Journal Home > Volume 17 , Issue 3

The performance degradation and even damage of the e-textiles caused by sweat, water, or submersion during all-weather health monitoring are the main reasons that e-textiles have not been commercialized and routinized so far. Herein, we developed an amphibious, high-performance, air-permeable, and comfortable all-textile triboelectric sensor for continuous and precise measurement of epidermal pulse waves during full-day activities. Based on the principle of preparing gas by acid-base neutralization reaction, a one-piece preparation process of amphibious conductive yarn (ACY) with densely porous structures is proposed. An innovative three-dimensional (3D) interlocking fabric knitted from ACYs (0.6 mm in diameter) and polytetrafluoroethylene yarns exhibit high sensitivity (0.433 V·kPa−1), wide bandwidth (up to 10 Hz), and stability (> 30,000 cycles). With these benefits, 98.8% agreement was achieved between wrist pulse waves acquired by the sensor and a high-precision laser vibrometer. Furthermore, the polytetrafluoroethylene yarn with good compression resilience provides sufficient mechanical support for the contact separation of the ACYs. Meanwhile, the unique skeletonized design of the 3D interlocking structure can effectively relieve the water pressure on the sensor surface to obtain stable and accurate pulse waves (underwater depth of 5 cm). This achievement represents an important step in improving the practicality of e-textiles and early diagnosis of cardiovascular diseases.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

3D interlocked all-textile structured triboelectric pressure sensor for accurately measuring epidermal pulse waves in amphibious environments

Show Author's information Shaobo Si1,§Chenchen Sun1,§Yufen Wu2Jingjing Li1Han Wang1Yinggang Lin1Jin Yang1( )Zhong Lin Wang3,4( )
Department of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems Ministry of Education, Chongqing University, Chongqing 400044, China
College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing 401331, China
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 100083, China
School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA

§ Shaobo Si and Chenchen Sun contributed equally to this work.

Abstract

The performance degradation and even damage of the e-textiles caused by sweat, water, or submersion during all-weather health monitoring are the main reasons that e-textiles have not been commercialized and routinized so far. Herein, we developed an amphibious, high-performance, air-permeable, and comfortable all-textile triboelectric sensor for continuous and precise measurement of epidermal pulse waves during full-day activities. Based on the principle of preparing gas by acid-base neutralization reaction, a one-piece preparation process of amphibious conductive yarn (ACY) with densely porous structures is proposed. An innovative three-dimensional (3D) interlocking fabric knitted from ACYs (0.6 mm in diameter) and polytetrafluoroethylene yarns exhibit high sensitivity (0.433 V·kPa−1), wide bandwidth (up to 10 Hz), and stability (> 30,000 cycles). With these benefits, 98.8% agreement was achieved between wrist pulse waves acquired by the sensor and a high-precision laser vibrometer. Furthermore, the polytetrafluoroethylene yarn with good compression resilience provides sufficient mechanical support for the contact separation of the ACYs. Meanwhile, the unique skeletonized design of the 3D interlocking structure can effectively relieve the water pressure on the sensor surface to obtain stable and accurate pulse waves (underwater depth of 5 cm). This achievement represents an important step in improving the practicality of e-textiles and early diagnosis of cardiovascular diseases.

Keywords: triboelectric pressure sensor, amphibious fabric, interlocking fabric, pulse wave measurement, one-piece preparation method

References(43)

[1]

Yusuf, S.; Wood, D.; Ralston, J.; Reddy, K. S. The world heart federation’s vision for worldwide cardiovascular disease prevention. Lancet 2015, 386, 399–402.

[2]

Nichols, W. W. Clinical measurement of arterial stiffness obtained from noninvasive pressure waveforms. Am. J. Hypertens. 2005, 18, 3–10.

[3]

Vasan, R. S.; Larson, M. G.; Leip, E. P.; Evans, J. C.; O’Donnell, C. J.; Kannel, W. B.; Levy, D. Impact of high-normal blood pressure on the risk of cardiovascular disease. N. Engl. J. Med. 2001, 345, 1291–1297.

[4]

Georgiopoulos, G.; Papaioannou, T. G.; Magkas, N.; Laina, A.; Mareti, A.; Georgiou, S.; Mavroeidis, I.; Samouilidou, E.; Delialis, D.; Tousoulis, D. et al. Age-dependent associations of carotid-to-femoral pulse wave velocity with coronary artery disease, cardiovascular risk and myocardial aging in high-risk patients. J. Cardiovasc. Med. 2019, 20, 201–209.

[5]

Kallistratos, M. S.; Papanastasiou, A.; Bacalacou, K.; Zacharopoulou, I.; Kouremenos, N.; Kyfnidis, K.; Chamodraka, E.; Poulimenos, L. E.; Chiotelis, I.; Manolis, A. J. Screening for cardiovascular risk using pulse wave velocity. Eur. Heart J. 2013, 34, 3242.

[6]

Cameron, J.; Dart, A. Pulse wave velocity as a marker of vascular disease. Lancet 1996, 348, 1586–1587.

[7]

Ohkuma, T.; Ninomiya, T.; Tomiyama, H.; Kario, K.; Hoshide, S.; Kita, Y.; Inoguchi, T.; Maeda, Y.; Kohara, K.; Tabara, Y. et al. Brachial-ankle pulse wave velocity and the risk prediction of cardiovascular disease: An individual participant data meta-analysis. Hypertension 2017, 69, 1045–1052.

[8]

Avolio, A. P.; Butlin, M.; Walsh, A. Arterial blood pressure measurement and pulse wave analysis—Their role in enhancing cardiovascular assessment. Physiol. Meas. 2010, 31, R1–R47.

[9]

Meng, K. Y.; Chen, J.; Li, X. S.; Wu, Y. F.; Fan, W. J.; Zhou, Z. H.; He, Q.; Wang, X.; Fan, X.; Zhang, Y. X. et al. Flexible weaving constructed self-powered pressure sensor enabling continuous diagnosis of cardiovascular disease and measurement of cuffless blood pressure. Adv. Funct. Mater. 2019, 29, 1806388.

[10]

Yang, J.; Chen, J.; Su, Y. J.; Jing, Q. S.; Li, Z. L.; Yi, F.; Wen, X. N.; Wang, Z. N.; Wang, Z. L. Eardrum-inspired active sensors for self-powered cardiovascular system characterization and throat-attached anti-interference voice recognition. Adv. Mater. 2015, 27, 1316–1326.

[11]

Kim, D. H.; Ghaffari, R.; Lu, N. S.; Wang, S. D.; Lee, S. P.; Keum, H.; D'Angelo, R.; Klinker, L.; Su, Y. W.; Lu, C. F. et al. Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy. Proc. Natl. Acad. Sci. USA. 2012, 109, 19910–19915.

[12]

Chen, G. R.; Li, Y. Z.; Bick, M.; Chen, J. Smart textiles for electricity generation. Chem. Rev. 2020, 120, 3668–3720.

[13]

Fang, Y. S.; Zou, Y. J.; Xu, J.; Chen, G. R.; Zhou, Y. H.; Deng, W. L.; Zhao, X.; Roustaei, M.; Hsiai, T. K.; Chen, J. Ambulatory cardiovascular monitoring via a machine-learning-assisted textile triboelectric sensor. Adv. Mater. 2021, 33, 2104178.

[14]

Meng, K. Y.; Zhao, S. L.; Zhou, Y. H.; Wu, Y. F.; Zhang, S. L.; He, Q.; Wang, X.; Zhou, Z. H.; Fan, W. J.; Tan, X. L. et al. A wireless textile-based sensor system for self-powered personalized health care. Matter 2020, 2, 896–907.

[15]

Fan, W. J.; He, Q.; Meng, K. Y.; Tan, X. L.; Zhou, Z. H.; Zhang, G. Q.; Yang, J.; Wang, Z. L. Machine-knitted washable sensor array textile for precise epidermal physiological signal monitoring. Sci. Adv. 2020, 6, eaay2840.

[16]

Chen, G. R.; Au, C.; Chen, J. Textile triboelectric nanogenerators for wearable pulse wave monitoring. Trends Biotechnol. 2021, 39, 1078–1092.

[17]

Wen, D. L.; Pang, Y. X.; Huang, P.; Wang, Y. L.; Zhang, X. R.; Deng, H. T.; Zhang, X. S. Silk fibroin-based wearable all-fiber multifunctional sensor for smart clothing. Adv. Fiber. Mater. 2022, 4, 873–884.

[18]

Wen, D. L.; Huang, P.; Li, B. Y.; Qiu, Y.; Wang, Y. L.; Zhang, X. R.; Deng, H. T.; Zhang, X. S. Silk fibroin/Ag nanowire-based multifunctional sensor for wearable self-powered wireless multi-sensing microsystems. Nano Energy 2023, 113, 108569.

[19]

Lin, Q. P.; Huang, J.; Yang, J. L.; Huang, Y.; Zhang, Y. F.; Wang, Y. J.; Zhang, J. M.; Wang, Y.; Yuan, L. L.; Cai, M. K. et al. Highly sensitive flexible iontronic pressure sensor for fingertip pulse monitoring. Adv. Health. Mater. 2020, 9, 2001023.

[20]

Park, H.; Kim, J. W.; Hong, S. Y.; Lee, G.; Lee, H.; Song, C.; Keum, K.; Jeong, Y. R.; Jin, S. W.; Kim, D. S. et al. Dynamically stretchable supercapacitor for powering an integrated biosensor in an all-in-one textile system. ACS Nano 2019, 13, 10469–10480.

[21]

Atalay, A.; Sanchez, V.; Atalay, O.; Vogt, D. M.; Haufe, F.; Wood, R. J.; Walsh, C. J. Batch fabrication of customizable silicone-textile composite capacitive strain sensors for human motion tracking. Adv. Mater. Technol. 2017, 2, 1700136.

[22]

Yang, Y.; Huang, Q. Y.; Niu, L. Y.; Wang, D. R.; Yan, C.; She, Y. Y.; Zheng, Z. J. Waterproof, ultrahigh areal-capacitance, wearable supercapacitor fabrics. Adv. Mater. 2017, 29, 1606679.

[23]

Liu, M. M.; Pu, X.; Jiang, C. Y.; Liu, T.; Huang, X.; Chen, L. B.; Du, C. H.; Sun, J. M.; Hu, W. G.; Wang, Z. L. Large-area all-textile pressure sensors for monitoring human motion and physiological signals. Adv. Mater. 2017, 29, 1703700.

[24]

Luo, N. Q.; Zhang, J.; Ding, X. R.; Zhou, Z. Q.; Zhang, Q.; Zhang, Y. T.; Chen, S. C.; Hu, J. L.; Zhao, N. Textile-enabled highly reproducible flexible pressure sensors for cardiovascular monitoring. Adv. Mater. Technol. 2018, 3, 1700222.

[25]

Huang, T.; He, P.; Wang, R. R.; Yang, S. W.; Sun, J.; Xie, X. M.; Ding, G. Q. Porous fibers composed of polymer nanoball decorated graphene for wearable and highly sensitive strain sensors. Adv. Funct. Mater. 2019, 29, 1903732.

[26]

Hu, X. R.; Huang, T.; Liu, Z. D.; Wang, G.; Chen, D.; Guo, Q. L.; Yang, S. W.; Jin, Z. W.; Lee, J. M.; Ding, G. Q. Conductive graphene-based E-textile for highly sensitive, breathable, and water-resistant multimodal gesture-distinguishable sensors. J. Mater. Chem. A 2020, 8, 14778–14787.

[27]

Su, Y. J.; Chen, C. X.; Pan, H.; Yang, Y.; Chen, G. R.; Zhao, X.; Li, W. X.; Gong, Q. C.; Xie, G. Z.; Zhou, Y. H. et al. Muscle fibers inspired high-performance piezoelectric textiles for wearable physiological monitoring. Adv. Funct. Mater. 2021, 31, 2010962.

[28]

Ahn, S.; Cho, Y.; Park, S.; Kim, J.; Sun, J. Z.; Ahn, D.; Lee, M.; Kim, D.; Kim, T.; Shin, H. et al. Wearable multimode sensors with amplified piezoelectricity due to the multi local strain using 3D textile structure for detecting human body signals. Nano Energy. 2020, 74, 104932.

[29]

Mokhtari, F.; Spinks, G. M.; Fay, C.; Cheng, Z. X.; Raad, R.; Xi, J. T.; Foroughi, J. Wearable electronic textiles from nanostructured piezoelectric fibers. Adv. Mater. Technol. 2020, 5, 1900900.

[30]

Mokhtari, F.; Cheng, Z. X.; Raad, R.; Xi, J. T.; Foroughi, J. Piezofibers to smart textiles: A review on recent advances and future outlook for wearable technology. J. Mater. Chem. A 2020, 8, 9496–9522.

[31]

Dai, Z.; Wang, N.; Yu, Y.; Lu, Y.; Jiang, L. L.; Zhang, D. A.; Wang, X. X.; Yan, X.; Long, Y. Z. One-step preparation of a core-spun Cu/P(VDF-TrFE) nanofibrous yarn for wearable smart textile to monitor human movement. ACS Appl. Mater. Interfaces 2021, 13, 44234–44242.

[32]

Tan, Y. S.; Yang, K.; Wang, B.; Li, H.; Wang, L.; Wang, C. X. High-performance textile piezoelectric pressure sensor with novel structural hierarchy based on ZnO nanorods array for wearable application. Nano Res. 2021, 14, 3969–3976.

[33]

Tehrani-Bagha, A. R. Waterproof breathable layers—A review. Adv. Colloid Interface Sci. 2019, 268, 114–135.

[34]

de Medeiros, M. S.; Chanci, D.; Moreno, C.; Goswami, D.; Martinez, R. V. Waterproof, breathable, and antibacterial self-powered e-textiles based on omniphobic triboelectric nanogenerators. Adv. Funct. Mater. 2019, 29, 1904350.

[35]

Zhang, C.; Bu, T. Z.; Zhao, J. Q.; Liu, G. X.; Yang, H.; Wang, Z. L. Tribotronics for active mechanosensation and self-powered microsystems. Adv. Funct. Mater. 2019, 29, 1808114.

[36]

Lou, M. N.; Abdalla, I.; Zhu, M. M.; Wei, X. D.; Yu, J. Y.; Li, Z. L.; Ding, B. Highly wearable, breathable, and washable sensing textile for human motion and pulse monitoring. ACS Appl. Mater. Interfaces 2020, 12, 19965–19973.

[37]

Wang, H.; Cheng, J.; Wang, Z. Z.; Ji, L. H.; Wang, Z. L. Triboelectric nanogenerators for human-health care. Sci. Bull. 2021, 66, 490–511.

[38]

Nguyen, V.; Kelly, S.; Yang, R. S. Piezoelectric peptide-based nanogenerator enhanced by single-electrode triboelectric nanogenerator. APL Mater. 2017, 5, 074108.

[39]

Zou, H. Y.; Zhang, Y.; Guo, L. T.; Wang, P. H.; He, X.; Dai, G. Z.; Zheng, H. W.; Chen, C. Y.; Wang, A. C.; Xu, C. et al. Quantifying the triboelectric series. Nat. Commun. 2019, 10, 1427.

[40]

Dassanayaka, D. G.; Alves, T. M.; Wanasekara, N. D.; Dharmasena, I. G.; Ventura, J. Recent progresses in wearable triboelectric nanogenerators. Adv. Funct. Mater. 2022, 32, 2205438.

[41]

Zhao, Z. Z.; Yan, C.; Liu, Z. X.; Fu, X. L.; Peng, L. M.; Hu, Y. F.; Zheng, Z. J. Machine-washable textile triboelectric nanogenerators for effective human respiratory monitoring through loom weaving of metallic yarns. Adv. Mater. 2016, 28, 10267–10274.

[42]

Si, S. B.; Sun, C. C.; Qiu, J.; Liu, J.; Yang, J. Knitting integral conformal all-textile strain sensor with commercial apparel characteristics for smart textiles. Appl. Mater. Today 2022, 27, 101508.

[43]

Cao, R.; Pu, X. J.; Du, X. Y.; Yang, W.; Wang, J. N.; Guo, H. Y.; Zhao, S. Y.; Yuan, Z. Q.; Zhang, C.; Li, C. J et al. Screen-printed washable electronic textiles as self-powered touch/gesture tribo-sensors for intelligent human–machine interaction. ACS Nano 2018, 12, 5190–5196.

Video
12274_2023_6025_MOESM10_ESM.mp4
12274_2023_6025_MOESM11_ESM.mp4
12274_2023_6025_MOESM3_ESM.mp4
12274_2023_6025_MOESM4_ESM.mp4
12274_2023_6025_MOESM5_ESM.mp4
12274_2023_6025_MOESM6_ESM.mp4
12274_2023_6025_MOESM7_ESM.mp4
12274_2023_6025_MOESM8_ESM.mp4
12274_2023_6025_MOESM9_ESM.mp4
File
12274_2023_6025_MOESM1_ESM.pdf (894.5 KB)
12274_2023_6025_MOESM2_ESM.pdf (6.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 May 2023
Revised: 06 July 2023
Accepted: 19 July 2023
Published: 10 August 2023
Issue date: March 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2021YFA1201600), the Natural Science Foundation Projects of Chongqing (No. cstc2022ycjh-bgzxm0206), and the Natural Science Foundation of Innovative Research Groups (No. cstc2020jcyj-cxttX0005).

Return