AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Multiresponsive, easy-reversible, and dual-visual Pt(II) salt nanostructures for advanced anti-counterfeiting application

Zhen Su,§Depeng Li,§Lixin ZhangSi TianYuhong SuXiaoyun Hu( )Duan XiongQingqing Guan( )
Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education, College of Chemical Engineering, Xinjiang University, Urumqi 830017, China

§ Zhen Su and Depeng Li contributed equally to this work.

Show Author Information

Graphical Abstract

We propose a multiresponsive, easily reversible and dual-visual perchlorate Pt(II) salt for advanced anticounterfeiting, by adopting two comparable weak interactions that are hydrogen bond and ion dipole interaction to selectively combine H2O or HCHO molecules. The present study provides a valuable strategy for designing smart optical system with multi-stimuli response and controllable reversibility, which would significantly promote its high-security-level anticounterfeiting applications.

Abstract

Smart materials that integrate multi-stimuli response, full reversibility, and dual-visual read-out channel are highly desired for anti-counterfeiting and information encryption applications. Herein, we developed a multiresponsive perchlorate terpyridyl Pt(II) nano complex which could undergo fully reversible conversion between three forms stimulated by water or formaldehyde molecule due to the extent of Pt–Pt interaction. Meanwhile, a dual-visual channel, i.e., the colorimetric channel changed from yellow to orange or red and the corresponding luminescent channel from orange to orange-red or red, has also been found. The weak and equivalent strength of ion-dipole interaction and hydrogen bond that generated between formaldehyde/water and Pt(II) salt result in the easy-control reversibility between the three forms. Furthermore, by introducing different polymer matrices, 1Cl·ClO4@PMMA (1Cl·ClO4:[Pt(tpy)Cl]·ClO4, tpy: 2,2':6',2''-terpyridine), PMMA: poly(methyl methacrylate)) and 1Cl·ClO4@PVA (PVA: polyvinyl alcohol) are successfully constructed, which exhibit different reversible behaviors since the PMMA and PVA matrix exert different influences on the strength of hydrogen-bond. Those smart Pt(II) salt nanostructures present great potential for high-security-level anticounterfeiting application.

Electronic Supplementary Material

Download File(s)
12274_2023_6032_MOESM1_ESM.pdf (1.5 MB)

References

[1]

Zhang, X.; Cheng, Y. H.; You, J. X.; Zhang, J. M.; Wang, Y. R.; Zhang, J. Irreversible humidity-responsive phosphorescence materials from cellulose for advanced anti-counterfeiting and environmental monitoring. ACS Appl. Mater. Interfaces 2022, 14, 16582–16591.

[2]

He, X. Y.; Zhang, J. Y.; Liu, X. Y.; Jin, Z. W.; Lam, J. W. Y.; Tang, B. Z. A multiresponsive functional AIEgen for spatiotemporal pattern control and all-round information encryption. Angew. Chem., Int. Ed. 2023, 62, e202300353.

[3]

Abdollahi, A.; Roghani-Mamaqani, H.; Razavi, B.; Salami-Kalajahi, M. Photoluminescent and chromic nanomaterials for anticounterfeiting technologies: Recent advances and future challenges. ACS Nano 2020, 14, 14417–14492.

[4]

Arppe, R.; Sørensen, T. J. Physical unclonable functions generated through chemical methods for anti-counterfeiting. Nat. Rev. Chem. 2017, 1, 0031.

[5]

Sun, Y. J.; Lou, D. Y.; Liu, W.; Zheng, Z. K.; Chen, X. D. SERS labels for optical anticounterfeiting: Structure, fabrication, and performance. Adv. Opt. Mater. 2023, 11, 2201549.

[6]

Wang, Z. P.; Jiang, L.; Li, X. W.; Li, B. H.; Zhou, S. P.; Xu, Z. T.; Huang, L. L. Thermally reconfigurable hologram fabricated by spatially modulated femtosecond pulses on a heat-shrinkable shape memory polymer for holographic multiplexing. ACS Appl. Mater. Interfaces 2021, 13, 51736–51745.

[7]

Wang, X. C.; Kuang, J. R.; Wu, P. C.; Zong, Z.; Li, Z. X.; Wang, H.; Li, J. L.; Dai, P. L.; Zhang, K. Y.; Liu, S. J. et al. Manipulating electroluminochromism behavior of viologen-substituted iridium(III) complexes through ligand engineering for information display and encryption. Adv. Mater. 2022, 34, 2107013.

[8]

Ai, Y. Y.; Fei, Y. X.; Shu, Z.; Zhu, Y. H.; Liu, J. Q.; Li, Y. G. Visible-light-controlled ternary chiroptical switches with high-performance circularly polarized luminescence for advanced optical information storage and anti-counterfeiting materials. Chem. Eng. J. 2022, 450, 138390.

[9]

Ding, L. J.; Wang, X. D. Luminescent oxygen-sensitive ink to produce highly secured anticounterfeiting labels by inkjet printing. J. Am. Chem. Soc. 2020, 142, 13558–13564.

[10]

Nie, X. L.; Wu, S. L.; Lv, P. F.; Ke, H. Z.; Huang, F. L.; Wei, Q. F. Chameleon-inspired iridescent structural color textiles with reversible multiple stimulus-responsive functions. Chem. Eng. J. 2022, 433, 134410.

[11]

Sun, Z. Y.; Yang, J. X.; Huai, L. W.; Wang, W. X.; Ma, Z. D.; Sang, J. K.; Zhang, J. C.; Li, H. H.; Ci, Z.; Wang, Y. H. Spy must be spotted: A multistimuli-responsive luminescent material for dynamic multimodal anticounterfeiting and encryption. ACS Appl. Mater. Interfaces 2018, 10, 21451–21457.

[12]

Jia, H.; Teng, Y. Y.; Li, N.; Li, D. G.; Dong, Y. H.; Zhang, D.; Liu, Z. H.; Zhao, D.; Guo, X. Y.; Di, W. H. et al. Dual stimuli-responsive inks based on orthogonal upconversion three-primary-color luminescence for advanced anticounterfeiting applications. ACS Mater. Lett. 2022, 4, 1306–1313.

[13]

Zhao, Q.; Xu, W. J.; Sun, H. B.; Yang, J. G.; Zhang, K. Y.; Liu, S. J.; Ma, Y.; Huang, W. Tunable electrochromic luminescence of iridium(III) complexes for information self-encryption and anti-counterfeiting. Adv. Opt. Mater. 2016, 4, 1167–1173.

[14]

Lin, Z.; Wang, H.; Yu, M. L.; Guo, X.; Zhang, C. H.; Deng, H. T.; Zhang, P. S.; Chen, S.; Zeng, R. J.; Cui, J. X. et al. Photoswitchable ultrahigh-brightness red fluorescent polymeric nanoparticles for information encryption, anti-counterfeiting and bioimaging. J. Mater. Chem. C 2019, 7, 11515–11521.

[15]

Abdollahi, A.; Sahandi-Zangabad, K.; Roghani-Mamaqani, H. Rewritable anticounterfeiting polymer inks based on functionalized stimuli-responsive latex particles containing spiropyran photoswitches: Reversible photopatterning and security marking. ACS Appl. Mater. Interfaces 2018, 10, 39279–39292.

[16]

Song, Z. P.; Lin, T. R.; Lin, L. H.; Lin, S.; Fu, F. F.; Wang, X. C.; Guo, L. Q. Invisible security ink based on water-soluble graphitic carbon nitride quantum dots. Angew. Chem., Int. Ed. 2016, 128, 2823–2827.

[17]

Zhao, J. W.; Zheng, Y. Y.; Pang, Y. Y.; Chen, J.; Zhang, Z. Y.; Xi, F. N.; Chen, P. Graphene quantum dots as full-color and stimulus responsive fluorescence ink for information encryption. J. Colloid Interface Sci. 2020, 579, 307–314.

[18]

Zhou, L.; Zhao, A. D.; Wang, Z. Z.; Chen, Z. W.; Ren, J. S.; Qu, X. G. Ionic liquid-assisted synthesis of multicolor luminescent silica nanodots and their use as anticounterfeiting ink. ACS Appl. Mater. Interfaces. 2015, 7, 2905–2911.

[19]

Li, Z. Q.; Wang, G. N.; Ye, Y. X.; Li, B.; Li, H. R.; Chen, B. L. Loading photochromic molecules into a luminescent metal-organic framework for information anticounterfeiting. Angew. Chem., Int. Ed. 2019, 58, 18025–18031.

[20]

Zhang, C. Y.; Wang, B.; Li, W. B.; Huang, S. Q.; Kong, L.; Li, Z. C.; Li, L. Conversion of invisible metal-organic frameworks to luminescent perovskite nanocrystals for confidential information encryption and decryption. Nat. Commun. 2017, 8, 1138.

[21]

Sun, C.; Su, S. J.; Gao, Z. Y.; Liu, H. X.; Wu, H.; Shen, X. Y.; Bi, W. G. Stimuli-responsive inks based on perovskite quantum dots for advanced full-color information encryption and decryption. ACS Appl. Mater. Interfaces 2019, 11, 8210–8216.

[22]

Liu, X. W.; Wang, Y.; Li, X. Y.; Yi, Z. G.; Deng, R. R.; Liang, L. L.; Xie, X. J.; Loong, D. T. B.; Song, S. Y.; Fan, D. Y. et al. Binary temporal upconversion codes of Mn2+ activated nanoparticles for multilevel anti-counterfeiting. Nat. Commun. 2017, 8, 899.

[23]

Liu, J.; Kaczmarek, A. M.; Van Deun, R. Advances in tailoring luminescent rare-earth mixed inorganic materials. Chem. Soc. Rev. 2018, 47, 7225–7238.

[24]

Meng, Z. P.; Wu, S. L.; Tang, B. T.; Ma, W.; Zhang, S. F. Structurally colored polymer films with narrow stop band, high angle-dependence and good mechanical robustness for trademark anti-counterfeiting. Nanoscale 2018, 10, 14755–14762.

[25]

Anitha, O.; Mathivanan, M.; Tharmalingam, B.; Thiruppathiraj, T.; Ghorai, S.; Natarajan, R.; Thiagarajan, V.; Lakshmipathi, S.; Murugesapandian, B. Multi-stimuli responsiveness of pyrimidine bishydrazone: AIE, tuneable luminescence, white light emission, mechanochromism, acidochromism and its anticounterfeiting applications. Dyes Pigm. 2023, 212, 111091.

[26]

Dubey, C.; Shruti, N.; Singh, S. K.; Singh, A. K. Halide perovskite nanocrystals and lanthanide complex-based bi-luminescent security ink for multilevel static-dynamic anticounterfeiting. Mater. Res. Bull. 2022, 155, 111977.

[27]

Zuo, M. Z.; Qian, W. R.; Li, T. H.; Hu, X. Y.; Jiang, J. L.; Wang, L. Y. Full-color tunable fluorescent and chemiluminescent supramolecular nanoparticles for anti-counterfeiting inks. ACS Appl. Mater. Interfaces 2018, 10, 39214–39221.

[28]

Zhang, H. W.; Li, Q. Y.; Yang, Y. B.; Ji, X. F.; Sessler, J. L. Unlocking chemically encrypted information using three types of external stimuli. J. Am. Chem. Soc. 2021, 143, 18635–18642.

[29]

Jiang, J. W.; Zhang, P. S.; Liu, L.; Li, Y. Q.; Zhang, Y. B.; Wu, T. C.; Xie, H. L.; Zhang, C. H.; Cui, J. X.; Chen, J. Dual photochromics-contained photoswitchable multistate fluorescent polymers for advanced optical data storage, encryption, and photowritable pattern. Chem. Eng. J. 2021, 425, 131557.

[30]

Wang, Z. R.; Yu, F.; Chen, W. Q.; Wang, J. F.; Liu, J. Y.; Yao, C. J.; Zhao, J. F.; Dong, H. L.; Hu, W. P.; Zhang, Q. C. Rational control of charge transfer excitons toward high-contrast reversible mechanoresponsive luminescent switching. Angew. Chem., Int. Ed. 2020, 59, 17580–17586.

[31]

Zhu, S. Q.; Hu, J. Y.; Zhai, S. L.; Wang, Y. T.; Xu, Z. C.; Liu, R.; Zhu, H. J. AIPE-active Pt(II) complexes with a tunable triplet excited state:Design, mechanochromism and application in anti-counterfeiting. Inorg. Chem. Front. 2020, 7, 4677–4686.

[32]

Wong, K. M. C.; Yam, V. W. W. Self-assembly of luminescent alkynylplatinum(II) terpyridyl complexes: Modulation of photophysical properties through aggregation behavior. Acc. Chem. Res. 2011, 44, 424–434.

[33]

Wong, K.; Yam, V. Luminescence platinum(II) terpyridyl complexes-From fundamental studies to sensory functions. Coord. Chem. Rev. 2007, 251, 2477–2488.

[34]

Chang, X. M.; Zhou, Z. X.; Shang, C. D.; Wang, G.; Wang, Z. L.; Qi, Y. Y.; Li, Z. Y.; Wang, H.; Cao, L. P.; Li, X. P. et al. Coordination-driven self-assembled metallacycles incorporating pyrene: Fluorescence mutability, tunability, and aromatic amine sensing. J. Am. Chem. Soc. 2019, 141, 1757–1765.

[35]

Hu, Y. C.; Chan, K. H. Y.; Chung, C. Y. S.; Yam, V. W. W. Reversible thermo-responsive luminescent metallo-supramolecular triblock copolymers based on platinum(II) terpyridyl chromophores with unusual aggregation behaviour and red-near-infrared (NIR) emission upon heating. Dalton Trans. 2011, 40, 12228–12234.

[36]

Jiang, B.; Zhang, J.; Ma, J. Q.; Zheng, W.; Chen, L. J.; Sun, B.; Li, C.; Hu, B. W.; Tan, H. W.; Li, X. P. et al. Vapochromic behavior of a chair-shaped supramolecular metallacycle with ultra-stability. J. Am. Chem. Soc. 2016, 138, 738–741.

[37]

Su, Z.; Li, Y. S.; Li, J. G.; Li, K.; Dou, X. C. Ultrasensitive dual-mode visualization of perchlorate in water, soil and air boosted by close and stable Pt–Pt packing endowed low-energy absorption and emission. J. Mater. Chem. A 2022, 10, 8195–8207.

[38]

Su, Z.; Li, Y. S.; Li, J. G.; Dou, X. C. Ultrasensitive luminescent turn-on detection of perchlorate particulates by triggering supramolecular self-assembly of platinum(II) complex in hydrogel matrix. Sens. Actuat. B: Chem. 2021, 336, 129728.

[39]

Zhang, J. Y.; Xu, S.; Wang, Z. J.; Xue, P. R.; Wang, W. J.; Zhang, L. Y.; Shi, Y. Q.; Huang, W.; Chen, R. F. Stimuli-responsive deep-blue organic ultralong phosphorescence with lifetime over 5 s for reversible water-jet anti-counterfeiting printing. Angew. Chem., Int. Ed. 2021, 60, 17094–17101.

[40]

Li, J. G.; Chen, K. X.; Wei, J.; Ma, Y.; Zhou, R. Y.; Liu, S. J.; Zhao, Q.; Wong, W. Y. Reversible on-off switching of excitation-wavelength-dependent emission of a phosphorescent soft salt based on platinum(II) complexes. J. Am. Chem. Soc. 2021, 143, 18317–18324.

[41]

Bailey, J. A.; Hill, M. G.; Marsh, R. E.; Miskowski, V. M.; Schaefer, W. P.; Gray, H. B. Electronic spectroscopy of chloro(terpyridine)platinum(II). Inorg. Chem. 1995, 34, 4591–4599.

[42]

Pearson, R. G.; Gray, H. B.; Basolo, F. Mechanism of substitution reactions of complex ions. XVI. 1 exchange reactions of platinum(II) complexes in various solvents. J. Am. Chem. Soc. 1960, 82, 787–792.

[43]

Taylor, S. D.; Norton, A. E.; Hart, R. T.; Abdolmaleki, M. K.; Krause, J. A.; Connick, W. B. Between red and yellow: Evidence of intermediates in a vapochromic Pt(II) salt. Chem. Commun. 2013, 49, 9161–9163.

[44]

Norton, A. E.; Abdolmaleki, M. K.; Zhao, D. L.; Taylor, S. D.; Kennedy, S. R.; Ball, T. D.; Bovee, M. O.; Connick, W. B.; Chatterjee, S. Vapoluminescence hysteresis in a platinum(II) salt-based humidity sensor: Mapping the vapochromic response to water vapor. Sens. Actuat. B: Chem. 2022, 359, 131502.

[45]

Liu, X. W.; Ji, Q.; Hu, Q. Y.; Li, C.; Chen, M. L.; Sun, J.; Wang, Y.; Sun, Q.; Geng, B. Y. Dual-mode long-lived luminescence of Mn2+-doped nanoparticles for multilevel anticounterfeiting. ACS Appl. Mater. Interfaces 2019, 11, 30146–30153.

[46]

Liu, Y. Z.; Liang, S. F.; Yuan, C. R.; Best, A.; Kappl, M.; Koynov, K.; Butt, H. J.; Wu, S. Fabrication of anticounterfeiting nanocomposites with multiple security features via integration of a photoresponsive polymer and upconverting nanoparticles. Adv. Funct. Mater. 2021, 31, 2103908.

Nano Research
Pages 372-381
Cite this article:
Su Z, Li D, Zhang L, et al. Multiresponsive, easy-reversible, and dual-visual Pt(II) salt nanostructures for advanced anti-counterfeiting application. Nano Research, 2024, 17(1): 372-381. https://doi.org/10.1007/s12274-023-6032-0
Topics:

534

Views

2

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 30 April 2023
Revised: 22 July 2023
Accepted: 23 July 2023
Published: 24 August 2023
© Tsinghua University Press 2023
Return