Journal Home > Volume 16 , Issue 11

Sb-based organic–inorganic hybrid metal halides (OIHMHs) with [SbCl5]2− units have been widely reported due to high photoluminescence quantum yield (PLQY) and occasional multiple self-trapped exciton (STE) emission bands mainly out of singlet and triplet states, and their multi-band emission is important in white light-emitting diode (WLED). However, not all these OIHMH compounds can produce both emissions out of singlet STE and triplet STE at room temperature simultaneously. It is crucial to consider how the singlet STE generates and retains to emit light at room temperature for this material’s design and application. Herein, a strategy is proposed that can significantly lift Sb halide PLQY by synthesizing two Sb-based OIHMHs using organic amine cations of different-sized and -quantity, which modulate the distance of neighboring emission centers. Therein, the occurrence of singlet STE emission is found to be closely related to the distance of [SbCl5]2− units and local unit distortion in the lattice. The larger distance can produce smaller local distortions, favoring the formation of the singlet STE emission band at higher energy. This is the first work to reveal the relationship between the local structure and the origin of the singlet STE emission band, providing new insights into the modulation of the Sb-based OIHMH’s emission.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Origin of singlet self-trapped exciton and enhancement of photoluminescence quantum yield of organic–inorganic hybrid antimony(III) chlorides with the [SbCl5]2− units

Show Author's information Tao Huang1,2Ke Li1Jinyu Lei2Quan Niu2Hui Peng1Bingsuo Zou1( )
State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environmental and Materials, Guangxi University, Nanning 530004, China
State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, China

Abstract

Sb-based organic–inorganic hybrid metal halides (OIHMHs) with [SbCl5]2− units have been widely reported due to high photoluminescence quantum yield (PLQY) and occasional multiple self-trapped exciton (STE) emission bands mainly out of singlet and triplet states, and their multi-band emission is important in white light-emitting diode (WLED). However, not all these OIHMH compounds can produce both emissions out of singlet STE and triplet STE at room temperature simultaneously. It is crucial to consider how the singlet STE generates and retains to emit light at room temperature for this material’s design and application. Herein, a strategy is proposed that can significantly lift Sb halide PLQY by synthesizing two Sb-based OIHMHs using organic amine cations of different-sized and -quantity, which modulate the distance of neighboring emission centers. Therein, the occurrence of singlet STE emission is found to be closely related to the distance of [SbCl5]2− units and local unit distortion in the lattice. The larger distance can produce smaller local distortions, favoring the formation of the singlet STE emission band at higher energy. This is the first work to reveal the relationship between the local structure and the origin of the singlet STE emission band, providing new insights into the modulation of the Sb-based OIHMH’s emission.

Keywords: self-trapped exciton, antimony halide, structure distortion, M-Xn cluster separation

References(47)

[1]

Jiang, Y. Z.; Sun, C. J.; Xu, J.; Li, S. S.; Cui, M. H.; Fu, X. L.; Liu, Y.; Liu, Y. Q.; Wan, H. Y.; Wei, K. Y. et al. Synthesis-on-substrate of quantum dot solids. Nature 2022, 612, 679–684.

[2]

Wu, J. J.; Li, X. L.; Lian, X.; Su, B. B.; Pang, J. H.; Li, M. D.; Xia, Z. G.; Zhang, J. Z.; Luo, B. B.; Huang, X. C. Ultrafast study of exciton transfer in Sb(III)-doped two-dimensional [NH3(CH2)4NH3]CdBr4 perovskite. ACS Nano 2021, 15, 15354–15361.

[3]

Shu, B. W.; Chang, Y. J.; Zhang, J. H.; Cheng, X. P.; Yu, D. B. Synthesis and photoluminescence kinetics of Ce3+-doped CsPbI3 QDs with near-unity PLQY. Nano Res. 2021, 14, 3352–3357.

[4]

Zhu, T.; Shen, L. N.; Xun, S. N.; Sarmiento, J. S.; Yang, Y. R.; Zheng, L. Y.; Li, H.; Wang, H.; Bredas, J. L.; Gong, X. High-performance ternary perovskite-organic solar cells. Adv. Mater. 2022, 34, 2109348.

[5]

Huang, Y. M.; Qiao, L.; Jiang, Y. Z.; He, T. W.; Long, R.; Yang, F.; Wang, L.; Lei, X. J.; Yuan, M. J.; Chen, J. A-site cation engineering for highly efficient MAPbI3 single-crystal X-ray detector. Angew. Chem., Int. Ed. 2019, 58, 17834–17842.

[6]

Huang, T.; Wei, Q. L.; Lin, W. C.; Peng, H.; Yao, S. F.; Zou, B. S. High-efficient yellow-green emission in (TDMP)MnBr4 single crystal with modulation of spin-phonon-charge interactions. Mater. Today Phys. 2022, 25, 100703.

[7]

Sun, C.; Deng, Z. Y.; Li, Z. Y.; Chen, Z. W.; Zhang, X. Y.; Chen, J.; Lu, H. P.; Canepa, P.; Chen, R.; Mao, L. L. Achieving near-unity photoluminescence quantum yields in organic–inorganic hybrid antimony(III) chlorides with the [SbCl5] geometry. Angew. Chem., Int. Ed. 2023, 62, e202216720.

[8]

Sun, C.; Yue, Y. D.; Zhang, W. F.; Sun, X. Y.; Du, Y.; Pan, H. M.; Ma, Y. Y.; He, Y. C.; Li, M. T.; Jing, Z. H. [DMEDA]PbCl4: A one-dimensional organic lead halide perovskite with efficient yellow emission. CrystEngComm 2020, 22, 1480–1486.

[9]

Lin, H. R.; Zhou, C. K.; Chaaban, M.; Xu, L. J.; Zhou, Y.; Neu, J.; Worku, M.; Berkwits, E.; He, Q. Q.; Lee, S. et al. Bulk assembly of zero-dimensional organic lead bromide hybrid with efficient blue emission. ACS Mater. Lett. 2019, 1, 594–598.

[10]

Peng, H.; Wang, X. X.; Tian, Y.; Dong, T. T.; Xiao, Y. H.; Huang, T.; Guo, Y. C.; Wang, J. P.; Zou, B. S. Water-stable zero-dimensional (C4H9)4NCuCl2 single crystal with highly efficient broadband green emission. J. Phys. Chem. Lett. 2021, 12, 6639–6647.

[11]

Li, M. Z.; Zhou, J.; Molokeev, M. S.; Jiang, X. X.; Lin, Z. S.; Zhao, J.; Xia, Z. G. Lead-free hybrid metal halides with a green-emissive [MnBr4] unit as a selective turn-on fluorescent sensor for acetone. Inorg. Chem. 2019, 58, 13464–13470.

[12]

Han, P. G.; Luo, C.; Yang, S. Q.; Yang, Y.; Deng, W. Q.; Han, K. L. All-inorganic lead-free 0D perovskites by a doping strategy to achieve a PLQY boost from < 2% to 90%. Angew. Chem., Int. Ed. 2020, 59, 12709–12713.

[13]

Su, B. B.; Li, M. Z.; Song, E. H.; Xia, Z. G. Sb3+-doping in cesium zinc halides single crystals enabling high-efficiency near-infrared emission. Adv. Funct. Mater. 2021, 31, 2105316.

[14]

Su, B. B.; Geng, S. N.; Xiao, Z. W.; Xia, Z. G. Highly distorted antimony(III) chloride [Sb2Cl8]2− dimers for near-infrared luminescence up to 1070 nm. Angew. Chem., Int. Ed. 2022, 61, e202208881.

[15]

Su, B. B.; Song, G. M.; Molokeev, M. S.; Lin, Z. S.; Xia, Z. G. Synthesis, crystal structure and green luminescence in zero-dimensional tin halide (C8H14N2)2SnBr6. Inorg. Chem. 2020, 59, 9962–9968.

[16]

Peng, H.; Tian, Y.; Yu, Z. M.; Wang, X. X.; Ke, B.; Zhao, Y. T.; Dong, T. T.; Wang, J. P.; Zou, B. S. (C16H28N)2SbCl5: A new lead-free zero-dimensional metal-halide hybrid with bright orange emission. Sci. China Mater. 2022, 65, 1594–1600.

[17]

Morad, V.; Yakunin, S.; Kovalenko, M. V. Supramolecular approach for fine-tuning of the bright luminescence from zero-dimensional antimony(III) halides. ACS Mater. Lett. 2020, 2, 845–852.

[18]

Song, G. M.; Li, M. Z.; Zhang, S. Z.; Wang, N. Z.; Gong, P. F.; Xia, Z. G.; Lin, Z. S. Enhancing photoluminescence quantum yield in 0D metal halides by introducing water molecules. Adv. Funct. Mater. 2020, 30, 2002468.

[19]

Li, Z. Y.; Li, Y.; Liang, P.; Zhou, T. L.; Wang, L.; Xie, R. J. Dual-band luminescent lead-free antimony chloride halides with near-unity photoluminescence quantum efficiency. Chem. Mater. 2019, 31, 9363–9371.

[20]

Zhang, Z. Z.; Jin, J. C.; Gong, L. K.; Lin, Y. P.; Du, K. Z.; Huang, X. Y. Co-luminescence in a zero-dimensional organic–inorganic hybrid antimony halide with multiple coordination units. Dalton Trans. 2021, 50, 3586–3592.

[21]

Peng, H.; He, X. F.; Wei, Q. L.; Tian, Y.; Lin, W. C.; Yao, S. F.; Zou, B. S. Realizing high-efficiency yellow emission of organic antimony halides via rational structural design. ACS. Appl. Mater. Interfaces 2022, 14, 45611–45620.

[22]

Anyfantis, G. C.; Ganotopoulos, N. M.; Savvidou, A.; Raptopoulou, C. P.; Psycharis, V.; Mousdis, G. A. Synthesis and characterization of new organic–inorganic hybrid compounds based on Sb, with a perovskite like structure. Polyhedron 2018, 151, 299–305.

[23]

Lin, H. J.; Wei, Q. L.; Ke, B.; Lin, W. C.; Zhao, H. L.; Zou, B. S. Excitation-wavelength-dependent emission behavior in (NH4)2SnCl6 via Sb3+ dopant. J. Phys. Chem. Lett. 2023, 14, 1460–1469.

[24]

Peng, H.; Tian, Y.; Wang, X. X.; Huang, T.; Xiao, Y. H.; Dong, T. T.; Hu, J. M.; Wang, J. P.; Zou, B. S. Bulk assembly of a 0D organic antimony chloride hybrid with highly efficient orange dual emission by self-trapped states. J. Mater. Chem. C 2021, 9, 12184–12190.

[25]

Meng, X. F.; Wei, Q. L.; Lin, W. C.; Huang, T.; Ge, S. G.; Yu, Z. M.; Zou, B. S. Efficient yellow self-trapped exciton emission in Sb3+-doped RbCdCl3 metal halides. Inorg. Chem. 2022, 61, 7143–7152.

[26]

Tan, Z. F.; Chu, Y. M.; Chen, J. X.; Li, J. H.; Ji, G. Q.; Niu, G. D.; Gao, L.; Xiao, Z. W.; Tang, J. Lead-free perovskite variant solid solutions Cs2Sn1−xTexCl6: Bright luminescence and high anti-water stability. Adv. Mater. 2020, 32, 2002443.

[27]

Jin, J. C.; Peng, Y. H.; Xu, Y. T.; Han, K.; Zhang, A. R.; Yang, X. B.; Xia, Z. G. Bright green emission from self-trapped excitons triggered by Sb3+ doping in Rb4CdCl6. Chem. Mater. 2022, 34, 5717–5725.

[28]

Peng, C. Y.; Wei, Q. L.; Yao, S. F.; Meng, X. F.; Yu, Z. M.; Peng, H.; Zhong, X. C.; Zou, B. S. H2O-NH4+-induced emission modulation in Sb3+-doped (NH4)2InCl5·H2O. Inorg. Chem. 2022, 61, 12406–12414.

[29]

Wei, Q. L.; Chang, T.; Zeng, R. S.; Cao, S.; Zhao, J. L.; Han, X. X.; Wang, L. S.; Zou, B. S. Self-trapped exciton emission in a zero-dimensional (TMA)2SbCl5·DMF single crystal and molecular dynamics simulation of structural stability. J. Phys. Chem. Lett. 2021, 12, 7091–7099.

[30]

Li, D. Y.; Song, J. H.; Xu, Z. Y.; Gao, Y. J.; Yin, X.; Hou, Y. H.; Feng, L. J.; Yue, C. Y.; Fei, H. H.; Lei, X. W. Reversible triple-mode switching in photoluminescence from 0D hybrid antimony halides. Chem. Mater. 2022, 34, 6985–6995.

[31]

Ma, Y. Y.; Pan, H. M.; Li, D. Y.; Liu, Y. H.; Lu, T.; Lei, X. W.; Jing, Z. H. Structural evolution and photoluminescence properties of hybrid antimony halides. J. Solid State Chem. 2022, 314, 123404.

[32]

Wang, Z. P.; Wang, J. Y.; Li, J. R.; Feng, M. L.; Zou, G. D.; Huang, X. Y. [Bmim]2SbCl5: A main group metal-containing ionic liquid exhibiting tunable photoluminescence and white-light emission. Chem. Commun. 2015, 51, 3094–3097.

[33]

Fontana, M.; Maisano, G.; Migliardo, P.; Vasi, C.; Wanderlingh, F. Raman scattering and melting point in SbCl3. Opt. Acta Int. J. Opt. 1980, 27, 1087–1093.

[34]

Yang, X. L.; Feng, T. L.; Kang, J. S.; Hu, Y. J.; Li, J.; Ruan, X. L. Observation of strong higher-order lattice anharmonicity in Raman and infrared spectra. Phys. Rev. B 2020, 101, 161202.

[35]

Lan, T.; Tang, X. L.; Fultz, B. Phonon anharmonicity of rutile TiO2 studied by Raman spectrometry and molecular dynamics simulations. Phys. Rev. B 2012, 85, 094305.

[36]

Yang, C. Z.; Ke, B.; Wei, Q. L.; Ge, S.; He, B.; Zhong, X. C.; Zou, B. S. Luminescence and mechanism of Mn2+ substitution in Cs7Cd3Br13 with two types of coordination number. Inorg. Chem. 2023, 62, 3075–3083.

[37]

Peng, H.; Huang, T.; Zou, B. S.; Tian, Y.; Wang, X. X.; Guo, Y. C.; Dong, T. T.; Yu, Z. M.; Ding, C. J.; Yang, F. et al. Organic–inorganic hybrid manganese bromine single crystal with dual-band photoluminescence from polaronic and bipolaronic excitons. Nano Energy 2021, 87, 106166.

[38]

Emin, D. Optical properties of large and small polarons and bipolarons. Phys. Rev. B 1993, 48, 13691–13702.

[39]

Ge, S. G.; Wei, Q. L.; Jia, W. Y.; Liang, Y.; Peng, C. Y.; Tian, Y.; Zou, B. S. Strong yellow emission of polaronic magnetic exciton in Fe3+-doped CsCdCl3 perovskites. Appl. Phys. Lett. 2021, 118, 152102.

[40]

Stadler, W.; Hofmann, D. M.; Alt, H. C.; Muschik, T.; Meyer, B. K.; Weigel, E.; Müller-Vogt, G.; Salk, M.; Rupp, E.; Benz, K. W. Optical investigations of defects in Cd1−xZnxTe. Phys. Rev. B 1995, 51, 10619–10630.

[41]

Huang, T.; Wei, Q. L.; Li, T. Z.; Peng, H.; Zou, B. S. Efficient yellow emission and near-unified photoluminescence quantum yield of Sb3+ in a one-dimensional confinement cadmium chloride lattice. ACS Appl. Electron. Mater. 2023, 5, 2365–2374.

[42]

Huang, T.; Peng, H.; Wei, Q. L.; Peng, C. Y.; Tian, Y.; Yao, S. F.; Han, X. X.; Zou, B. S. Magnetic polaronic and bipolaronic excitons in Mn(II) doped (TDMP)PbBr4 and their high emission. Nano Energy 2022, 93, 106863.

[43]

Zeng, R. S.; Bai, K.; Wei, Q. L.; Chang, T.; Yan, J.; Ke, B.; Huang, J. L.; Wang, L. S.; Zhou, W. C.; Cao, S. et al. Boosting triplet self-trapped exciton emission in Te(IV)-doped Cs2SnCl6 perovskite variants. Nano Res. 2021, 14, 1551–1558.

[44]

Zhang, F.; Chen, X.; Qi, X. F.; Liang, W. Q.; Wang, M.; Ma, Z. Z.; Ji, X. Z.; Yang, D. W.; Jia, M. C.; Wu, D. et al. Regulating the singlet and triplet emission of Sb3+ ions to achieve single-component white-light emitter with record high color-rendering index and stability. Nano Lett. 2022, 22, 5046–5054.

[45]

Perdew, J. P.; Levy, M. Physical content of the exact Kohn-sham orbital energies: Band gaps and derivative discontinuities. Phys. Rev. Lett. 1983, 51, 1884–1887.

[46]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[47]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

File
12274_2023_6029_MOESM1_ESM.pdf (1.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 June 2023
Revised: 14 July 2023
Accepted: 19 July 2023
Published: 29 August 2023
Issue date: November 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the Guangxi NSF (No. 2020GXNSFDA238004), the Bagui Scholar project of Guangxi province, and the Scientific and Technological Bases and Talents of Guangxi (No. Guike AD21238027).

Return