Journal Home > Volume 17 , Issue 4

Atomically-dispersed iron-based electrocatalysts are promising substitutes for noble metal electrocatalysts because of excellent performance in oxygen reduction reaction (ORR). Rationally modulating the local coordination environment of the Fe site and optimizing the binding energy of oxygen reduction intermediates are effective strategies to optimize ORR activity. Herein, we report a new method in which Ni is introduced to construct NiFe dual single atoms and iron nanoclusters loaded on the nitrogen-doped carbon with a highly porous structure. This design plays a synergistic role of dual single atoms and clusters, optimizes the 3d orbital and Fermi level of Fe, breaks the symmetrical structure of Fe-N4, and effectively improves the adsorption/desorption behavior of the oxygen-containing intermediates. Electrochemical tests show FeNCs/NiFeSAs-NC has an excellent intrinsic activity. Theoretical calculations show the oxygen-containing species on the Ni active site will move to the middle of NiFe (bridge site connection) after optimization and that the key step is OH desorption, with a reaction energy of 0.27 eV. The electron exchange between NiFe-N6 and Fe-cluster is very strong, further indicating the introduction of Ni species and Fe clusters has a regulatory effect on the electronic structure of Fe-N4.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Simultaneous integration of Fe clusters and NiFe dual single atoms in nitrogen-doped carbon for oxygen reduction reaction

Show Author's information Jirong Bai1,2Yuebin Lian1Yaoyao Deng1Mei Xiang1( )Peng Xu1Quanfa Zhou1Yawen Tang2( )Yaqiong Su3( )
Research Center of Secondary Resources and Environment, School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou 213022, China
Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices of Ministry of Education, National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi’an Jiaotong University, Xi’an 710049, China

Abstract

Atomically-dispersed iron-based electrocatalysts are promising substitutes for noble metal electrocatalysts because of excellent performance in oxygen reduction reaction (ORR). Rationally modulating the local coordination environment of the Fe site and optimizing the binding energy of oxygen reduction intermediates are effective strategies to optimize ORR activity. Herein, we report a new method in which Ni is introduced to construct NiFe dual single atoms and iron nanoclusters loaded on the nitrogen-doped carbon with a highly porous structure. This design plays a synergistic role of dual single atoms and clusters, optimizes the 3d orbital and Fermi level of Fe, breaks the symmetrical structure of Fe-N4, and effectively improves the adsorption/desorption behavior of the oxygen-containing intermediates. Electrochemical tests show FeNCs/NiFeSAs-NC has an excellent intrinsic activity. Theoretical calculations show the oxygen-containing species on the Ni active site will move to the middle of NiFe (bridge site connection) after optimization and that the key step is OH desorption, with a reaction energy of 0.27 eV. The electron exchange between NiFe-N6 and Fe-cluster is very strong, further indicating the introduction of Ni species and Fe clusters has a regulatory effect on the electronic structure of Fe-N4.

Keywords: oxygen reduction reaction, NiFe dual single atoms, Fe clusters, OH* adsorption energy

References(70)

[1]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[2]

Liu, Q. Q.; Liu, R. T.; He, C. H.; Xia, C. F.; Guo, W.; Xu, Z. L.; Xia, B. Y. Advanced polymer-based electrolytes in zinc-air batteries. eScience 2022, 2, 453–466.

[3]

Song, Y. J.; Song, X. K.; Wang, X. K.; Bai, J. Z.; Cheng, F.; Lin, C.; Wang, X.; Zhang, H.; Sun, J. H.; Zhao, T. J. et al. Two-dimensional metal-organic framework superstructures from ice-templated self-assembly. J. Am. Chem. Soc. 2022, 144, 17457–17467.

[4]

Hu, C. G.; Paul, R.; Dai, Q. B.; Dai, L. M. Carbon-based metal-free electrocatalysts: From oxygen reduction to multifunctional electrocatalysis. Chem. Soc. Rev. 2021, 50, 11785–11843.

[5]

Yuan, W. Y.; Ma, Y. Y.; Wu, H.; Cheng, L. F. Single-atom catalysts for CO oxidation, CO2 reduction, and O2 electrochemistry. J. Energy Chem. 2022, 65, 254–279.

[6]

Zhu, Y. T.; Yue, K. H.; Xia, C. F.; Zaman, S.; Yang, H.; Wang, X. Y.; Yan, Y.; Xia, B. Y. Recent advances on MOF derivatives for non-noble metal oxygen electrocatalysts in zinc-air batteries. Nano-Micro Lett. 2021, 13, 137.

[7]

Yang, Y. C.; Yang, Y. W.; Pei, Z. X.; Wu, K. H.; Tan, C. H.; Wang, H. Z.; Wei, L.; Mahmood, A.; Yan, C.; Dong, J. C. et al. Recent progress of carbon-supported single-atom catalysts for energy conversion and storage. Matter 2020, 3, 1442–1476.

[8]

Kong, F. T.; Cui, X. Z.; Huang, Y. F.; Yao, H. L.; Chen, Y. F.; Tian, H.; Meng, G.; Chen, C.; Chang, Z. W.; Shi, J. L. N-doped carbon electrocatalyst: Marked ORR activity in acidic media without the contribution from metal sites? Angew. Chem., Int. Ed. 2022, 61, e202116290.

[9]

Peng, L. S.; Yang, J.; Yang, Y. Q.; Qian, F. R.; Wang, Q.; Sun-Waterhouse, D.; Shang, L.; Zhang, T. R.; Waterhouse, G. I. N. Mesopore-rich Fe-N-C catalyst with FeN4-O-NC single-atom sites delivers remarkable oxygen reduction reaction performance in alkaline media. Adv. Mater. 2022, 34, 2202544.

[10]

Wang, Y.; Wang, D. S.; Li, Y. D. Rational design of single-atom site electrocatalysts: From theoretical understandings to practical applications. Adv. Mater. 2021, 33, 2008151.

[11]

Zheng, X. B.; Li, B. B.; Wang, Q. S.; Wang, D. S.; Li, Y. D. Emerging low-nuclearity supported metal catalysts with atomic level precision for efficient heterogeneous catalysis. Nano Res. 2022, 15, 7806–7839.

[12]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p–n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

[13]

Jiao, L.; Li, J. K.; Richard, L. L.; Sun, Q.; Stracensky, T.; Liu, E. S.; Sougrati, M. T.; Zhao, Z. P.; Yang, F.; Zhong, S. C. et al. Chemical vapour deposition of Fe-N-C oxygen reduction catalysts with full utilization of dense Fe-N4 sites. Nat. Mater. 2021, 20, 1385–1391.

[14]

Mehmood, A.; Gong, M. J.; Jaouen, F.; Roy, A.; Zitolo, A.; Khan, A.; Sougrati, M. T.; Primbs, M.; Bonastre, A. M.; Fongalland, D. et al. High loading of single atomic iron sites in Fe-NC oxygen reduction catalysts for proton exchange membrane fuel cells. Nat. Catal. 2022, 5, 311–323.

[15]

Hao, J. C.; Zhu, H.; Zhuang, Z. C.; Zhao, Q.; Yu, R. H.; Hao, J. C.; Kang, Q.; Lu, S. L.; Wang, X. F.; Wu, J. S. et al. Competitive trapping of single atoms onto a metal carbide surface. ACS Nano 2023, 17, 6955–6965.

[16]

Wan, X.; Liu, X. F.; Li, Y. C.; Yu, R. H.; Zheng, L. R.; Yan, W. S.; Wang, H.; Xu, M.; Shui, J. L. Fe-N-C electrocatalyst with dense active sites and efficient mass transport for high-performance proton exchange membrane fuel cells. Nat. Catal. 2019, 2, 259–268.

[17]

Adabi, H.; Shakouri, A.; Ul Hassan, N.; Varcoe, J. R.; Zulevi, B.; Serov, A.; Regalbuto, J. R.; Mustain, W. E. High-performing commercial Fe-N-C cathode electrocatalyst for anion-exchange membrane fuel cells. Nat. Energy 2021, 6, 834–843.

[18]

Xia, D. S.; Tang, X.; Dai, S.; Ge, R. L.; Rykov, A.; Wang, J. H.; Huang, T. H.; Wang, K. W.; Wei, Y. P.; Zhang, K. et al. Ultrastable Fe-N-C fuel cell electrocatalysts by eliminating non-coordinating nitrogen and regulating coordination structures at high temperatures. Adv. Mater. 2023, 35, 2204474.

[19]

Wang, X.; Yu, M. H.; Feng, X. L. Electronic structure regulation of noble metal-free materials toward alkaline oxygen electrocatalysis. eScience 2023, 3, 100141–466.

[20]

Li, X. Y.; Zhuang, Z. C.; Chai, J.; Shao, R. W.; Wang, J. H.; Jiang, Z. L.; Zhu, S. W.; Gu, H. F.; Zhang, J.; Ma, Z. T. et al. Atomically strained metal sites for highly efficient and selective photooxidation. Nano Lett. 2023, 23, 2905–2914.

[21]

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[22]

Li, J. J.; Xia, W.; Tang, J.; Gao, Y.; Jiang, C.; Jia, Y. N.; Chen, T.; Hou, Z. F.; Qi, R. J.; Jiang, D. et al. Metal-organic framework-derived graphene mesh: A robust scaffold for highly exposed Fe-N4 active sites toward an excellent oxygen reduction catalyst in acid media. J. Am. Chem. Soc. 2022, 144, 9280–9291.

[23]

Chen, J. D.; Huang, B. Y.; Cao, R.; Li, L. B.; Tang, X. N.; Wu, B.; Wu, Y. G.; Hu, T.; Yuan, K.; Chen, Y. W. Steering local electronic configuration of Fe-N-C-based coupling catalysts via ligand engineering for efficient oxygen electroreduction. Adv. Funct. Mater. 2023, 33, 2209315.

[24]

Ouyang, C.; Zheng, L. R.; Zhang, Q. H.; Wang, X. A simple preheating-pyrolysis strategy leading to superior oxygen reduction reaction activity in Fe-N/carbon black. Adv. Mater. 2022, 34, 2205372.

[25]

Chen, Z. Y.; Niu, H.; Ding, J.; Liu, H.; Chen, P. H.; Lu, Y. H.; Lu, Y. R.; Zuo, W. B.; Han, L.; Guo, Y. Z. et al. Unraveling the origin of sulfur-doped Fe-N-C single-atom catalyst for enhanced oxygen reduction activity: Effect of iron spin-state tuning. Angew. Chem., Int. Ed. 2021, 60, 25404–25410.

[26]

Jin, H. H.; Kou, Z. K.; Cai, W. W.; Zhou, H.; Ji, P. X.; Liu, B. S.; Radwan, A.; He, D. P.; Mu, S. C. P–Fe bond oxygen reduction catalysts toward high-efficiency metal-air batteries and fuel cells. J. Mater. Chem. A 2020, 8, 9121–9127.

[27]

Yu, J. H.; Li, X.; Cui, Z. X.; Chen, D.; Pang, X. C.; Zhang, Q.; Shao, F. F.; Dong, H. Z.; Yu, L. Y.; Dong, L. F. Tailoring in-situ N,O,P,S-doped soybean-derived porous carbon with ultrahigh capacitance in both acidic and alkaline media. Renew. Energy 2021, 163, 375–385.

[28]

Zhang, N. Q.; Ye, C. L.; Yan, H.; Li, L. C.; He, H.; Wang, D. S.; Li, Y. D. Single-atom site catalysts for environmental catalysis. Nano Res. 2020, 13, 3165–3182.

[29]

Li, W. H.; Yang, J. R.; Wang, D. S.; Li, Y. D. Striding the threshold of an atom era of organic synthesis by single-atom catalysis. Chem 2022, 8, 119–140.

[30]

Yang, H.; Liu, Y. F.; Liu, X. L.; Wang, X. K.; Tian, H.; Waterhouse, G. I. N.; Kruger, P. E.; Telfer, S. G.; Ma, S. Q. Large-scale synthesis of N-doped carbon capsules supporting atomically dispersed iron for efficient oxygen reduction reaction electrocatalysis. eScience 2022, 2, 227–234.

[31]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[32]

Wang, Y.; Wu, J.; Tang, S. H.; Yang, J. R.; Ye, C. L.; Chen, J.; Lei, Y. P.; Wang, D. S. Synergistic Fe–Se atom pairs as bifunctional oxygen electrocatalysts boost low-temperature rechargeable Zn-air battery. Angew. Chem., Int. Ed. 2023, 62, e202219191.

[33]

Wang, L. G.; Liu, H.; Zhuang, J. H.; Wang, D. S. Small-scale big science: From nano- to atomically dispersed catalytic materials. Small Sci. 2022, 2, 2200036.

[34]

Li, L.; Li, N.; Xia, J. W.; Zhou, S. L.; Qian, X. Y.; Yin, F. X.; Dai, G. H.; He, G. Y.; Chen, H. Q. A pH-universal ORR catalyst with atomic Fe-heteroatom (N, S) sites for high-performance Zn-air batteries. Nano Res. 2023, 16, 9416–9425.

[35]

Meng, Z. Y.; Qiu, Z. M.; Shi, Y. X.; Wang, S. X.; Zhang, G. X.; Pi, Y. C.; Pang, H. Micro/nano metal-organic frameworks meet energy chemistry: A review of materials synthesis and applications. eScience 2023, 3, 100092.

[36]

Li, Z. L.; Zhuang, Z. C.; Lv, F.; Zhu, H.; Zhou, L.; Luo, M. C.; Zhu, J. X.; Lang, Z. Q.; Feng, S. H.; Chen, W. et al. The marriage of the FeN4 moiety and MXene boosts oxygen reduction catalysis: Fe 3d electron delocalization matters. Adv. Mater. 2018, 30, 1803220.

[37]

Han, A. L.; Wang, X. J.; Tang, K.; Zhang, Z. D.; Ye, C. L.; Kong, K. J.; Hu, H. B.; Zheng, L. R.; Jiang, P.; Zhao, C. X. et al. An adjacent atomic platinum site enables single-atom iron with high oxygen reduction reaction performance. Angew. Chem., Int. Ed. 2021, 60, 19262–19271.

[38]

Yang, G. G.; Zhu, J. W.; Yuan, P. F.; Hu, Y. F.; Qu, G.; Lu, B. A.; Xue, X. Y.; Yin, H. B.; Cheng, W. Z.; Cheng, J. Q. et al. Regulating Fe-spin state by atomically dispersed Mn-N in Fe-N-C catalysts with high oxygen reduction activity. Nat. Commun. 2021, 12, 1734.

[39]

Xiao, F.; Wang, Q.; Xu, G. L.; Qin, X. P.; Hwang, I.; Sun, C. J.; Liu, M.; Hua, W.; Wu, H. W.; Zhu, S. Q. et al. Atomically dispersed Pt and Fe sites and Pt-Fe nanoparticles for durable proton exchange membrane fuel cells. Nat. Catal. 2022, 5, 503–512.

[40]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

[41]

Wang, Y. N.; Wan, X.; Liu, J. Y.; Li, W. W.; Li, Y. C.; Guo, X.; Liu, X. F.; Shang, J. X.; Shui, J. L. Catalysis stability enhancement of Fe/Co dual-atom site via phosphorus coordination for proton exchange membrane fuel cell. Nano Res. 2022, 15, 3082–3089.

[42]

Zhu, P.; Xiong, X.; Wang, X. L.; Ye, C. L.; Li, J. Z.; Sun, W. M.; Sun, X. H.; Jiang, J. J.; Zhuang, Z. B.; Wang, D. S. et al. Regulating the FeN4 moiety by constructing Fe-Mo dual-metal atom sites for efficient electrochemical oxygen reduction. Nano Lett. 2022, 22, 9507–9515.

[43]

Li, H. G.; Wang, J.; Qi, R. J.; Hu, Y. F.; Zhang, J.; Zhao, H. B.; Zhang, J. J.; Zhao, Y. F. Enhanced Fe 3d delocalization and moderate spin polarization in Fe–Ni atomic pairs for bifunctional ORR and OER electrocatalysis. Appl. Catal. B: Environ. 2021, 285, 119778.

[44]

Sun, Y. M.; Sun, S. N.; Yang, H. T.; Xi, S. B.; Gracia, J.; Xu, Z. J. Spin-related electron transfer and orbital interactions in oxygen electrocatalysis. Adv. Mater. 2020, 32, 2003297.

[45]

Zhai, W. J.; Huang, S. H.; Lu, C. B.; Tang, X. N.; Li, L. B.; Huang, B. Y.; Hu, T.; Yuan, K.; Zhuang, X. D.; Chen, Y. W. Simultaneously integrate iron single atom and nanocluster triggered tandem effect for boosting oxygen electroreduction. Small 2022, 18, 2107225.

[46]

Huang, H. J.; Yu, D. S.; Hu, F.; Huang, S. C.; Song, J. N.; Chen, H. Y.; Li, L. L.; Peng, S. J. Clusters induced electron redistribution to tune oxygen reduction activity of transition metal single-atom for metal-air batteries. Angew. Chem., Int. Ed. 2022, 61, e202116068.

[47]

Ma, L. G.; Li, J. L.; Zhang, Z. W.; Yang, H.; Mu, X. Q.; Gu, X. Y.; Jin, H. H.; Chen, D.; Yan, S. L.; Liu, S. L. et al. Atomically dispersed dual Fe centers on nitrogen-doped bamboo-like carbon nanotubes for efficient oxygen reduction. Nano Res. 2022, 15, 1966–1972.

[48]

Liu, M. J.; Lee, J.; Yang, T. C.; Zheng, F. Y.; Zhao, J.; Yang, C. M.; Lee, L. Y. S. Synergies of Fe single atoms and clusters on N-doped carbon electrocatalyst for pH-universal oxygen reduction. Small Methods 2021, 5, 2001165.

[49]

Bai, J. R.; Fu, Y.; Zhou, P.; Xu, P.; Wang, L. L.; Zhang, J. P.; Jiang, X. K.; Zhou, Q. F.; Deng, Y. Y. Synergies of atomically dispersed Mn/Fe single atoms and Fe nanoparticles on N-doped carbon toward high-activity eletrocatalysis for oxygen reduction. ACS Appl. Mater. Interfaces 2022, 14, 29986–29992.

[50]

Tian, H.; Song, A. L.; Zhang, P.; Sun, K. A.; Wang, J. J.; Sun, B.; Fan, Q. H.; Shao, G. J.; Chen, C.; Liu, H. et al. High durability of Fe-N-C single-atom catalysts with carbon vacancies toward the oxygen reduction reaction in alkaline media. Adv. Mater. 2023, 35, 2210714.

[51]

Ao, X.; Zhang, W.; Li, Z. S.; Li, J. G.; Soule, L.; Huang, X.; Chiang, W. H.; Chen, H. M.; Wang, C. D.; Liu, M. L. et al. Markedly enhanced oxygen reduction activity of single-atom Fe catalysts via integration with Fe nanoclusters. ACS Nano 2019, 13, 11853–11862.

[52]

Yu, J.; Li, J.; Xu, C. Y.; Liu, Q.; Liu, J. Y.; Chen, R. R.; Zhu, J. H.; Li, R. M.; Wang, J. Atomically dispersed Ni-N4 species and Ni nanoparticles constructing N-doped porous carbon fibers for accelerating hydrogen evolution. Carbon 2021, 185, 96–104.

[53]

Fan, Q.; Hou, P. F.; Choi, C.; Wu, T. S.; Hong, S.; Li, F.; Soo, Y. L.; Kang, P.; Jung, Y.; Sun, Z. Y. Activation of Ni particles into single Ni-N atoms for efficient electrochemical reduction of CO2. Adv. Energy Mater. 2020, 10, 1903068.

[54]

Tang, X. N.; Wei, Y. H.; Zhai, W. J.; Wu, Y. G.; Hu, T.; Yuan, K.; Chen, Y. W. Carbon nanocage with maximum utilization of atomically dispersed iron as efficient oxygen electroreduction nanoreactor. Adv. Mater. 2023, 35, 2208942.

[55]

Cheng, Y. J.; Song, H. Q.; Yu, J. K.; Chang, J. W.; Waterhouse, G. I. N.; Tang, Z. Y.; Yang, B.; Lu, S. Y. Carbon dots-derived carbon nanoflowers decorated with cobalt single atoms and nanoparticles as efficient electrocatalysts for oxygen reduction. Chin. J. Catal. 2022, 43, 2443–2452.

[56]

Qiu, X. Y.; Yan, X. H.; Pang, H.; Wang, J. C.; Sun, D. M.; Wei, S. H.; Xu, L.; Tang, Y. W. Isolated Fe single atomic sites anchored on highly steady hollow graphene nanospheres as an efficient electrocatalyst for the oxygen reduction reaction. Adv. Sci. 2019, 6, 1801103.

[57]

Wang, D. D.; Gong, W. B.; Zhang, J. F.; Han, M. M.; Chen, C.; Zhang, Y. X.; Wang, G. Z.; Zhang, H. M.; Zhao, H. J. Encapsulated Ni-Co alloy nanoparticles as efficient catalyst for hydrodeoxygenation of biomass derivatives in water. Chin. J. Catal. 2021, 42, 2027–2037.

[58]

Zong, L. B.; Fan, K. C.; Li, P.; Lu, F. H.; Li, B.; Wang, L. Promoting oxygen reduction reaction on atomically dispersed Fe sites via establishing hydrogen bonding with the neighboring P atoms. Adv. Energy Mater. 2023, 13, 2203611.

[59]

Wang, X. W.; Xi, X. A.; Huo, G.; Xu, C. Y.; Sui, P. F.; Feng, R. F.; Fu, X. Z.; Luo, J. L. Co- and N-doped carbon nanotubes with hierarchical pores derived from metal-organic nanotubes for oxygen reduction reaction. J. Energy Chem. 2021, 53, 49–55.

[60]

Jin, H. H.; Yu, R. H.; Hu, C. X.; Ji, P. X.; Ma, Q. L.; Liu, B. S.; He, D. P.; Mu, S. C. Size-controlled engineering of cobalt metal catalysts through a coordination effect for oxygen electrocatalysis. Appl. Catal. B: Environ. 2022, 317, 121766.

[61]

Yang, Z.; Xiang, M.; Zhu, Y. F.; Hui, J.; Jiang, Y.; Dong, S.; Yu, C. B.; Ou, J. F.; Qin, H. F. Single-atom platinum or ruthenium on C4N as 2D high-performance electrocatalysts for oxygen reduction reaction. Chem. Eng. J. 2021, 426, 131347.

[62]

Zhou, D.; Zhang, L. L.; Liu, X. Y.; Qi, H. F.; Liu, Q. G.; Yang, J.; Su, Y.; Ma, J. Y.; Yin, J. Z.; Wang, A. Q. Tuning the coordination environment of single-atom catalyst M-N-C towards selective hydrogenation of functionalized nitroarenes. Nano Res. 2022, 15, 519–527.

[63]

Rao, P.; Wu, D. X.; Wang, T. J.; Li, J.; Deng, P. L.; Chen, Q.; Shen, Y. J.; Chen, Y.; Tian, X. L. Single atomic cobalt electrocatalyst for efficient oxygen reduction reaction. eScience 2022, 2, 399–404.

[64]

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

[65]

Fan, L. L.; Zhang, L.; Li, X. T.; Mei, H.; Li, M. F.; Liu, Z. N.; Kang, Z. X.; Tuo, Y. X.; Wang, R. M.; Sun, D. F. Controlled synthesis of a porous single-atomic Fe-N-C catalyst with Fe nanoclusters as synergistic catalytic sites for efficient oxygen reduction. Inorg. Chem. Front. 2022, 9, 4101–4110.

[66]

Luo, X. D.; Ma, H.; Ren, H.; Zou, X. H.; Wang, Y.; Li, X.; Shen, Z. F.; Wang, Y. G.; Cui, L. F. Controllable synthesis of nitrogen-doped carbon containing Co and Co3Fe7 nanoparticles as effective catalysts for electrochemical oxygen conversion. J. Colloid Interface Sci. 2021, 590, 622–631.

[67]

Niu, Y. L.; Gong, S. Q.; Liu, X.; Xu, C.; Xu, M. Z.; Sun, S. G.; Chen, Z. F. Engineering iron-group bimetallic nanotubes as efficient bifunctional oxygen electrocatalysts for flexible Zn-air batteries. eScience 2022, 2, 546–556.

[68]

Wang, Y. Y.; Zhang, G. X.; Ma, M.; Ma, Y.; Huang, J. K.; Chen, C.; Zhang, Y.; Sun, X. M.; Yan, Z. F. Ultrasmall NiFe layered double hydroxide strongly coupled on atomically dispersed FeCo-NC nanoflowers as efficient bifunctional catalyst for rechargeable Zn-air battery. Sci. China Mater. 2020, 63, 1182–1195.

[69]

Zeng, Z. P.; Gan, L. Y.; Bin Yang, H.; Su, X. Z.; Gao, J. J.; Liu, W.; Matsumoto, H.; Gong, J.; Zhang, J. M.; Cai, W. Z. et al. Orbital coupling of hetero-diatomic nickel-iron site for bifunctional electrocatalysis of CO2 reduction and oxygen evolution. Nat. Commun. 2021, 12, 4088.

[70]

Hutchison, P.; Rice, P. S.; Warburton, R. E.; Raugei, S.; Hammes-Schiffer, S. Multilevel computational studies reveal the importance of axial ligand for oxygen reduction reaction on Fe-N-C materials. J. Am. Chem. Soc. 2022, 14, 16524–16534.

File
12274_2023_6038_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 July 2023
Revised: 19 July 2023
Accepted: 23 July 2023
Published: 18 August 2023
Issue date: April 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22202020) and the Natural Science Foundation of Changzhou City (No. CJ20210134). Supercomputing facilities were provided by Hefei Advanced Computing Center.

Return