AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Molecular surface functionalization of In2O3 to tune interfacial microenvironment for enhanced catalytic performance of CO2 electroreduction

Suwen Wang§Qiang Gao§Cui XuShuai JiangMengyang ZhangXianjun YinHui-Qing Peng( )Bin Liu( )Yu-Fei Song ( )
State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China

§ Suwen Wang and Qiang Gao contributed equally to this work.

Show Author Information

Graphical Abstract

Molecular surface functionalization of In2O3 tunes interfacial microenvironment to achieve significantly enhanced catalytic performance for CO2 electroreduction.

Abstract

Indium-based materials (e.g., In2O3) are a class of promising non-noble metal-based catalysts for electroreduction of carbon dioxide (CO2). However, competitive hydrogen reduction reaction (HER) on indium-based catalysts hampers CO2 reduction reaction (CO2RR) process. We herein tune the interfacial microenvironment of In2O3 through chemical graft of alkyl phosphoric acid molecules using a facile solution-processed strategy for the first time, which is distinguished from other researches that tailor intrinsic activity of In2O3 themselves. The surface functionalization of alkyl phosphoric acids over In2O3 is demonstrated to remarkably boost CO2 conversion. For example, octadecylphosphonic acid modified In2O3 exhibits Faraday efficiency for H2 (FE H2) of as low as 6.6% and FEHCOOH of 86.5% at −0.67 V vs. RHE, which are far superior to parent In2O3 counterparts (FE H2 of 24.0% and FEHCOOH of 63.1%). Moreover, the enhancing effect of alkyl phosphoric acid functionalization is found to be closely related to the length of alkyl chains. By virtue of comprehensive experimental characterizations and molecular dynamics simulations, it is revealed that the modification of alkyl phosphoric acids significantly alters the interface microenvironment of the electrocatalyst, which changes the electrocatalyst surface from hydrophilic and aerophobic to hydrophobic and aerophilic. In this case, the water molecules are pushed away and more CO2 molecules are trapped, increasing local CO2 concentration at In2O3 active sites, thus leading to the significantly enhanced CO2RR and suppressed HER. This work highlights the importance of regulating the interfacial microenvironment of inorganic catalysts by molecular surface functionalization as a means for promoting the electrochemical performance in electrosynthesis and beyond.

Electronic Supplementary Material

Download File(s)
12274_2023_6019_MOESM1_ESM.pdf (850.9 KB)

References

[1]

Takata, T.; Jiang, J. Z.; Sakata, Y.; Nakabayashi, M.; Shibata, N.; Nandal, V.; Seki, K.; Hisatomi, T.; Domen, K. Photocatalytic water splitting with a quantum efficiency of almost unity. Nature 2020, 581, 411–414.

[2]

Zhu, J.; Hu, L. S.; Zhao, P. X.; Lee, L. Y. S.; Wong, K. Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2020, 120, 851–918.

[3]

Liu, M. G.; Xia, H.; Yang, W. X.; Liu, X. Y.; Xiang, J.; Wang, X. M.; Hu, L. S.; Lu, F. S. Novel Cu-Fe Bi-metal oxide quantum dots coupled g-C3N4 nanosheets with H2O2 adsorption-activation trade-off for efficient photo-fenton catalysis. Appl. Catal. B:Environ. 2022, 301, 120765.

[4]

Shi, R.; Wang, Z. P.; Zhao, Y. X.; Waterhouse, G. I. N.; Li, Z. H.; Zhang, B. K.; Sun, Z. M.; Xia, C.; Wang, H. T.; Zhang, T. R. Room-temperature electrochemical acetylene reduction to ethylene with high conversion and selectivity. Nat. Catal. 2021, 4, 565–574.

[5]

Shen, J. Y.; Wang, L. S.; He, X. D.; Wang, S.; Chen, J. D.; Wang, J.; Jin, H. L. Amorphization-activated copper indium core-shell nanoparticles for stable syngas production from electrochemical CO2 reduction. ChemSusChem 2022, 15, e202201350.

[6]

Han, N.; Ding, P.; He, L.; Li, Y. Y.; Li, Y. G. Promises of main group metal-based nanostructured materials for electrochemical CO2 reduction to formate. Adv. Energy Mater. 2020, 10, 1902338.

[7]

Xie, Z. H.; Xu, Y. G.; Xie, M.; Chen, X. B.; Lee, J. H.; Stavitski, E.; Kattel, S.; Chen, J. G. Reactions of CO2 and ethane enable CO bond insertion for production of C3 oxygenates. Nat. Commun. 2020, 11, 1887.

[8]

Zhao, Y.; Liu, J.; Han, M. L.; Yang, G. P.; Ma, L. F.; Wang, Y. Y. Two comparable Ba-MOFs with similar linkers for enhanced CO2 capture and separation by introducing N-rich groups. Rare Metals 2021, 40, 499–504.

[9]

Sun, K. H.; Rui, N.; Zhang, Z. T.; Sun, Z. Y.; Ge, Q. F.; Liu, C. J. A highly active Pt/In2O3 catalyst for CO2 hydrogenation to methanol with enhanced stability. Green Chem. 2020, 22, 5059–5066.

[10]

Tian, J.; Yu, J. L.; Tang, Q. X.; Zhang, J. S.; Ma, D. Y.; Lei, Y. F.; Li, Z. T. Self-assembled supramolecular materials for photocatalytic H2 production and CO2 reduction. Mater. Futures 2022, 1, 042104.

[11]

Li, L. L.; Hasan, I. M. U.; Farwa; He, R. N.; Peng, L. W.; Xu, N. N.; Niazi, N. K.; Zhang, J. N.; Qiao, J. L. Copper as a single metal atom based photo-, electro-, and photoelectrochemical catalyst decorated on carbon nitride surface for efficient CO2 reduction: A review. Nano Res. Energy 2022, 1, e9120015.

[12]

Yang, B. P.; Liu, K.; Li, H. J. W.; Liu, C. X.; Fu, J. W.; Li, H. M.; Huang, J. E.; Ou, P. F.; Alkayyali, T.; Cai, C. et al. Accelerating CO2 electroreduction to multicarbon products via synergistic electric-thermal field on copper nanoneedles. J. Am. Chem. Soc. 2022, 144, 3039–3049.

[13]

Zhou, Y. J.; Liang, Y. Q.; Fu, J. W.; Liu, K.; Chen, Q.; Wang, X. Q.; Li, H. M.; Zhu, L.; Hu, J. H.; Pan, H. et al. Vertical Cu nanoneedle arrays enhance the local electric field promoting C2 hydrocarbons in the CO2 electroreduction. Nano Lett. 2022, 22, 1963–1970.

[14]

Ni, F. L.; Yang, H.; Wen, Y. Z.; Bai, H. P.; Zhang, L. S.; Cui, C. Y.; Li, S. Y.; He, S. S.; Cheng, T.; Zhang, B. et al. N-modulated Cu+ for efficient electrochemical carbon monoxide reduction to acetate. Sci. China Mater. 2020, 63, 2606–2612.

[15]

Lee, J. H.; Kattel, S.; Xie, Z. H.; Tackett, B. M.; Wang, J. J.; Liu, C. J.; Chen, J. G. Understanding the role of functional groups in polymeric binder for electrochemical carbon dioxide reduction on gold nanoparticles. Adv. Funct. Mater. 2018, 28, 1804762.

[16]

Kong, X.; Liu, G. Y.; Tian, S.; Bu, S. Y.; Gao, Q. L.; Liu, B.; Lee, C. S.; Wang, P. F.; Zhang, W. J. Coupling cobalt phthalocyanine molecules on 3D nitrogen-doped vertical graphene arrays for highly efficient and robust CO2 electroreduction. Small 2022, 18, 2204615.

[17]

Ahmad, T.; Liu, S.; Sajid, M.; Li, K.; Ali, M.; Liu, L.; Chen, W. Electrochemical CO2 reduction to C2+ products using Cu-based electrocatalysts: A review. Nano Res. Energy 2022, 1, e9120021.

[18]

Cai, C.; Liu, B.; Liu, K.; Li, P. C.; Fu, J. W.; Wang, Y. Q.; Li, W. Z.; Tian, C.; Kang, Y. C.; Stefancu, A. et al. Heteroatoms induce localization of the electric field and promote a wide potential-window selectivity towards CO in the CO2 electroreduction. Angew. Chem., Int. Ed. 2022, 61, e202212640.

[19]

Li, F. W.; Thevenon, A.; Rosas-Hernández, A.; Wang, Z. Y.; Li, Y. L.; Gabardo, C. M.; Ozden, A.; Dinh, C. T.; Li, J.; Wang, Y. H. et al. Molecular tuning of CO2-to-ethylene conversion. Nature 2020, 577, 509–513.

[20]

Wang, Z. H.; Li, Y. C.; Zhao, X.; Chen, S. Q.; Nian, Q. S.; Luo, X.; Fan, J. J.; Ruan, D. G.; Xiong, B. Q.; Ren, X. D. Localized alkaline environment via in situ electrostatic confinement for enhanced CO2-to-ethylene conversion in neutral medium. J. Am. Chem. Soc. 2023, 145, 6339–6348.

[21]

Li, P. S.; Bi, J. H.; Liu, J. Y.; Zhu, Q. G.; Chen, C. J.; Sun, X. F.; Zhang, J. L.; Han, B. X. In situ dual doping for constructing efficient CO2-to-methanol electrocatalysts. Nat. Commun. 2022, 13, 1965.

[22]

Zhao, K.; Quan, X. Carbon-based materials for electrochemical reduction of CO2 to C2+ oxygenates: Recent progress and remaining challenges. ACS Catal. 2021, 11, 2076–2097.

[23]

Dai, S.; Huang, T. H.; Liu, W. I.; Hsu, C. W.; Lee, S. W.; Chen, T. Y.; Wang, Y. C.; Wang, J. H.; Wang, K. W. Enhanced CO2 electrochemical reduction performance over Cu@AuCu catalysts at high noble metal utilization efficiency. Nano Lett. 2021, 21, 9293–9300.

[24]

Li, K.; Xu, J. W.; Zheng, T. T.; Yuan, Y.; Liu, S.; Shen, C. Y.; Jiang, T. L.; Sun, J. F.; Liu, Z. C.; Xu, Y. et al. In situ dynamic construction of a copper tin sulfide catalyst for high-performance electrochemical CO2 conversion to formate. ACS Catal. 2022, 12, 9922–9932.

[25]

Wang, Q. Y.; Dai, M. Y.; Li, H. M.; Lu, Y. R.; Chan, T. S.; Ma, C.; Liu, K.; Fu, J. W.; Liao, W. R.; Chen, S. Y. et al. Asymmetric coordination induces electron localization at Ca sites for robust CO2 electroreduction to CO. Adv. Mater. 2023, 35, 2300695.

[26]

Wang, Q. Y.; Liu, K.; Hu, K. M.; Cai, C.; Li, H. J. W.; Li, H. M.; Herran, M.; Lu, Y. R.; Chan, T. S.; Ma, C. et al. Attenuating metal-substrate conjugation in atomically dispersed nickel catalysts for electroreduction of CO2 to CO. Nat. Commun. 2022, 13, 6082.

[27]

Chen, S. Y.; Li, X. Q.; Kao, C. W.; Luo, T.; Chen, K. J.; Fu, J. W.; Ma, C.; Li, H. M.; Li, M.; Chan, T. S. et al. Unveiling the proton-feeding effect in sulfur-doped Fe-N-C single-atom catalyst for enhanced CO2 electroreduction. Angew. Chem., Int. Ed. 2022, 61, e202206233.

[28]

Wang, T. J.; Fang, W. S.; Liu, Y. M.; Li, F. M.; Chen, P.; Chen, Y. Heterostructured Pd/PdO nanowires for selective and efficient CO2 electroreduction to CO. J. Energy Chem. 2022, 70, 407–413.

[29]

Liang, L.; Feng, Q. C.; Wang, X. L.; Hübner, J.; Gernert, U.; Heggen, M.; Wu, L. F.; Hellmann, T.; Hofmann, J. P.; Strasser, P. Electroreduction of CO2 on Au(310)@Cu high-index facets. Angew. Chem., Int. Ed. 2023, 62, e202218039.

[30]

Kunitski, M.; Eicke, N.; Huber, P.; Köhler, J.; Zeller, S.; Voigtsberger, J.; Schlott, N.; Henrichs, K.; Sann, H.; Trinter, F. et al. Double-slit photoelectron interference in strong-field ionization of the neon dimer. Nat. Commun. 2019, 10, 1.

[31]

He, G. Y.; Tang, H. Y.; Wang, H.; Bian, Z. Y. Highly selective and active Pd-In/three-dimensional graphene with special structure for electroreduction CO2 to formate. Electroanalysis 2018, 30, 84–93.

[32]

Ma, L. S.; Liu, N.; Mei, B. B.; Yang, K.; Liu, B. X.; Deng, K.; Zhang, Y.; Feng, H.; Liu, D.; Duan, J. J. et al. In situ-activated indium nanoelectrocatalysts for highly active and selective CO2 electroreduction around the thermodynamic potential. ACS Catal. 2022, 12, 8601–8609.

[33]

Sun, L. M.; Li, R.; Zhan, W. W.; Yuan, Y. S.; Wang, X. J.; Han, X. G.; Zhao, Y. L. Double-shelled hollow rods assembled from nitrogen/sulfur-codoped carbon coated indium oxide nanoparticles as excellent photocatalysts. Nat. Commun. 2019, 10, 2270.

[34]

Cheng, Q.; Huang, M.; Xiao, L.; Mou, S. Y.; Zhao, X. L.; Xie, Y. Q.; Jiang, G. D.; Jiang, X. Y.; Dong, F. Unraveling the influence of oxygen vacancy concentration on electrocatalytic CO2 reduction to formate over indium oxide catalysts. ACS Catal. 2023, 13, 4021–4029.

[35]

Jiang, M. H.; Zhu, M. F.; Wang, H. Z.; Song, X. M.; Liang, J. C.; Lin, D.; Li, C. Q.; Cui, J. X.; Li, F. J.; Zhang, X. L. et al. Rapid and green electric-explosion preparation of spherical indium nanocrystals with abundant metal defects for highly-selective CO2 electroreduction. Nano Lett. 2023, 23, 291–297.

[36]

Sun, W. L.; Liang, Y.; Wang, C. H.; Feng, X.; Zhou, W.; Zhang, B. Computational design of copper doped indium for electrocatalytic reduction of CO2 to formic acid. ChemCatChem 2020, 12, 5632–5636.

[37]

Luo, W.; Xie, W.; Mutschler, R.; Oveisi, E.; De Gregorio, G. L.; Buonsanti, R.; Züttel, A. Selective and stable electroreduction of CO2 to CO at the copper/indium interface. ACS Catal. 2018, 8, 6571–6581.

[38]

Dong, W. J.; Yoo, C. J.; Lee, J. L. Monolithic nanoporous In-Sn alloy for electrochemical reduction of carbon dioxide. ACS Appl. Mater. Interfaces 2017, 9, 43575–43582.

[39]

Li, J. J.; Abbas, S. U.; Wang, H. Q.; Zhang, Z. C.; Hu, W. P. Recent advances in interface engineering for electrocatalytic CO2 reduction reaction. Nano-Micro Lett. 2021, 13, 216.

[40]

Feng, J. Q.; Gao, H. S.; Feng, J. P.; Liu, L.; Zeng, S. J.; Dong, H. F.; Bai, Y. E.; Liu, L. C.; Zhang, X. P. Morphology modulation-engineered flowerlike In2S3 via ionothermal method for efficient CO2 electroreduction. ChemCatChem 2020, 12, 926–931.

[41]

Kim, M. G.; Jeong, J.; Choi, Y.; Park, J.; Park, E.; Cheon, C. H.; Kim, N. K.; Min, B. K.; Kim, W. Synthesis of V-doped In2O3 nanocrystals via digestive-ripening process and their electrocatalytic properties in CO2 reduction reaction. ACS Appl. Mater. Interfaces 2020, 12, 11890–11897.

[42]

Dong, K.; Liang, J.; Wang, Y. Y.; Xu, Z. Q.; Liu, Q.; Luo, Y. L.; Li, T. S.; Li, L.; Shi, X. F.; Asiri, A. M. et al. Honeycomb carbon nanofibers: A superhydrophilic O2-entrapping electrocatalyst enables ultrahigh mass activity for the two-electron oxygen reduction reaction. Angew. Chem., Int. Ed. 2021, 60, 10583–10587.

[43]

Liu, X.; Huang, C. X.; Ouyang, B.; Du, Y. P.; Fu, B. Y.; Du, Z. W.; Ju, Q.; Ma, J. J.; Li, A.; Kan, E. J. Enhancement of mass and charge transfer during carbon dioxide photoreduction by enhanced surface hydrophobicity without a barrier layer. Chem.—Eur. J. 2022, 28, e202201034.

[44]

Niu, L. J.; Liu, Z. W.; Liu, G. H.; Li, M. X.; Zong, X. P.; Wang, D. D.; An, L.; Qu, D.; Sun, X. M.; Wang, X. Y. et al. Surface hydrophobic modification enhanced catalytic performance of electrochemical nitrogen reduction reaction. Nano Res. 2022, 15, 3886–3893.

[45]

Liang, Y.; Zhou, W.; Shi, Y. M.; Liu, C. B.; Zhang, B. Unveiling in situ evolved In/In2O3−x heterostructure as the active phase of In2O3 toward efficient electroreduction of CO2 to formate. Sci. Bull. 2020, 65, 1547–1554.

[46]

Zhao, X. L.; Huang, M.; Deng, B. W.; Li, K. L.; Li, F.; Dong, F. Interfacial engineering of In2O3/InN heterostructure with promoted charge transfer for highly efficient CO2 reduction to formate. Chem. Eng. J. 2022, 437, 135114.

[47]

Zhang, Z. R.; Ahmad, F.; Zhao, W. H.; Yan, W. S.; Zhang, W. H.; Huang, H. W.; Ma, C.; Zeng, J. Enhanced electrocatalytic reduction of CO2 via chemical coupling between indium oxide and reduced graphene oxide. Nano Lett. 2019, 19, 4029–4034.

[48]

Lim, T.; Han, J.; Seo, K.; Joo, M. K.; Kim, J. S.; Kim, W. Y.; Kim, G. T.; Ju, S. Fabrication of controllable and stable In2O3 nanowire transistors using an octadecylphosphonic acid self-assembled monolayer. Nanotechnology 2015, 26, 145203.

Nano Research
Pages 1242-1250
Cite this article:
Wang S, Gao Q, Xu C, et al. Molecular surface functionalization of In2O3 to tune interfacial microenvironment for enhanced catalytic performance of CO2 electroreduction. Nano Research, 2024, 17(3): 1242-1250. https://doi.org/10.1007/s12274-023-6019-x
Topics:

706

Views

13

Crossref

10

Web of Science

12

Scopus

1

CSCD

Altmetrics

Received: 25 May 2023
Revised: 01 July 2023
Accepted: 15 July 2023
Published: 08 August 2023
© Tsinghua University Press 2023
Return