Journal Home > Volume 17 , Issue 4

Owing to their low flexibility, poor processability and a lack of responsiveness, inorganic materials are usually non-ideal for constructing a living organism. Hence, to date, lifelike materials with structural hierarchies and adaptive properties usually rely on light and soft organic molecules, although few exceptions have been acquired using two-dimensional (2D) inorganic nanosheets. Herein, with a systematic study on the gelation behavior of carbon-based 0D quantum dots, 1D nanotubes, and 3D fullerenes, we find that acidified 1D carbon nanotubes (CNTs) can serve as an alternative building block for fabricating purely inorganic biomimetic soft materials. The as-prepared CNT gels exhibit not only a pH- or photothermal-triggered mechanical and tribological adaptivity, which allows them to simulate the behavior of sea cucumbers, peacock mantis shrimps, and mammalian muscles or cortical bones, but also a unique damping property that is similar to spider’s cuticular pad. Their high elasticity, effective lubrication, excellent biocompatibility, and controllable friction and wear also allow them to function as a new type of smart lubricants, whose tribological properties can be regulated either by its internal pH changes or spatiotemporally by near-infrared (NIR) light irradiations, free of any toxic and flammable base oils or additives.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

pH- and near-infrared light-responsive, biomimetic hydrogels from aqueous dispersions of carbon nanotubes

Show Author's information Lulin Hu1,2Xinxin Yu3Jingcheng Hao1,4( )Lu Xu1,2( )
Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264000, China
State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
Yantai Center for Food and Drug Control, Yantai 264000, China
Key Laboratory of Colloid and Interface Chemistry & Key Laboratory of Special Aggregated Materials, Shandong University, Jinan 250100, China

Abstract

Owing to their low flexibility, poor processability and a lack of responsiveness, inorganic materials are usually non-ideal for constructing a living organism. Hence, to date, lifelike materials with structural hierarchies and adaptive properties usually rely on light and soft organic molecules, although few exceptions have been acquired using two-dimensional (2D) inorganic nanosheets. Herein, with a systematic study on the gelation behavior of carbon-based 0D quantum dots, 1D nanotubes, and 3D fullerenes, we find that acidified 1D carbon nanotubes (CNTs) can serve as an alternative building block for fabricating purely inorganic biomimetic soft materials. The as-prepared CNT gels exhibit not only a pH- or photothermal-triggered mechanical and tribological adaptivity, which allows them to simulate the behavior of sea cucumbers, peacock mantis shrimps, and mammalian muscles or cortical bones, but also a unique damping property that is similar to spider’s cuticular pad. Their high elasticity, effective lubrication, excellent biocompatibility, and controllable friction and wear also allow them to function as a new type of smart lubricants, whose tribological properties can be regulated either by its internal pH changes or spatiotemporally by near-infrared (NIR) light irradiations, free of any toxic and flammable base oils or additives.

Keywords: carbon nanotubes (CNTs), biomimetic hydrogels, mechanical and tribological adaptivity, switchable lubrication, pH- and near-infrared (NIR) light responsiveness

References(57)

[1]

Sano, K.; Igarashi, N.; Ebina, Y.; Sasaki, T.; Hikima, T.; Aida, T.; Ishida, Y. A mechanically adaptive hydrogel with a reconfigurable network consisting entirely of inorganic nanosheets and water. Nat. Commun. 2020, 11, 6026.

[2]

Hu, L. L.; Yang, Y.; Hao, J. C.; Xu, L. Dual-driven mechanically and tribologically adaptive hydrogels solely constituted of graphene oxide and water. Nano Lett. 2022, 22, 6004–6009.

[3]

Kouwer, P. H. J.; Koepf, M.; Le Sage, V. A. A.; Jaspers, M.; Van Buul, A. M.; Eksteen-Akeroyd, Z. H.; Woltinge, T.; Schwartz, E.; Kitto, H. J.; Hoogenboom, R. et al. Responsive biomimetic networks from polyisocyanopeptide hydrogels. Nature 2013, 493, 651–655.

[4]

Palagi, S.; Fischer, P. Bioinspired microrobots. Nat. Rev. Mater. 2018, 3, 113–124.

[5]

de Espinosa, L. M.; Meesorn, W.; Moatsou, D.; Weder, C. Bioinspired polymer systems with stimuli-responsive mechanical properties. Chem. Rev. 2017, 117, 12851–12892.

[6]

De Almeida, P.; Jaspers, M.; Vaessen, S.; Tagit, O.; Portale, G.; Rowan, A. E.; Kouwer, P. H. J. Cytoskeletal stiffening in synthetic hydrogels. Nat. Commun. 2019, 10, 609.

[7]

Romera, M. F. C.; Göstl, R.; Shaikh, H.; Ter Huurne, G.; Schill, J.; Voets, I. K.; Storm, C.; Sijbesma, R. P. Mimicking active biopolymer networks with a synthetic hydrogel. J. Am. Chem. Soc. 2019, 141, 1989–1997.

[8]

Sano, K.; Arazoe, Y. O.; Ishida, Y.; Ebina, Y.; Osada, M.; Sasaki, T.; Hikima, T.; Aida, T. Extra-large mechanical anisotropy of a hydrogel with maximized electrostatic repulsion between cofacially aligned 2D electrolytes. Angew. Chem., Int. Ed. 2018, 57, 12508–12513.

[9]

Xue, P.; Bisoyi, H. K.; Chen, Y. H.; Zeng, H.; Yang, J. J.; Yang, X.; Lv, P. F.; Zhang, X. M.; Priimagi, A.; Wang, L. et al. Near-infrared light-driven shape-morphing of programmable anisotropic hydrogels enabled by MXene nanosheets. Angew. Chem., Int. Ed. 2021, 60, 3390–3396.

[10]

Zhang, Z. M.; Cheng, L.; Zhao, J.; Zhang, H.; Zhao, X. Y.; Liu, Y. H.; Bai, R. X.; Pan, H.; Yu, W.; Yan, X. Z. Muscle-mimetic synergistic covalent and supramolecular polymers: Phototriggered formation leads to mechanical performance boost. J. Am. Chem. Soc. 2020, 143, 902–911.

[11]

Zhang, W.; Wu, B. H.; Sun, S. T.; Wu, P. Y. Skin-like mechanoresponsive self-healing ionic elastomer from supramolecular zwitterionic network. Nat. Commun. 2021, 12, 4082.

[12]

Li, B.; Liu, J.; Lyu, F.; Deng, Z.; Yi, B.; Du, P.; Yao, X.; Zhu, G.; Xu, Z.; Lu, J. Mineral hydrogel from inorganic salts: Biocompatible synthesis, all-in-one charge storage, and possible implications in the origin of life. Adv. Funct. Mater. 2022, 32, 2109302.

[13]

Studart, A. R. Towards high-performance bioinspired composites. Adv. Mater. 2012, 24, 5024–5044.

[14]

Wegst, U. G. K.; Bai, H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 2015, 14, 23–36.

[15]

Yang, Y.; Sun, H.; Zhang, B.; Hu, L. L.; Xu, L.; Hao, J. C. Hydrogels totally from inorganic nanosheets and water with mechanical robustness, self-healing, controlled lubrication and anti-corrosion. Nano Res. 2023, 16, 1533–1544.

[16]

Kang, H. Z.; Trondoli, A. C.; Zhu, G. Z.; Chen, Y.; Chang, Y. J.; Liu, H. P.; Huang, Y. F.; Zhang, X. L.; Tan, W. H. Near-infrared light-responsive core–shell nanogels for targeted drug delivery. ACS Nano 2011, 5, 5094–5099.

[17]

Li, Z. Y.; Shi, Y. L.; Zhu, A. L.; Zhao, Y. L.; Wang, H. Y.; Binks, B. P.; Wang, J. J. Light-responsive, reversible emulsification and demulsification of oil-in-water pickering emulsions for catalysis. Angew. Chem., Int. Ed. 2021, 60, 3928–3933.

[18]

Holá, K.; Sudolská, M.; Kalytchuk, S.; Nachtigallová, D.; Rogach, A. L.; Otyepka, M.; Zbořil, R. Graphitic nitrogen triggers red fluorescence in carbon dots. ACS Nano 2017, 11, 12402–12410.

[19]

Worsley, K. A.; Kalinina, I.; Bekyarova, E.; Haddon, R. C. Functionalization and dissolution of nitric acid treated single-walled carbon nanotubes. J. Am. Chem. Soc. 2009, 131, 18153–18158.

[20]

Chiang, L. Y.; Upasani, R. B.; Swirczewski, J. W.; Soled, S. Evidence of hemiketals incorporated in the structure of fullerols derived from aqueous acid chemistry. J. Am. Chem. Soc. 1993, 115, 5453–5457.

[21]

Michot, L. J.; Bihannic, I.; Maddi, S.; Funari, S. S.; Baravian, C.; Levitz, P.; Davidson, P. Liquid-crystalline aqueous clay suspensions. Proc. Natl. Acad. Sci. USA 2006, 103, 16101–16104.

[22]

Nagai, N.; Ihara, K.; Itoi, A.; Kodaira, T.; Takashima, H.; Hakuta, Y.; Bando, K. K.; Itoh, N.; Mizukami, F. Fabrication of boehmite and Al2O3 nonwovens from boehmite nanofibres and their potential as the sorbent. J. Mater. Chem. 2012, 22, 21225–21231.

[23]

Mourad, M. C. D.; Byelov, D. V.; Petukhov, A. V.; Lekkerkerker, H. N. W. Structure of the repulsive gel/glass in suspensions of charged colloidal platelets. J. Phys.: Condens. Matter 2008, 20, 494201.

[24]

Zhang, J.; Wang, H. Q.; Li, X. Y.; Song, S. S.; Song, A. X.; Hao, J. C. Two gelation mechanisms of deoxycholate with inorganic additives: Hydrogen bonding and electrostatic interactions. J. Phys. Chem. B 2016, 120, 6812–6818.

[25]

Ishida, Y.; Chabanne, L.; Antonietti, M.; Shalom, M. Morphology control and photocatalysis enhancement by the one-pot synthesis of carbon nitride from preorganized hydrogen-bonded supramolecular precursors. Langmuir 2014, 30, 447–451.

[26]

Huang, H. Y.; Dong, Z. C.; Ren, X. Y.; Jia, B.; Li, G. W.; Zhou, S. W.; Zhao, X.; Wang, W. Z. High-strength hydrogels: Fabrication, reinforcement mechanisms, and applications. Nano Res. 2023, 16, 3475–3515.

[27]

Wang, W. Z.; Jia, B.; Xu, H. R.; Li, Z. L.; Qiao, L. P.; Zhao, Y. R.; Huang, H. Y.; Zhao, X.; Guo, B. L. Multiple bonds crosslinked antibacterial, conductive and antioxidant hydrogel adhesives with high stretchability and rapid self-healing for MRSA infected motion skin wound healing. Chem. Eng. J. 2023, 468, 143362.

[28]

Zhao, X.; Liang, Y. P.; Huang, Y.; He, J. H.; Han, Y.; Guo, B. L. Physical double-network hydrogel adhesives with rapid shape adaptability, fast self-healing, antioxidant and NIR/pH stimulus-responsiveness for multidrug-resistant bacterial infection and removable wound dressing. Adv. Funct. Mater. 2020, 30, 1910748.

[29]

Thurmond, F. A.; Trotter, J. A. Morphology and biomechanics of the microfibrillar network of sea cucumber dermis. J. Exp. Biol. 1996, 199, 1817–1828.

[30]

Motokawa, T.; Tsuchi, A. Dynamic mechanical properties of body-wall dermis in various mechanical states and their implications for the behavior of sea cucumbers. Biol. Bull. 2003, 205, 261–275.

[31]

Chen, H.; Zhang, X. Y.; Shang, L.; Su, Z. Q. Programmable anisotropic hydrogels with localized photothermal/magnetic responsive properties. Adv. Sci. 2022, 9, 2202173.

[32]

Zhu, W.; Ma, X. Y.; Gou, M. L.; Mei, D. Q.; Zhang, K.; Chen, S. C. 3D printing of functional biomaterials for tissue engineering. Curr. Opin. Biotechnol. 2016, 40, 103–112.

[33]

Martin, J. J.; Fiore, B. E.; Erb, R. M. Designing bioinspired composite reinforcement architectures via 3D magnetic printing. Nat. Commun. 2015, 6, 8641.

[34]

Geeves, M. A.; Holmes, K. C. The molecular mechanism of muscle contraction. Adv. Protein Chem. 2005, 71, 161–193.

[35]

Behrmann, E.; Müller, M.; Penczek, P. A.; Mannherz, H. G.; Manstein, D. J.; Raunser, S. Structure of the rigor actin-tropomyosin-myosin complex. Cell 2012, 150, 327–338.

[36]

Park, B.; Shin, J. H.; Ok, J.; Park, S.; Jung, W.; Jeong, C.; Choy, S.; Jo, Y. J.; Kim, T. I. Cuticular pad-inspired selective frequency damper for nearly dynamic noise-free bioelectronics. Science 2022, 376, 624–629.

[37]
Barth, F. G. A Spider’s World: Senses and Behavior; Springer: Berlin, 2002.
[38]

Kim, D. H.; Lu, N. S.; Ma, R.; Kim, Y. S.; Kim, R. H.; Wang, S. D.; Wu, J.; Won, S. M.; Tao, H.; Islam, A. et al. Epidermal electronics. Science 2011, 333, 838–843.

[39]

Lee, J.; Ihle, S. J.; Pellegrino, G. S.; Kim, H.; Yea, J.; Jeon, C. Y.; Son, H. C.; Jin, C.; Eberli, D.; Schmid, F. et al. Stretchable and suturable fibre sensors for wireless monitoring of connective tissue strain. Nat. Electron. 2021, 4, 291–301.

[40]

Yu, B.; Liu, Z. L.; Ma, C. B.; Sun, J. J.; Liu, W. M.; Zhou, F. Ionic liquid modified multi-walled carbon nanotubes as lubricant additive. Tribol. Int. 2015, 81, 38–42.

[41]

Bai, Y. Y.; Yu, Q. L.; Zhang, J. Y.; Cai, M. R.; Liang, Y. M.; Zhou, F.; Liu, W. M. Soft-nanocomposite lubricants of supramolecular gel with carbon nanotubes. J. Mater. Chem. A 2019, 7, 7654–7663.

[42]

Choi, H. J.; Lee, S. M.; Bae, D. H. Wear characteristic of aluminum-based composites containing multi-walled carbon nanotubes. Wear 2010, 270, 12–18.

[43]

Ru, Y. F.; Fang, R. C.; Gu, Z. D.; Jiang, L.; Liu, M. J. Reversibly thermosecreting organogels with switchable lubrication and anti-icing performance. Angew. Chem., Int. Ed. 2020, 59, 11876–11880.

[44]

Lin, P.; Zhang, R.; Wang, X. L.; Cai, M. R.; Yang, J.; Yu, B.; Zhou, F. Articular cartilage inspired bilayer tough hydrogel prepared by interfacial modulated polymerization showing excellent combination of high load-bearing and low friction performance. ACS Macro Lett. 2016, 5, 1191–1195.

[45]

Wu, Y.; Wei, Q. B.; Cai, M. R.; Zhou, F. Interfacial friction control. Adv. Mater. Interfaces 2015, 2, 1400392.

[46]

He, J. H.; Shi, M. T.; Liang, Y. P.; Guo, B. L. Conductive adhesive self-healing nanocomposite hydrogel wound dressing for photothermal therapy of infected full-thickness skin wounds. Chem. Eng. J. 2020, 394, 124888.

[47]

Wang, M.; Zhang, X. Z.; Chen, C. L.; Wen, Y.; Wen, Q. C.; Fu, Q.; Deng, H. Aramid-based aerogels for driving water evaporation through both photo-thermal and electro-thermal effects. J. Mater. Chem. A 2023, 11, 7711–7723.

[48]

Xiong, Z. C.; Zhu, Y. J.; Qin, D. D.; Chen, F. F.; Yang, R. L. Flexible fire-resistant photothermal paper comprising ultralong hydroxyapatite nanowires and carbon nanotubes for solar energy-driven water purification. Small 2018, 14, 1803387.

[49]

Yang, H.; Qi, D. P.; Liu, Z. Y.; Chandran, B. K.; Wang, T.; Yu, J. C.; Chen, X. D. Soft thermal sensor with mechanical adaptability. Adv. Mater. 2016, 28, 9175–9181.

[50]

Wei, S. X.; Lu, W.; Shi, H. H.; Wu, S. S.; Le, X. X.; Yin, G. Q.; Liu, Q. Q.; Chen, T. Light-writing and projecting multicolor fluorescent hydrogels for on-demand information display. Adv. Mater. 2023, 35, 2300615.

[51]

Zhang, X. B.; Pint, C. L.; Lee, M. H.; Schubert, B. E.; Jamshidi, A.; Takei, K.; Ko, H.; Gillies, A.; Bardhan, R.; Urban, J. J. et al. Optically- and thermally-responsive programmable materials based on carbon nanotube-hydrogel polymer composites. Nano Lett. 2011, 11, 3239–3244.

[52]

Li, C. X.; Mezzenga, R. Functionalization of multiwalled carbon nanotubes and their pH-responsive hydrogels with amyloid fibrils. Langmuir 2012, 28, 10142–10146.

[53]

Gregg, A.; De Volder, M. F. L.; Baumberg, J. J. Light-actuated anisotropic microactuators from CNT/hydrogel nanocomposites. Adv. Opt. Mater. 2022, 10, 2200180.

[54]

Deng, Z. X.; Hu, T. L.; Lei, Q.; He, J. K.; Ma, P. X.; Guo, B. L. Stimuli-responsive conductive nanocomposite hydrogels with high stretchability, self-healing, adhesiveness, and 3D printability for human motion sensing. ACS Appl. Mater. Interfaces 2019, 11, 6796–6808.

[55]

Vashist, A.; Kaushik, A.; Vashist, A.; Sagar, V.; Ghosal, A.; Gupta, Y. K.; Ahmad, S.; Nair, M. Advances in carbon nanotubes-hydrogel hybrids in nanomedicine for therapeutics. Adv. Healthcare Mater. 2018, 7, 1701213.

[56]

Li, H. J.; Liang, Y.; Gao, G. R.; Wei, S. X.; Jian, Y. K.; Le, X. X.; Lu, W.; Liu, Q. Q.; Zhang, J. W.; Chen, T. Asymmetric bilayer CNTs-elastomer/hydrogel composite as soft actuators with sensing performance. Chem. Eng. J. 2021, 415, 128988.

[57]

Deng, Z. X.; Guo, Y.; Zhao, X.; Ma, P. X.; Guo, B. L. Multifunctional stimuli-responsive hydrogels with self-healing, high conductivity, and rapid recovery through host–guest interactions. Chem. Mater. 2018, 30, 1729–1742.

File
12274_2023_6034_MOESM1_ESM.pdf (2.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 May 2023
Revised: 20 July 2023
Accepted: 21 July 2023
Published: 11 August 2023
Issue date: April 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work is financially supported by the Hundred Talents Program of Chinese Academy of Sciences (No. E30247YB), Special Talents Program of Lanzhou Institute of Chemical Physics (No. E0SX0282), the National Natural Science Foundation of Shandong Province (No. ZR2022QB190), and the Innovative Research Funds of Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing (Nos. E1R06SXM07, E2R06SXM14).

Return