AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Therapeutic sponge prevents postoperative breast cancer recurrence by sustainably dissociating into CD44-targeted nanoplatform

Junhui Sui1,2,§Mingda Zhao1,§Zhihao Guo5,§Jiafeng Li4Jie Chen2Hongli Chen3Jie Liang1Yong Sun1( )Xingdong Zhang1Yujiang Fan1( )
National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
Beijing Tide Pharmaceutical Co., Ltd., Beijing 100176, China
The Key Laboratory of Biomedical Material, School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, China
Coal Mining Branch, China Coal Research Institute, Beijing 100028, China
School of Ophthalmology & Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China

§ Junhui Sui, Mingda Zhao, and Zhihao Guo contributed equally to this work.

Show Author Information

Graphical Abstract

Herein, an all-in-one functional absorbable sponges (HCNPs) with hemostatic effect was constructed by integrating PP-Dox/Lap (doxorubicin (Dox) and lapatinib (Lap) synergistic delivery nanoparticles) into thiolated hyaluronic acid (HA-SH) and collagen I cross-linked hydrogel for effective preventing post-resection recurrence as well as distant metastasis. The functional HCNPs sponge might provide a safer and more effective strategy for postoperative treatment of cancer.

Abstract

Locoregional recurrence and distant metastasis of breast cancer still pose a significant risk for patients’ survival. To address the clinical challenge, functional absorbable sponges (HA-SH/PP-Dox/Lap/COL I (HCNPs)) were constructed by biomimetic extracellular matrix of collagen I / hyaluronic acid complex conjugated with doxorubicin/lapatinib (Dox/Lap)-loaded nanoparticles. The HCNPs sponge exhibited excellent clotting ability and blood absorption rate. Worthily, Dox/Lap-loaded nanoparticles were synchronously endowed with a large number of oligo hyaluronic acid segments after degradation, which thus enhanced the ability of targeting into CD44-overexpressed tumor cells. The implantable HCNPs sponge in resected cavity of postoperative 4T1 models inhibited the spread of scattered tumor cells by absorbing the inevitable bleeding. More importantly, CD44 targeted nanoparticle with suitable Dox/Lap proportion continuously released from sponge to kill tumor cells of surrounding HCNPs and those remaining at surgical margin, thus prevented local recurrence as well as distant metastasis. Therefore, the functional HCNPs sponge might provide a safer and more effective strategy for postoperative treatment of cancer.

Electronic Supplementary Material

Download File(s)
12274_2023_6017_MOESM1_ESM.pdf (1.4 MB)

References

[1]

Magnoni, F.; Alessandrini, S.; Alberti, L.; Polizzi, A.; Rotili, A.; Veronesi, P.; Corso, G. Breast cancer surgery: New issues. Curr. Oncol. 2021, 28, 4053–4066.

[2]

Waks, A. G.; Winer, E. P. Breast cancer treatment. JAMA 2019, 321, 288–300.

[3]

Demicheli, R.; Dillekås, H.; Straume, O.; Biganzoli, E. Distant metastasis dynamics following subsequent surgeries after primary breast cancer removal. Breast Cancer Res. 2019, 21, 57.

[4]

Qu, Q. J.; Zhang, Z. Y.; Guo, X. Y.; Yang, J. Y.; Cao, C. G.; Li, C. J.; Zhang, H.; Xu, P. F.; Hu, Z. H.; Tian, J. Novel multifunctional NIR-II aggregation-induced emission nanoparticles-assisted intraoperative identification and elimination of residual tumor. J. Nanobiotechnol. 2022, 20, 143.

[5]

Mahvi, D. A.; Liu, R.; Grinstaff, M. W.; Colson, Y. L.; Raut, C. P. Local cancer recurrence: The realities, challenges, and opportunities for new therapies. CA. Cancer J. Clin. 2018, 68, 488–505.

[6]

Tohme, S.; Simmons, R. L.; Tsung, A. Surgery for cancer: A trigger for metastases. Cancer Res. 2017, 77, 1548–1552.

[7]

Kim, R.; Kin, T. Clinical perspectives in addressing unsolved issues in (Neo)adjuvant therapy for primary breast cancer. Cancers 2021, 13, 926.

[8]

Li, X. L.; Xu, F. N.; He, Y.; Li, Y.; Hou, J. W.; Yang, G.; Zhou, S. B. A hierarchical structured ultrafine fiber device for preventing postoperative recurrence and metastasis of breast cancer. Adv. Funct. Mater. 2020, 30, 2004851.

[9]

Schiapparelli, P.; Zhang, P. C.; Lara-Velazquez, M.; Guerrero-Cazares, H.; Lin, R.; Su, H.; Chakroun, R. W.; Tusa, M.; Quiñones-Hinojosa, A.; Cui, H. G. Self-assembling and self-formulating prodrug hydrogelator extends survival in a glioblastoma resection and recurrence model. J. Control. Release 2020, 319, 311–321.

[10]

Murchison, S.; Truong, P. Locoregional therapy in breast cancer patients treated with neoadjuvant chemotherapy. Expert Rev. Anticancer Ther. 2021, 21, 865–875.

[11]

Yan, A.; Zhang, Z. R.; Gu, J. M.; Ding, X. R.; Chen, Y. C.; Du, J. J.; Wei, S.; Sun, H. C.; Xu, J. Y.; Yu, S. J. et al. Bioresponsive cisplatin crosslinked albumin hydrogel served for efficient cancer combination therapy. Nano Res. 2023, 16, 2762–2774.

[12]

Shi, K.; Xue, B. X.; Jia, Y. P.; Yuan, L. P.; Han, R. X.; Yang, F.; Peng, J. R.; Qian, Z. Y. Sustained co-delivery of gemcitabine and cis-platinum via biodegradable thermo-sensitive hydrogel for synergistic combination therapy of pancreatic cancer. Nano Res. 2019, 12, 1389–1399.

[13]

Guedes, G.; Wang, S. Q.; Fontana, F.; Figueiredo, P.; Lindén, J.; Correia, A.; Pinto, R. J. B.; Hietala, S.; Sousa, F. L.; Santos, H. A. Dual-crosslinked dynamic hydrogel incorporating {Mo154} with pH and NIR responsiveness for chemo-photothermal therapy. Adv. Mater. 2021, 33, 2007761.

[14]

Shang, Q.; Dong, Y. B.; Su, Y.; Leslie, F.; Sun, M. J.; Wang, F. H. Local scaffold-assisted delivery of immunotherapeutic agents for improved cancer immunotherapy. Adv. Drug Deliver. Rev. 2022, 185, 114308.

[15]

Hope, A.; Wade, S. J.; Aghmesheh, M.; Vine, K. L. Localized delivery of immunotherapy via implantable scaffolds for breast cancer treatment. J. Control. Release 2022, 341, 399–413.

[16]

Yu, L.; Luo, Z. W.; Chen, T.; Ouyang, Y. Q.; Xiao, L. Y.; Liang, S.; Peng, Z. W.; Liu, Y.; Deng, Y. Bioadhesive nanoparticles for local drug delivery. Int. J. Mol. Sci. 2022, 23, 2370.

[17]

Yang, X. Y.; Xia, X. L.; Huang, W.; Xia, X. X.; Yan, D. Y. Highly efficient tumor-targeted nanomedicine assembled from affibody-drug conjugate for colorectal cancer therapy. Nano Res. 2023, 16, 5256–5264.

[18]

Li, J. N.; Xu, W. G.; Li, D.; Liu, T. J.; Zhang, Y. S.; Ding, J. X.; Chen, X. S. Locally deployable nanofiber patch for sequential drug delivery in treatment of primary and advanced orthotopic hepatomas. ACS Nano 2018, 12, 6685–6699.

[19]

Abdelkader, H.; Fathalla, Z.; Seyfoddin, A.; Farahani, M.; Thrimawithana, T.; Allahham, A.; Alani, A. W. G.; Al-Kinani, A. A.; Alany, R. G. Polymeric long-acting drug delivery systems (LADDS) for treatment of chronic diseases: Inserts, patches, wafers, and implants. Adv. Drug Deliv. Rev. 2021, 177, 113957.

[20]

Zhang, Z. H.; Ai, S. F.; Yang, Z. M.; Li, X. Y. Peptide-based supramolecular hydrogels for local drug delivery. Adv. Drug Deliv. Rev. 2021, 174, 482–503.

[21]

Chen, T. X.; Yao, T. T.; Pan, H.; Peng, H.; Whittaker, A. K.; Li, Y.; Zhu, S. M.; Wang, Z. Y. One-step nanoarchitectonics of a multiple functional hydrogel based on cellulose nanocrystals for effective tumor therapy. Nano Res. 2022, 15, 8636–8647.

[22]

Gu, S. S.; Xu, J. Y.; Teng, W. T. Z.; Huang, X.; Mei, H.; Chen, X. T.; Nie, G.; Cui, Z.; Liu, X. Q.; Zhang, Y. et al. Local delivery of biocompatible lentinan/chitosan composite for prolonged inhibition of postoperative breast cancer recurrence. Int. J. Biol. Macromol. 2022, 194, 233–245.

[23]

Wei, W. P.; Li, H. F.; Yin, C. C.; Tang, F. S. Research progress in the application of in situ hydrogel system in tumor treatment. Drug Deliv. 2020, 27, 460–468.

[24]

Zhang, Z. Y.; Kuang, G. Z.; Zong, S.; Liu, S.; Xiao, H. H.; Chen, X. S.; Zhou, D. F.; Huang, Y. B. Sandwich-like fibers/sponge composite combining chemotherapy and hemostasis for efficient postoperative prevention of tumor recurrence and metastasis. Adv. Mater. 2018, 30, 1803217.

[25]

Choi, K. Y.; Han, H. S.; Lee, E. S.; Shin, J. M.; Almquist, B. D.; Lee, D. S.; Park, J. H. Hyaluronic acid-based activatable nanomaterials for stimuli-responsive imaging and therapeutics: Beyond CD44-mediated drug delivery. Adv. Mater. 2019, 31, 1803549.

[26]

Hu, Q. Y.; Li, H. J.; Archibong, E.; Chen, Q.; Ruan, H. T.; Ahn, S.; Dukhovlinova, E.; Kang, Y.; Wen, D.; Dotti, G. et al. Inhibition of post-surgery tumour recurrence via a hydrogel releasing CAR-T cells and anti-PDL1-conjugated platelets. Nat. Biomed. Eng. 2021, 5, 1038–1047.

[27]

Cai, L. L.; Ni, R. H.; Ma, X. F.; Huang, R. R.; Tang, Z. Y.; Xu, J. Q.; Han, Y.; Guo, Y. H.; Gu, Z. F. Hyaluronic acid-based dual-responsive nanomicelles mediated mutually synergistic photothermal and molecular targeting therapies. Nano Res. 2022, 15, 6361–6371.

[28]

Wang, M.; Deng, Z. X.; Guo, Y.; Xu, P. Designing functional hyaluronic acid-based hydrogels for cartilage tissue engineering. Mater. Today Bio 2022, 17, 100495.

[29]
Noh, I.; Kim, N.; Tran, H. N.; Lee, J.; Lee, C. 3D printable hyaluronic acid-based hydrogel for its potential application as a bioink in tissue engineering. Biomater. Res. 2019, 23, 3.
[30]

Sionkowska, A.; Gadomska, M.; Musiał, K.; Piątek, J. Hyaluronic acid as a component of natural polymer blends for biomedical applications: A review. Molecules 2020, 25, 4035.

[31]

Liu, B.; Bian, Y. L.; Liang, S.; Yuan, M.; Dong, S. M.; He, F.; Gai, S. L.; Yang, P. P.; Cheng, Z. Y.; Lin, J. One-step integration of tumor microenvironment-responsive calcium and copper peroxides nanocomposite for enhanced chemodynamic/ion-interference therapy. ACS Nano 2022, 16, 617–630.

[32]

Zhang, X. G.; Tang, J. J.; Li, C.; Lu, Y.; Cheng, L. L.; Liu, J. A targeting black phosphorus nanoparticle based immune cells nano-regulator for photodynamic/photothermal and photo-immunotherapy. Bioact. Mater. 2021, 6, 472–489.

[33]

Bian, S. Q.; He, M. M.; Sui, J. H.; Cai, H. X.; Sun, Y.; Liang, J.; Fan, Y. J.; Zhang, X. D. The self-crosslinking smart hyaluronic acid hydrogels as injectable three-dimensional scaffolds for cells culture. Colloid Surf. B:Biointerfaces 2016, 140, 392–402.

[34]

Chowdhury, S. R.; Busra, M. F. M.; Lokanathan, Y.; Ng, M. H.; Law, J. X.; Cletus, U. C.; Idrus, R. B. H. Collagen type I: A versatile biomaterial. Adv. Exp. Med. Biol. 2018, 1077, 389–414.

[35]

Xu, K.; Zhou, M.; Chen, W. Z.; Zhu, Y. B.; Wang, X. Y.; Zhang, Y.; Zhang, Q. Q. Bioinspired polydopamine/graphene oxide/collagen nanofilms as a controlled release carrier of bioactive substances. Chem. Eng. J. 2021, 405, 126930.

[36]

Zhu, Y. Y.; Chen, S. G.; Liu, W. W.; Zhang, L. X.; Xu, F. X.; Hayashi, T.; Mizuno, K.; Hattori, S.; Fujisaki, H.; Ikejima, T. Collagens I and V differently regulate the proliferation and adhesion of rat islet INS-1 cells through the integrin β1/E-cadherin/β-catenin pathway. Connect. Tissue Res. 2021, 62, 658–670.

[37]

Hsu, C. M.; Sun, Y. S.; Huang, H. H. Enhanced cell response to zirconia surface immobilized with type I collagen. J. Dent. Res. 2019, 98, 556–563.

[38]

Zustiak, S. P.; Wei, Y. Q.; Leach, J. B. Protein-hydrogel interactions in tissue engineering: Mechanisms and applications. Tissue Eng. Part B:Rev. 2013, 19, 160–171.

[39]

Sui, J. H.; He, M. M.; Yang, Y. D.; Ma, M. C.; Guo, Z. H.; Zhao, M. D.; Liang, J.; Sun, Y.; Fan, Y. J.; Zhang, X. D. Reversing P-glycoprotein-associated multidrug resistance of breast cancer by targeted acid-cleavable polysaccharide nanoparticles with lapatinib sensitization. ACS Appl. Mater. Interfaces 2020, 12, 51198–51211.

[40]

Sui, J. H.; Zhao, M. D.; Yang, Y. D.; Guo, Z. H.; Ma, M. C.; Xu, Z. Y.; Liang, J.; Sun, Y.; Fan, Y. J.; Zhang, X. D. Acid-labile polysaccharide prodrug via lapatinib-sensitizing effect substantially prevented metastasis and postoperative recurrence of triple-negative breast cancer. Nanoscale 2020, 12, 13567–13581.

[41]

Fan, L. H.; Yang, H.; Yang, J.; Peng, M.; Hu, J. Preparation and characterization of chitosan/gelatin/PVA hydrogel for wound dressings. Carbohydr. Polym. 2016, 146, 427–434.

[42]

An, S.; Jeon, E. J.; Jeon, J.; Cho, S. W. A serotonin-modified hyaluronic acid hydrogel for multifunctional hemostatic adhesives inspired by a platelet coagulation mediator. Mater. Horiz. 2019, 6, 1169–1178.

[43]

Yang, X.; Liu, W.; Li, N.; Wang, M. S.; Liang, B.; Ullah, I.; Luis Neve, A.; Feng, Y. K.; Chen, H.; Shi, C. C. Design and development of polysaccharide hemostatic materials and their hemostatic mechanism. Biomater. Sci. 2017, 5, 2357–2368.

[44]

Yuan, H. B.; Chen, L.; Hong, F. F. A biodegradable antibacterial nanocomposite based on oxidized bacterial nanocellulose for rapid hemostasis and wound healing. ACS Appl. Mater. Interfaces 2020, 12, 3382–3392.

[45]

Raskov, H.; Orhan, A.; Salanti, A.; Gögenur, I. Premetastatic niches, exosomes and circulating tumor cells: Early mechanisms of tumor dissemination and the relation to surgery. Int. J. Cancer. 2020, 146, 3244–3255.

Nano Research
Pages 1792-1803
Cite this article:
Sui J, Zhao M, Guo Z, et al. Therapeutic sponge prevents postoperative breast cancer recurrence by sustainably dissociating into CD44-targeted nanoplatform. Nano Research, 2024, 17(3): 1792-1803. https://doi.org/10.1007/s12274-023-6017-z
Topics:

868

Views

1

Crossref

1

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 22 May 2023
Revised: 16 July 2023
Accepted: 18 July 2023
Published: 05 August 2023
© Tsinghua University Press 2023
Return