Journal Home > Volume 17 , Issue 3

Hematite (α-Fe2O3) is known to undergo conversion from weak ferromagnetic to antiferromagnetic as the temperature decreases below the Morin temperature (TM = 250 K) due to spin moment rotation occurring during the Morin transition (MT). Herein, we endowed hematite with mesostructured chirality to maintain weak ferromagnetism without MT. Chiral mesostructured hematite (CMH) nanoparticles were prepared by a hydrothermal method with glutamic acid (Glu) as the symmetry-breaking agent. The triangular bipyramidal CMH nanoparticles were composed of helically cleaved nanoflakes with twisted crystal lattice. Field-cooled (FC) magnetization measurements showed that the magnetic moments of CMH were stabilized without MT within the temperature range of 10–300 K. Hysteresis loop measurements confirmed the weak ferromagnetism of CMH. The enhanced Dzyaloshinskii–Moriya interaction (DMI) was speculated to be responsible for the temperature-independent weak ferromagnetism, in which the spin configuration would be confined with canted antiferromagnetic coupling due to the mesostructured chirality of CMH.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Chiral mesostructured hematite with temperature-independent magnetism due to spin confinement

Show Author's information Baiwen Zhang1Jing Ai2Yingying Duan2Te Bai3( )Lu Han2( )Shunai Che4( )
School of Physics Science and Engineering, Tongji University, Shanghai 200092, China
School of Chemistry and Chemical Engineering, Tongji University, Shanghai 200092, China
Wuxi Vocational College of Science and Technology, Wuxi 214028, China
School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Hematite (α-Fe2O3) is known to undergo conversion from weak ferromagnetic to antiferromagnetic as the temperature decreases below the Morin temperature (TM = 250 K) due to spin moment rotation occurring during the Morin transition (MT). Herein, we endowed hematite with mesostructured chirality to maintain weak ferromagnetism without MT. Chiral mesostructured hematite (CMH) nanoparticles were prepared by a hydrothermal method with glutamic acid (Glu) as the symmetry-breaking agent. The triangular bipyramidal CMH nanoparticles were composed of helically cleaved nanoflakes with twisted crystal lattice. Field-cooled (FC) magnetization measurements showed that the magnetic moments of CMH were stabilized without MT within the temperature range of 10–300 K. Hysteresis loop measurements confirmed the weak ferromagnetism of CMH. The enhanced Dzyaloshinskii–Moriya interaction (DMI) was speculated to be responsible for the temperature-independent weak ferromagnetism, in which the spin configuration would be confined with canted antiferromagnetic coupling due to the mesostructured chirality of CMH.

Keywords: hematite, chiral mesostructure, weak ferromagnetism, antiferromagnetic material, temperature-independent magnetism, Dzyaloshinskii–Moriya interaction

References(37)

[1]

Žutić, I.; Fabian, J.; Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 2004, 76, 323–410.

[2]

Jungwirth, T.; Sinova, J.; Manchon, A.; Marti, X.; Wunderlich, J.; Felser, C. The multiple directions of antiferromagnetic spintronics. Nat. Phys. 2018, 14, 200–203.

[3]

Jani, H.; Linghu, J. J.; Hooda, S.; Chopdekar, R. V.; Li, C. J.; Omar, G. J.; Prakash, S.; Du, Y. H.; Yang, P.; Banas, A. et al. Reversible hydrogen control of antiferromagnetic anisotropy in α-Fe2O3. Nat. Commun. 2021, 12, 1668.

[4]

Liu, Z. Q.; Chen, H.; Wang, J. M.; Liu, J. H.; Wang, K.; Feng, Z. X.; Yan, H.; Wang, X. R.; Jiang, C. B.; Coey, J. M. D. et al. Electrical switching of the topological anomalous Hall effect in a non-collinear antiferromagnet above room temperature. Nat. Electron. 2018, 1, 172–177.

[5]

Lebrun, R.; Ross, A.; Bender, S. A.; Qaiumzadeh, A.; Baldrati, L.; Cramer, J.; Brataas, A.; Duine, R. A.; Kläui, M. Tunable long-distance spin transport in a crystalline antiferromagnetic iron oxide. Nature 2018, 561, 222–225.

[6]

Dieny, B.; Prejbeanu, I. L.; Garello, K.; Gambardella, P.; Freitas, P.; Lehndorff, R.; Raberg, W.; Ebels, U.; Demokritov, S. O.; Akerman, J. et al. Opportunities and challenges for spintronics in the microelectronics industry. Nat. Electron. 2020, 3, 446–459.

[7]

Zheng, L. M.; Wang, X. R.; Lü, W. M.; Li, C. J.; Paudel, T. R.; Liu, Z. Q.; Huang, Z.; Zeng, S. W.; Han, K.; Chen, Z. H. et al. Ambipolar ferromagnetism by electrostatic doping of a manganite. Nat. Commun. 2018, 9, 1897.

[8]

Pham, Y. T. H.; Liu, M. Z.; Jimenez, V. O.; Yu, Z. H.; Kalappattil, V.; Zhang, F.; Wang, K.; Williams, T.; Terrones, M.; Phan, M. H. Tunable ferromagnetism and thermally induced spin flip in vanadium-doped tungsten diselenide monolayers at room temperature. Adv. Mater. 2020, 32, 2003607.

[9]

Felser, C.; Fecher, G. H.; Balke, B. Spintronics: A challenge for materials science and solid-state chemistry. Angew. Chem., Int. Ed. 2007, 46, 668–699.

[10]

Xie, X. J.; Zhao, X. N.; Dong, Y. N.; Qu, X. L.; Zheng, K.; Han, X. D.; Han, X.; Fan, Y. B.; Bai, L. H.; Chen, Y. X. et al. Controllable field-free switching of perpendicular magnetization through bulk spin-orbit torque in symmetry-broken ferromagnetic films. Nat. Commun. 2021, 12, 2473.

[11]

Crommie, M. F. Manipulating magnetism in a single molecule. Science 2005, 309, 1501–1502.

[12]

Hellman, F.; Hoffmann, A.; Tserkovnyak, Y.; Beach, G. S. D.; Fullerton, E. E.; Leighton, C.; MacDonald, A. H.; Ralph, D. C.; Arena, D. A.; Dürr, H. A. et al. Interface-induced phenomena in magnetism. Rev. Mod. Phys. 2017, 89, 025006.

[13]

Nagaosa, N.; Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 2013, 8, 899–911.

[14]

Yang, H. X.; Thiaville, A.; Rohart, S.; Fert, A.; Chshiev, M. Anatomy of Dzyaloshinskii–Moriya interaction at Co/Pt interfaces. Phys. Rev. Lett. 2015, 115, 267210.

[15]

Fert, A.; Reyren, N.; Cros, V. Magnetic skyrmions: Advances in physics and potential applications. Nat. Rev. Mater. 2017, 2, 17031.

[16]

Coey, J. M. D. Magnetism in d0 oxides. Nat. Mater. 2019, 18, 652–656.

[17]

Klingelhofer, G.; Morris, R. V.; Bernhardt, B.; Schroder, C.; Rodionov, D. S.; De Souza, P. A. Jr; Yen, A.; Gellert, R.; Evlanov, E. N.; Zubkov, B. et al. Jarosite and hematite at Meridiani Planum from opportunity’s Mossbauer spectrometer. Science 2004, 306, 1740–1745.

[18]

Lovesey, S. W.; Rodríguez-Fernández, A.; Blanco, J. A. Parity-odd multipoles, magnetic charges, and chirality in hematite α-Fe2O3. Phys. Rev. B 2011, 83, 054427.

[19]

Zboril, R.; Mashlan, M.; Petridis, D. Iron(III) oxides from thermal processes-synthesis, structural and magnetic properties, mössbauer spectroscopy characterization, and applications. Chem. Mater. 2002, 14, 969–982.

[20]

Dzyaloshinsky, I. A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 1958, 4, 241–255.

[21]

Moriya, T. New mechanism of anisotropic superexchange interaction. Phys. Rev. Lett. 1960, 4, 228–230.

[22]

Fert, A.; Cros, V.; Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 2013, 8, 152–156.

[23]

Yang, S. H.; Naaman, R.; Paltiel, Y.; Parkin, S. S. P. Chiral spintronics. Nat. Rev. Phys. 2021, 3, 328–343.

[24]

Wu, C. Z.; Yin, P.; Zhu, X.; Ouyang, C. Z.; Xie, Y. Synthesis of hematite (α-Fe2O3) nanorods: Diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors. J. Phys. Chem. B 2006, 110, 17806–17812.

[25]

Jia, C. J.; Sun, L. D.; Luo, F.; Han, X. D.; Heyderman, L. J.; Yan, Z. G.; Yan, C. H.; Zheng, K.; Zhang, Z.; Takano, M. et al. Large-scale synthesis of single-crystalline iron oxide magnetic nanorings. J. Am. Chem. Soc. 2008, 130, 16968–16977.

[26]

Duan, Y. Y.; Han, L.; Zhang, J. L.; Asahina, S.; Huang, Z. H.; Shi, L.; Wang, B.; Cao, Y. Y.; Yao, Y.; Ma, L. G. et al. Optically active nanostructured ZnO films. Angew. Chem., Int. Ed. 2015, 54, 15170–15175.

[27]

Ma, W.; Xu, L. G.; De Moura, A. F.; Wu, X. L.; Kuang, H.; Xu, C. L.; Kotov, N. A. Chiral inorganic nanostructures. Chem. Rev. 2017, 117, 8041–8093.

[28]

Bai, T.; Ai, J.; Liao, L. Y.; Luo, J. W.; Song, C.; Duan, Y. Y.; Han, L.; Che, S. N. Chiral mesostructured NiO films with spin polarisation. Angew. Chem., Int. Ed. 2021, 60, 9421–9426.

[29]

He, Y. P.; Miao, Y. M.; Li, C. R.; Wang, S. Q.; Cao, L.; Xie, S. S.; Yang, G. Z.; Zou, B. S.; Burda, C. Size and structure effect on optical transitions of iron oxide nanocrystals. Phys. Rev. B 2005, 71, 125411.

[30]

Lu, H. M.; Meng, X. K. Morin temperature and Néel temperature of hematite nanocrystals. J. Phys. Chem. C 2010, 114, 21291–21295.

[31]

Tadic, M.; Kusigerski, V.; Markovic, D.; Milosevic, I.; Spasojevic, V. High concentration of hematite nanoparticles in a silica matrix: Structural and magnetic properties. J. Magn. Magn. Mater. 2009, 321, 12–16.

[32]

Özdemir, Ö.; Dunlop, D. J.; Berquó, T. S. Morin transition in hematite: Size dependence and thermal hysteresis. Geochem. Geophys. Geosyst. 2008, 9, Q10Z01.

[33]

Wang, J.; Aguilar, V.; Li, L.; Li, F. G.; Wang, W. Z.; Zhao, G. M. Strong shape-dependence of Morin transition in α-Fe2O3 single-crystalline nanostructures. Nano Res. 2015, 8, 1906–1916.

[34]

Zysler, R. D.; Fiorani, D.; Testa, A. M.; Suber, L.; Agostinelli, E.; Godinho, M. Size dependence of the spin-flop transition in hematite nanoparticles. Phys. Rev. B 2003, 68, 212408.

[35]

Anderson, P. W. New approach to the theory of superexchange interactions. Phys. Rev. 1959, 115, 2–13.

[36]

Cui, B. S.; Yu, D. X.; Shao, Z. J.; Liu, Y. Z.; Wu, H.; Nan, P. F.; Zhu, Z. T.; Wu, C. W.; Guo, T. Y.; Chen, P. et al. Néel-type elliptical skyrmions in a laterally asymmetric magnetic multilayer. Adv. Mater. 2021, 33, 2006924.

[37]

Mondal, A. K.; Brown, N.; Mishra, S.; Makam, P.; Wing, D.; Gilead, S.; Wiesenfeld, Y.; Leitus, G.; Shimon, L. J. W.; Carmieli, R. et al. Long-range spin-selective transport in chiral metal-organic crystals with temperature-activated magnetization. ACS Nano 2020, 14, 16624–16633.

File
12274_2023_6020_MOESM1_ESM.pdf (3.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 July 2023
Accepted: 14 July 2023
Published: 08 September 2023
Issue date: March 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21931008, 21873072, 21922304, and 21975184), the National Key R&D Program of China (No. 2021YFA1200301), Fundamental Research Funds for the Central Universities, Shanghai Pilot Program for Basic Research-Shanghai Jiao Tong University (No. 21TQ1400219), Natural Science Fund for Colleges and Universities in Jiangsu Province (No. 22KJB150041), and Wuxi "Taihu Light" Science and Technology Project-Basic Research (No. K20221067).

Return