Liu, S.; Zheng, L.; Chen, W.; Chen, Z. Peroxidase-like FeCoZn triple-atom catalyst-based electronic tongue for colorimetric discrimination of food preservatives. Small 2023, 19, 2207036.

[14]

Jin, X.; Feng, X.; Wang, G.; Tan, R.; Peng, Y.; Zheng, L.; Chen, W.; Chen, Z. Zn-Y dual atomic site catalyst featuring metal–metal interactions as a nanozyme with peroxidase-like activity. J. Mater. Chem. 2023, 11, 2326–2333.

[15]

Chen, C.; Zhao, D.; Sun, J.; Yang, X. Colorimetric logic gate for pyrophosphate and pyrophosphatase via regulating the catalytic capability of horseradish peroxidase. ACS Appl. Mater. Interfaces 2016, 8, 29529–29535.

[16]

Liu, W.; Chu, L.; Zhang, C.; Ni, P.; Jiang, Y.; Wang, B.; Lu, Y.; Chen, C. Hemin-assisted synthesis of peroxidase-like Fe-N-C nanozymes for detection of ascorbic acid-generating bio-enzymes. Chem. Eng. J. 2021, 415, 128876.

[17]

Feng, X.; Qin, Y.; Sui, R.; Wang, G.; Zhang, X.; Liu, X.; Pei, J.; Liu, D.; Chen, Z. CH3I sensing using yttrium single atom-doped perovskite nanocrystals. Nano Res. 2023, 16, 10429–10435.

[18]

Wu, J.; Wang, X.; Wang, Q.; Lou, Z.; Li, S.; Zhu, Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes(II). Chem. Soc. Rev. 2019, 48, 1004–1076.

[19]

Jiang, B.; Duan, D.; Gao, L.; Zhou, M.; Fan, K.; Tang, Y.; Xi, J.; Bi, Y.; Tong, Z.; Gao, G. F.; Xie, N.; Tang, A.; Nie, G.; Liang, M.; Yan, X. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520.

[20]

Liu, Y.; Wang, B.; Fu, Q.; Liu, W.; Wang, Y.; Gu, L.; Wang, D.; Li, Y. Polyoxometalate-based metal–organic framework as molecular sieve for highly selective semi-hydrogenation of acetylene on isolated single pd atom sites. Angew. Chem. Int. Ed. 2021, 60, 22522–22528.

[21]

Zhang, C.; Chen, C.; Zhao, D.; Kang, G.; Liu, F.; Yang, F.; Lu, Y.; Sun, J. Multienzyme cascades based on highly efficient metal-nitrogen-carbon nanozymes for construction of versatile bioassays. Anal. Chem. 2022, 94, 3485–3493.

[22]

Xu, W.; Song, W.; Kang, Y.; Jiao, L.; Wu, Y.; Chen, Y.; Cai, X.; Zheng, L.; Gu, W.; Zhu, C. Axial ligand-engineered single-atom catalysts with boosted enzyme-like activity for sensitive immunoassay. Anal. Chem. 2021, 93, 12758–12766.

[23]

Jiao, L.; Kang, Y.; Chen, Y.; Wu, N.; Wu, Y.; Xu, W.; Wei, X.; Wang, H.; Gu, W.; Zheng, L.; Song, W.; Zhu, C. Unsymmetrically coordinated single Fe-N3S1 sites mimic the function of peroxidase. Nano Today 2021, 40, 101261.

[24]

Huang, J.; Gu, H.; Wang, G.; Wu, R.; Sun, M.; Chen, Z. Visual sensor arrays for distinction of phenolic acids based on two single-atom nanozymes. Anal. Chem. 2023, 95, 9107–9115.

[25]

Chen, Y.; Wang, P.; Hao, H.; Hong, J.; Li, H.; Ji, S.; Li, A.; Gao, R.; Dong, J.; Han, X.; Liang, M.; Wang, D.; Li, Y. Thermal atomization of platinum nanoparticles into single atoms: An effective strategy for engineering high-performance nanozymes. J. Am. Chem. Soc. 2021, 143, 18643–18651.

[26]

Kim, M. S.; Lee, J.; Kim, H. S.; Cho, A.; Shim, K. H.; Le, T. N.; An, S. S. A.; Han, J. W.; Kim, M. I.; Lee, J. Heme cofactor-resembling Fe–N single site embedded graphene as nanozymes to selectively detect H2O with high sensitivity. Adv. Funct. Mater. 2020, 30, 1905410.

[27]

Zhu, N.; Liu, C.; Liu, R.; Niu, X.; Xiong, D.; Wang, K.; Yin, D.; Zhang, Z. Biomimic nanozymes with tunable peroxidase-like activity based on the confinement effect of metal–organic frameworks (MOFs) for biosensing. Anal. Chem. 2022, 94, 4821–4830.

[28]

Jiao, L.; Wu, J.; Zhong, H.; Zhang, Y.; Xu, W.; Wu, Y.; Chen, Y.; Yan, H.; Zhang, Q.; Gu, W.; Gu, L.; Beckman, S. P.; Huang, L.; Zhu, C. Densely isolated FeN4 sites for peroxidase mimicking. ACS Catal. 2020, 10, 6422–6429.

[29]

Ding, S.; Barr, J. A.; Lyu, Z.; Zhang, F.; Wang, M.; Tieu, P.; Li, X.; Engelhard, M. H.; Feng, Z.; Beckman, S. P.; Pan, X.; Li, J.-C.; Du, D.; Lin, Y. Effect of phosphorus modulation in iron single-atom catalysts for peroxidase mimicking. Adv. Mater. 2023, n/a, 2209633.

[30]

Cho, J.; Lim, T.; Kim, H.; Meng, L.; Kim, J.; Lee, S.; Lee, J. H.; Jung, G. Y.; Lee, K. S.; Vines, F.; Illas, F.; Exner, K. S.; Joo, S. H.; Choi, C. H. Importance of broken geometric symmetry of single-atom Pt sites for efficient electrocatalysis. Nat. Commun. 2023, 14, 3233.

[31]

Cao, J.; Wang, M.; Yu, H.; She, Y.; Cao, Z.; Ye, J.; Abd El-Aty, A. M.; Hacimuftuoglu, A.; Wang, J.; Lao, S. An overview on the mechanisms and applications of enzyme inhibition-based methods for determination of organophosphate and carbamate pesticides. J. Agric. Food. Chem. 2020, 68, 7298–7315.

[32]

Han, Y.; Quan, K.; Chen, J.; Qiu, H. Advances and prospects on acid phosphatase biosensor. Biosens. Bioelectron. 2020, 170, 112671.

[33]

Van Dyk, J. S.; Pletschke, B. Review on the use of enzymes for the detection of organochlorine, organophosphate and carbamate pesticides in the environment. Chemosphere 2011, 82, 291–307.

[34]

Liu, P.; Zhao, M.; Zhu, H.; Zhang, M.; Li, X.; Wang, M.; Liu, B.; Pan, J.; Niu, X. Dual-mode fluorescence and colorimetric detection of pesticides realized by integrating stimulus-responsive luminescence with oxidase-mimetic activity into cerium-based coordination polymer nanoparticles. J. Hazard. Mater. 2022, 423, 127077.

[35]

Liu, H.; Guo, H.; Liu, B.; Liang, M.; Lv, Z.; Adair, K. R.; Sun, X. Few-layer MoSe2 nanosheets with expanded (002) planes confined in hollow carbon nanospheres for ultrahigh-performance na-ion batteries. Adv. Funct. Mater. 2018, 28, 1707480.

[36]

Shin, D.; Choun, M.; Ham, H. C.; Lee, J. K.; Lee, J. A graphitic edge plane rich meso-porous carbon anode for alkaline water electrolysis. PCCP 2017, 19, 21987–21995.

[37]

Luo, X.; Han, W.; Du, W.; Huang, Z.; Jiang, Y.; Zhang, Y. Ordered mesoporous carbon with atomically dispersed Fe-Nx as oxygen reduction reaction electrocatalyst in air-cathode microbial fuel cells. J. Power Sources 2020, 469, 228184.

[38]

Luo, J.; Yang, L.; Li, T.; Yang, L.; Luo, X.; Crittenden, J. C. Three-dimensional electrode interface assembled from rGO nanosheets and carbon nanotubes for highly electrocatalytic oxygen reduction. Chem. Eng. J. 2019, 378, 122127.

[39]

Zhu, S.; Li, Z.; Zhang, F.; Liu, F.; Ni, P.; Chen, C.; Jiang, Y.; Lu, Y. Single-atom cobalt catalysts as highly efficient oxidase mimics for time-based visualization monitoring the TAC of skin care products. Chem. Eng. J. 2023, 456, 141053.

[40]

Liang, X.; Wang, D.; Zhao, Z.; Li, T.; Chen, Z.; Gao, Y.; Hu, C. Engineering the low-coordinated single cobalt atom to boost persulfate activation for enhanced organic pollutant oxidation. Appl. Catal. B: Environ. 2022, 303, 120877.

[41]

Li, Z.; Liu, F.; Chen, C.; Jiang, Y.; Ni, P.; Song, N.; Hu, Y.; Xi, S.; Liang, M.; Lu, Y. Regulating the N coordination environment of Co single-atom nanozymes for highly efficient oxidase mimics. Nano Lett. 2023, 23, 1505–1513.

[42]

Kang, G.; Liu, W.; Liu, F.; Li, Z.; Dong, X.; Chen, C.; Lu, Y. Single-atom Pt catalysts as oxidase mimic for p-benzoquinone and α-glucosidase activity detection. Chem. Eng. J. 2022, 449, 137855.

[43]

Zhu, D.; Zhang, M.; Pu, L.; Gai, P.; Li, F. Nitrogen-enriched conjugated polymer enabled metal-free carbon nanozymes with efficient oxidase-like activity. Small 2022, 18, 2104993.

[44]
Wang, S.; Li, Z.; Xia, M.; Zhao, X.; Chen, C.; Jiang, Y.; Ni, P.; Lu, Y. Atomically-precise Au24Ag1 clusterzymes with enhanced peroxidase-like activity for bioanalysis. Chem. Res. Chin. Univ. 2022, https://doi.org/10.1007/s40242-022-2259-7.
[45]

Zhao, X.; Li, Z.; Ding, Z.; Wang, S.; Lu, Y. Ultrathin porous Pd metallene as highly efficient oxidase mimics for colorimetric analysis. J. Colloid Interface Sci. 2022, 626, 296–304.

[46]

Wang, J.; Schipper, H. M.; Velly, A. M.; Mohit, S.; Gornitsky, M. Salivary biomarkers of oxidative stress: A critical review. Free Radical Biol. Med. 2015, 85, 95–104.

[47]

Lou, Z.; Zhao, S.; Wang, Q.; Wei, H. N-doped carbon as peroxidase-like nanozymes for total antioxidant capacity assay. Anal. Chem. 2019, 91, 15267–15274.

[48]

Chen, Y.; Jiao, L.; Yan, H.; Xu, W.; Wu, Y.; Wang, H.; Gu, W.; Zhu, C. Hierarchically porous S/N codoped carbon nanozymes with enhanced peroxidase-like activity for total antioxidant capacity biosensing. Anal. Chem. 2020, 92, 13518–13524.

[49]

Ni, P.; Liu, S.; Wang, B.; Chen, C.; Jiang, Y.; Zhang, C.; Chen, J.; Lu, Y. Light-responsive Au nanoclusters with oxidase-like activity for fluorescent detection of total antioxidant capacity. J. Hazard. Mater. 2021, 411, 125106.

[50]

Mao, Y.; Jia, F.; Jing, T.; Li, T.; Jia, H.; He, W. Enhanced multiple enzymelike activity of PtPdCu trimetallic nanostructures for detection of Fe2+ and evaluation of antioxidant capability. ACS Sustainable Chem. Eng. 2021, 9, 569–579.

[51]

Chen, J.; Xu, F.; Zhang, Q.; Li, S. N-doped MoS2-nanoflowers as peroxidase-like nanozymes for total antioxidant capacity assay. Anal. Chim. Acta 2021, 1180, 338740.

[52]

Pellegrini, N.; Vitaglione, P.; Granato, D.; Fogliano, V. Twenty-five years of total antioxidant capacity measurement of foods and biological fluids: Merits and limitations. J. Sci. Food Agric. 2020, 100, 5064–5078.

[53]

Qin, X.; Liu, J.; Zhang, Z.; Li, J.; Yuan, L.; Zhang, Z.; Chen, L. Microfluidic paper-based chips in rapid detection: Current status, challenges, and perspectives. TrAC Trends Anal. Chem. 2021, 143, 116371.

File
12274_2023_6039_MOESM1_ESM.pdf (2.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 July 2023
Revised: 19 July 2023
Accepted: 22 July 2023
Published: 14 August 2023
Issue date: April 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22172063 and 21904048), the Young Taishan Scholar Program (No. tsqn201812080), and the Independent Cultivation Program of Innovation Team of Ji’nan City (No. 2021GXRC052).

Return