Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Organo-chromium(III) complex is one of the chromium contaminant species, which would transform to high-toxic Cr(VI) during migrating in the environment. Such natural organo-chromium(III) (NOCr) is difficult to remove by traditional degradation or precipitation methods, due to its high stability and solubility. Herein, we demonstrated a novel NOCr removing method by transforming it to certain structures similar to Cr-Fe minerals in nature, through a self-circulating decomplex and immobilization mechanism with nano zero-valent iron (nZVI). Taking chromium glycinate (Cr-Gly) as a probe, nZVI showed a high Cr removal efficiency of 99.4% under ambient conditions. The removal process included three stages of adsorption, decomplexation, and re-immobilization. Cr-Gly was first adsorbed on the surface of nZVI by chemisorption of the oxide shell. Then, the adsorbed Cr-Gly was decomplexed and oxidized to Cr(VI) by ·OH and 1O2, which were generated from molecular oxygen activated by nZVI. Meanwhile, the released Cr(VI) could be in-situ adsorbed and re-reduced to Cr(III), which was further immobilized in form of Cr-O-Fe complex. As the Cr-O-Fe complexing structure was similar to that of Cr-Fe minerals (such as chromohercynite) in nature, this work explored a novel and efficient NOCr removing method that was potential to weaken chromium pollution in the environment.
Tang, Y. L.; Zhao, J. T.; Zhou, J. F.; Zeng, Y. H.; Zhang, W. H.; Shi, B. Highly efficient removal of Cr(III)-poly(acrylic acid) complex by coprecipitation with polyvalent metal ions: Performance, mechanism, and validation. Water Res. 2020, 178, 115807.
Xu, T.; Jiang, X. F.; Tang, Y. L.; Zeng, Y. H.; Zhang, W. H.; Shi, B. Effects of tannic acid on the transport behavior of trivalent chromium in soils and its mechanism. Environ. Pollut. 2022, 305, 119328.
Deng, H. Y.; Tu, Y. L.; Wang, H.; Wang, Z. Y.; Li, Y. Y.; Chai, L. Y.; Zhang, W. C.; Lin, Z. Environmental behavior, human health effect, and pollution control of heavy metal(loid)s toward full life cycle processes. Eco-Environ. Health 2022, 1, 229–243.
Hao, Y. Y.; Ma, H. R.; Wang, Q.; Zhu, C.; He, A. Q. Complexation behaviour and removal of organic-Cr(III) complexes from the environment: A review. Ecotoxicol. Environ. Saf. 2022, 240, 113676.
Ling, L.; Huang, X. Y.; Li, M. R.; Zhang, W. X. Mapping the reactions in a single zero-valent iron nanoparticle. Environ. Sci. Technol. 2017, 51, 14293–14300.
Ye, Y. X.; Shan, C.; Zhang, X. L.; Liu, H.; Wang, D. D.; Lv, L.; Pan, B. C. Water decontamination from Cr(III)-organic complexes based on pyrite/H2O2: Performance, mechanism, and validation. Environ. Sci. Technol. 2018, 52, 10657–10664.
Liu, W.; Yu, Y. X. Removal of recalcitrant trivalent chromium complexes from industrial wastewater under strict discharge standards. Environ. Technol. Innovation 2021, 23, 101644.
Kim, H. S.; Ahn, J. Y.; Hwang, K. Y.; Kim, I. K.; Hwang, I. Atmospherically stable nanoscale zero-valent iron particles formed under controlled air contact: Characteristics and reactivity. Environ. Sci. Technol. 2010, 44, 1760–1766.
Liu, J.; Li, R. F.; Yao, Y. H.; Liu, A. R. Fate and mechanistic insights into the transformation of aged nanoscale zerovalent iron (nZVIA) reacted with Cr(VI): Impact of aging time in oxic water. ACS Earth Space Chem. 2019, 3, 1288–1295.
Wang, Q. L.; Snyder, S.; Kim, J.; Choi, H. Aqueous ethanol modified nanoscale zerovalent iron in bromate reduction: Synthesis, characterization, and reactivity. Environ. Sci. Technol. 2009, 43, 3292–3299.
Cabot, A.; Puntes, V. F.; Shevchenko, E.; Yin, Y. D.; Balcells, L.; Marcus, M. A.; Hughes, S. M.; Alivisatos, A. P. Vacancy coalescence during oxidation of iron nanoparticles. J. Am. Chem. Soc. 2007, 129, 10358–10360.
Liu, A. R.; Liu, J.; Han, J. H.; Zhang, W. X. Evolution of nanoscale zero-valent iron (nZVI) in water: Microscopic and spectroscopic evidence on the formation of nano- and micro-structured iron oxides. J. Hazard. Mater. 2017, 322, 129–135.
Wu, X. Y.; Lv, C. X.; Yu, S. F.; Li, M.; Ye, J.; Zhang, X. W.; Liu, Y. Uranium(VI) removal from aqueous solution using iron-carbon micro-electrolysis packing. Sep. Purif. Technol. 2020, 234, 116104.
Li, Z. H.; Liu, J. J.; Shi, R.; Waterhouse, G. I. N.; Wen, X. D.; Zhang, T. R. Fe-based catalysts for the direct photohydrogenation of CO2 to value-added hydrocarbons. Adv. Energy Mater. 2021, 11, 2002783.
Qin, H. J.; Li, J. X.; Yang, H. Y.; Pan, B. C.; Zhang, W. M.; Guan, X. H. Coupled effect of ferrous ion and oxygen on the electron selectivity of zerovalent iron for selenate sequestration. Environ. Sci. Technol. 2017, 51, 5090–5097.
Huang, X. Y.; Ling, L.; Zhang, W. X. Nanoencapsulation of hexavalent chromium with nanoscale zero-valent iron: High resolution chemical mapping of the passivation layer. J. Environ. Sci. 2018, 67, 4–13.
Sowers, T. D.; Holden, K. L.; Coward, E. K.; Sparks, D. L. Dissolved organic matter sorption and molecular fractionation by naturally occurring bacteriogenic iron (oxyhydr)oxides. Environ. Sci. Technol. 2019, 53, 4295–4304.
Nisticò, R.; Carlos, L. High yield of nano zero-valent iron (nZVI) from carbothermal synthesis using lignin-derived substances from municipal biowaste. J. Anal. Appl. Pyrolysis 2019, 140, 239–244.
Biesinger, M. C.; Payne, B. P.; Grosvenor, A. P.; Lau, L. W. M.; Gerson, A. R.; Smart, R. S. C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni. Appl. Surf. Sci. 2011, 257, 2717–2730.
Wei, K.; Liu, X. F.; Cao, S. Y.; Cui, H. J.; Zhang, Y.; Ai, Z. H. Fe2O3@FeB composites facilitate heterogeneous Fenton process by efficient Fe(III)/Fe(II) cycle and in-situ H2O2 generation. Chem. Eng. J. Adv. 2021, 8, 100165.
Liao, M. Z.; Wang, X. B.; Cao, S. Y.; Li, M. Q.; Peng, X.; Zhang, L. Z. Oxalate modification dramatically promoted Cr(VI) removal with zero-valent iron. ACS EST Water 2021, 1, 2109–2118.
Liao, M. Z.; Zhao, S. X.; Wei, K.; Sun, H. W.; Zhang, L. Z. Precise decomplexation of Cr(III)-EDTA and in-situ Cr(III) removal with oxalated zero-valent iron. Appl. Catal. B: Environ. 2023, 330, 122619.
Xu, H. B.; Fang, C.; Shao, C. S.; Li, L. M.; Huang, Q. Study of the synergistic effect of singlet oxygen with other plasma-generated ROS in fungi inactivation during water disinfection. Sci. Total Environ. 2022, 838, 156576.
Dong, H. Y.; Wei, G. F.; Cao, T. C.; Shao, B. B.; Guan, X. H.; Strathmann, T. J. Insights into the oxidation of organic cocontaminants during Cr(VI) reduction by sulfite: The overlooked significance of Cr(V). Environ. Sci. Technol. 2020, 54, 1157–1166.
Lai, C.; Shi, X. X.; Li, L.; Cheng, M.; Liu, X. G.; Liu, S. Y.; Li, B. S.; Yi, H.; Qin, L.; Zhang, M. M. et al. Enhancing iron redox cycling for promoting heterogeneous Fenton performance: A review. Sci. Total Environ. 2021, 775, 145850.
Liao, W. J.; Ye, Z. L.; Yuan, S. H.; Cai, Q. Z.; Tong, M.; Qian, A.; Cheng, D. Effect of coexisting Fe(III) (oxyhydr)oxides on Cr(VI) reduction by Fe(II)-bearing clay minerals. Environ. Sci. Technol. 2019, 53, 13767–13775.
Nishida, N.; Amagasa, S.; Kobayashi, Y.; Yamada, Y. Synthesis of superparamagnetic δ-FeOOH nanoparticles by a chemical method. Appl. Surf. Sci. 2016, 387, 996–1001.
Liu, A. R.; Liu, J.; Zhang, W. X. Transformation and composition evolution of nanoscale zero valent iron (nZVI) synthesized by borohydride reduction in static water. Chemosphere 2015, 119, 1068–1074.
Zhao, J. W.; Zhong, P.; Luo, W. H.; Zhang, S. W.; Xu, S.; Yu, Q. Q.; Qiu, X. H. Insight into in-situ chemical oxidation by Fe(II)-containing minerals: The role of inherent Fe(II)-OH in Fe(II)-Al LDHs. Chem. Eng. J. 2022, 433, 133835.
Cheng, Y. J.; Yan, F. B.; Huang, F.; Chu, W. S.; Pan, D. M.; Chen, Z.; Zheng, J. S.; Yu, M. J.; Lin, Z.; Wu, Z. Y. Bioremediation of Cr(VI) and Immobilization as Cr(III) by Ochrobactrum anthropi. Environ. Sci. Technol. 2010, 44, 6357–6363.