Journal Home > Volume 17 , Issue 2

Enhancing the proton conductivity of proton exchange membranes (PEMs) is essential to expand the applications of proton exchange membrane fuel cells (PEMFCs). Inspired by the proton conduction mechanism of bacteriorhodopsin, cucurbit[n]urils (CB[n], where n is the number of glycoluril units, n = 6, 7, or 8) are introduced into sulfonated poly(ether ether ketone) (SPEEK) matrix to fabricate hybrid PEMs, employing a nature-inspired chemical engineering (NICE) methodology. The carbonyl groups of CB[n] act as proton-conducting sites, while the host–guest interaction between CB[n] and water molecules offers extra proton-conducting pathways. Additionally, the molecular size of CB[n] aids in their dispersion within the SPEEK matrix, effectively bridging the unconnected proton-conducting sulfonic group domains within the SPEEK membrane. Consequently, all hybrid membranes exhibit significantly enhanced proton conductivity. Notably, the SPEEK membrane incorporating 1 wt.% CB[8] (CB[8]/SPEEK-1%) demonstrates the highest proton conductivity of 198.0 mS·cm−1 at 60 °C and 100% relative humidity (RH), which is 228% greater than that of the pure SPEEK membrane under the same conditions. Moreover, hybrid membranes exhibit superior fuel cell performance. The CB[8]/SPEEK-1% membrane achieves a maximum power density of 214 mW·cm−2, representing a 140% improvement over the pure SPEEK membrane (89 mW·cm−2) at 50 °C and 100% RH. These findings serve as a foundation for constructing continuous proton-conducting pathways within membranes by utilizing supramolecular macrocycles as fuel cell electrolytes and in other applications.


menu
Abstract
Full text
Outline
About this article

Bioinspired supramolecular macrocycle hybrid membranes with enhanced proton conductivity

Show Author's information Pengfei Yang,§Linlin Xu,§Panagiotis TrogadasMarc-Olivier CoppensYang Lan ( )
Centre for Nature Inspired Engineering, Department of Chemical Engineering, University College London, London WC1E 7JE, UK

§ Pengfei Yang and Linlin Xu contributed equally to this work.

Abstract

Enhancing the proton conductivity of proton exchange membranes (PEMs) is essential to expand the applications of proton exchange membrane fuel cells (PEMFCs). Inspired by the proton conduction mechanism of bacteriorhodopsin, cucurbit[n]urils (CB[n], where n is the number of glycoluril units, n = 6, 7, or 8) are introduced into sulfonated poly(ether ether ketone) (SPEEK) matrix to fabricate hybrid PEMs, employing a nature-inspired chemical engineering (NICE) methodology. The carbonyl groups of CB[n] act as proton-conducting sites, while the host–guest interaction between CB[n] and water molecules offers extra proton-conducting pathways. Additionally, the molecular size of CB[n] aids in their dispersion within the SPEEK matrix, effectively bridging the unconnected proton-conducting sulfonic group domains within the SPEEK membrane. Consequently, all hybrid membranes exhibit significantly enhanced proton conductivity. Notably, the SPEEK membrane incorporating 1 wt.% CB[8] (CB[8]/SPEEK-1%) demonstrates the highest proton conductivity of 198.0 mS·cm−1 at 60 °C and 100% relative humidity (RH), which is 228% greater than that of the pure SPEEK membrane under the same conditions. Moreover, hybrid membranes exhibit superior fuel cell performance. The CB[8]/SPEEK-1% membrane achieves a maximum power density of 214 mW·cm−2, representing a 140% improvement over the pure SPEEK membrane (89 mW·cm−2) at 50 °C and 100% RH. These findings serve as a foundation for constructing continuous proton-conducting pathways within membranes by utilizing supramolecular macrocycles as fuel cell electrolytes and in other applications.

Keywords: fuel cell, proton conductivity, supramolecular macrocycle, proton exchange membrane, cucurbit[n]uril

References(50)

[1]

Jacobson, M. Z.; Colella, W. G.; Golden, D. M. Cleaning the air and improving health with hydrogen fuel-cell vehicles. Science. 2005, 308, 1901–1905.

[2]

Kreuer, K. D. Proton conductivity:  Materials and applications. Chem. Mater. 1996, 8, 610–641.

[3]

Kreuer, K. D.; Paddison, S. J.; Spohr, E.; Schuster, M. Transport in proton conductors for fuel-cell applications:  Simulations, elementary reactions, and phenomenology. Chem. Rev. 2004, 104, 4637–4678.

[4]

Laberty-Robert, C.; Vallé, K.; Pereira, F.; Sanchez, C. Design and properties of functional hybrid organic–inorganic membranes for fuel cells. Chem. Soc. Rev. 2011, 40, 961–1005.

[5]

Hickner, M. A.; Ghassemi, H.; Kim, Y. S.; Einsla, B. R.; McGrath, J. E. Alternative polymer systems for proton exchange membranes (PEMs). Chem. Rev. 2004, 104, 4587–4612.

[6]

Jiao, K.; Xuan, J.; Du, Q.; Bao, Z. M.; Xie, B.; Wang, B. W.; Zhao, Y.; Fan, L. H.; Wang, H. Z.; Hou, Z. J. et al. Designing the next generation of proton-exchange membrane fuel cells. Nature 2021, 595, 361–369.

[7]

Park, C. H.; Kim, T. H.; Nam, S. Y.; Hong, Y. T. Water channel morphology of non-perfluorinated hydrocarbon proton exchange membrane under a low humidifying condition. Int. J. Hydrogen Energy 2019, 44, 2340–2348.

[8]

Lyu, K. J.; Peng, Y. Q.; Xiao, L.; Lu, J. T.; Zhuang, L. Water induced phase segregation in hydrocarbon proton exchange membranes. J. Energy Chem. 2018, 27, 1517–1520.

[9]

Escorihuela, J.; Narducci, R.; Compañ, V.; Costantino, F. Proton conductivity of composite polyelectrolyte membranes with metal-organic frameworks for fuel cell applications. Adv. Mater. Interfaces 2019, 6, 1801146.

[10]

Zhao, G. D.; Zhao, H. J.; Zhuang, X. P.; Shi, L.; Cheng, B. W.; Xu, X. L.; Yin, Y. Nanofiber hybrid membranes: Progress and application in proton exchange membranes. J. Mater. Chem. A 2021, 9, 3729–3766.

[11]

Zhang, Y. X.; Wang, H. X.; Qian, P. H.; Zhang, L.; Zhou, Y.; Shi, H. F. Hybrid proton exchange membrane of sulfonated poly(ether ether ketone) containing polydopamine-coated carbon nanotubes loaded phosphotungstic acid for vanadium redox flow battery. J. Membr. Sci. 2021, 625, 119159.

[12]

Peng, Q.; Li, Y.; Qiu, M.; Shi, B. B.; He, X. Y.; Fan, C. Y.; Mao, X. L.; Wu, H.; Jiang, Z. Y. Enhancing proton conductivity of sulfonated poly(ether ether ketone)-based membranes by incorporating phosphotungstic-acid-coupled graphene oxide. Ind. Eng. Chem. Res. 2021, 60, 4460–4470.

[13]

Bisht, S.; Balaguru, S.; Ramachandran, S. K.; Gangasalam, A.; Kweon, J. Proton exchange composite membranes comprising SiO2, sulfonated SiO2, and metal-organic frameworks loaded in SPEEK polymer for fuel cell applications. J. Appl. Polym. Sci. 2021, 138, 50530.

[14]

Yin, Z. Y.; Geng, H. B.; Yang, P. F.; Shi, B. B.; Fan, C. Y.; Peng, Q.; Wu, H.; Jiang, Z. Y. Improved proton conduction of sulfonated poly(ether ether ketone) membrane by sulfonated covalent organic framework nanosheets. Int. J. Hydrogen Energy 2021, 46, 26550–26559.

[15]

Li, P.; Dang, J. C.; Wu, W. J.; Lin, J. L.; Zhou, Z. F.; Zhang, J.; Wang, J. T. Nanofiber composite membrane using quantum dot hybridized SPEEK nanofiber for efficient through-plane proton conduction. J. Membr. Sci. 2020, 609, 118198.

[16]

Simari, C.; Enotiadis, A.; Lo Vecchio, C.; Baglio, V.; Coppola, L.; Nicotera, I. Advances in hybrid composite membranes engineering for high-performance direct methanol fuel cells by alignment of 2D nanostructures and a dual-layer approach. J. Membr. Sci. 2020, 599, 117858.

[17]

Hou, C. L.; Zhang, X.; Li, Y. F.; Zhou, G. L.; Wang, J. T. Porous nanofibrous composite membrane for unparalleled proton conduction. J. Membr. Sci. 2018, 550, 136–144.

[18]

Prykhodko, Y.; Fatyeyeva, K.; Hespel, L.; Marais, S. Progress in hybrid composite Nafion®-based membranes for proton exchange fuel cell application. Chem. Eng. J. 2021, 409, 127329.

[19]

Lee, H.; Han, J.; Kim, K.; Kim, J.; Kim, E.; Shin, H.; Lee, J. C. Highly sulfonated polymer-grafted graphene oxide composite membranes for proton exchange membrane fuel cells. J. Ind. Eng. Chem. 2019, 74, 223–232.

[20]

Esmaeili, N.; Gray, E. M.; Webb, C. J. Non-fluorinated polymer composite proton exchange membranes for fuel cell applications—A review. ChemPhysChem 2019, 20, 2016–2053.

[21]

Wang, L. Y.; Deng, N. P.; Wang, G.; Ju, J. G.; Cheng, B. W.; Kang, W. M. Constructing amino-functionalized flower-like metal-organic framework nanofibers in sulfonated poly(ether sulfone) proton exchange membrane for simultaneously enhancing interface compatibility and proton conduction. ACS Appl. Mater. Interfaces 2019, 11, 39979–39990.

[22]

Wang, S. J.; Zhu, T. H.; Shi, B. B.; Fan, C. Y.; Liu, Y. Q.; Yin, Z. Y.; Gao, Z.; Zhang, Z. J.; Wu, H.; Jiang, Z. Y. Porous organic polymer with high-density phosphoric acid groups as filler for hybrid proton exchange membranes. J. Membr. Sci. 2023, 666, 121147.

[23]

Subramaniam, S.; Henderson, R. Molecular mechanism of vectorial proton translocation by bacteriorhodopsin. Nature 2000, 406, 653–657.

[24]

Nango, E.; Royant, A.; Kubo, M.; Nakane, T.; Wickstrand, C.; Kimura, T.; Tanaka, T.; Tono, K.; Song, C. Y.; Tanaka, R. et al. A three-dimensional movie of structural changes in bacteriorhodopsin. Science. 2016, 354, 1552–1557.

[25]

Trogadas, P.; Cho, J. I. S.; Neville, T. P.; Marquis, J.; Wu, B.; Brett, D. J. L.; Coppens, M. O. A lung-inspired approach to scalable and robust fuel cell design. Energy Environ. Sci. 2018, 11, 136–143.

[26]

Coppens, M. O. Nature-inspired chemical engineering for process intensification. Annu. Rev. Chem. Biomol. Eng. 2021, 12, 187–215.

[27]

Trogadas, P.; Coppens, M. O. Nature-inspired electrocatalysts and devices for energy conversion. Chem. Soc. Rev. 2020, 49, 3107–3141.

[28]

Yoon, M.; Suh, K.; Kim, H.; Kim, Y.; Selvapalam, N.; Kim, K. High and highly anisotropic proton conductivity in organic molecular porous materials. Angew. Chem., Int. Ed. 2011, 50, 7870–7873.

[29]

Liang, Y.; Li, E.; Wang, K. Y.; Guan, Z. J.; He, H. H.; Zhang, L. L.; Zhou, H. C.; Huang, F. H.; Fang, Y. Organo-macrocycle-containing hierarchical metal-organic frameworks and cages: Design, structures, and applications. Chem. Soc. Rev. 2022, 51, 8378–8405.

[30]

Barrow, S. J.; Kasera, S.; Rowland, M. J.; Del Barrio, J.; Scherman, O. A. Cucurbituril-based molecular recognition. Chem. Rev. 2015, 115, 12320–12406.

[31]

Chio, W. I. K.; Xie, H. M.; Zhang, Y. W.; Lan, Y.; Lee, T. C. SERS biosensors based on cucurbituril-mediated nanoaggregates for wastewater-based epidemiology. TrAC Trends Analyt. Chem. 2022, 146, 116485.

[32]

Cukierman, S. Et tu, Grotthuss! And other unfinished stories. Biochim. Biophys. Acta Bioenerg. 2006, 1757, 876–885.

[33]

Kreuer, K. D.; Rabenau, A.; Weppner, W. Vehicle mechanism, a new model for the interpretation of the conductivity of fast proton conductors. Angew. Chem., Int. Ed. 1982, 21, 208–209.

[34]

Cheng, Y. D.; Ying, Y. P.; Japip, S.; Jiang, S. D.; Chung, T. S.; Zhang, S.; Zhao, D. Advanced porous materials in mixed matrix membranes. Adv. Mater. 2018, 30, 1802401.

[35]

Feng, L.; Hou, H. B.; Zhou, H. UiO-66 derivatives and their composite membranes for effective proton conduction. Dalton Trans. 2020, 49, 17130–17139.

[36]

He, G. W.; Nie, L. L.; Han, X.; Dong, H.; Li, Y. F.; Wu, H.; He, X. Y.; Hu, J. B.; Jiang, Z. Y. Constructing facile proton-conduction pathway within sulfonated poly(ether ether ketone) membrane by incorporating poly(phosphonic acid)/silica nanotubes. J. Power Sources. 2014, 259, 203–212.

[37]

Kim, J.; Jung, I. S.; Kim, S. Y.; Lee, E.; Kang, J. K.; Sakamoto, S.; Yamaguchi, K.; Kim, K. New cucurbituril homologues:  Syntheses, isolation, characterization, and X-ray crystal structures of cucurbit[n]uril (n = 5, 7, and 8). J. Am. Chem. Soc. 2000, 122, 540–541.

[38]

Jansen, K.; Buschmann, H. J.; Wego, A.; Döpp, D.; Mayer, C.; Drexler, H. J.; Holdt, H. J.; Schollmeyer, E. Cucurbit[5]uril, decamethylcucurbit[5]uril, and cucurbit[6]uril. Synthesis, solubility, and amine complex formation. J. Incl. Phenom. Macrocycl. Chem. 2001, 39, 357–363.

[39]

Yang, P. F.; Wu, H.; Khan, N. A.; Shi, B. B.; He, X. Y.; Cao, L.; Mao, X. L.; Zhao, R.; Qiu, M.; Jiang, Z. Y. Intrinsic proton conductive deoxyribonucleic acid (DNA) intercalated graphene oxide membrane for high-efficiency proton conduction. J. Membr. Sci. 2020, 606, 118136.

[40]

Zhang, P. P.; Li, W.; Wang, L.; Gong, C. L.; Ding, J. H.; Huang, C. S.; Zhang, X. D.; Zhang, S. J.; Wang, L.; Bu, W. F. Polydopamine-modified sulfonated polyhedral oligomeric silsesquioxane: An appealing nanofiller to address the trade-off between conductivity and stabilities for proton exchange membrane. J. Membr. Sci. 2020, 596, 117734.

[41]

Guan, Z. F.; Jin, Y. Q.; Shi, S.; Jin, B. Y.; Zhang, M. S.; Zhao, L. H. Self-assembled proton conduction networks consisting of SPEEK, NH2-POSS, and IL with enhanced proton conduction and decreased IL loss. Polymer 2022, 254, 125011.

[42]

Wu, J.; Nie, S. J.; Liu, H.; Gong, C. L.; Zhang, Q. Y.; Xu, Z. S.; Liao, G. F. Design and development of nucleobase modified sulfonated poly(ether ether ketone) membranes for high-performance direct methanol fuel cells. J. Mater. Chem. A 2022, 10, 19914–19924.

[43]

Tang, M. J.; Liu, M. L.; Wang, D. A.; Shao, D. D.; Wang, H. J.; Cui, Z. L.; Cao, X. L.; Sun, S. P. Precisely patterned nanostrand surface of cucurbituril[n]-based nanofiltration membranes for effective alcohol–water condensation. Nano Lett. 2020, 20, 2717–2723.

[44]

Cao, L.; Shen, X. H.; Yang, X.; Zhang, B.; Li, Z. Y.; Gang, M. Y.; Wang, C. B.; Wu, H.; Jiang, Z. Y. Enhanced proton conductivity of proton exchange membranes by incorporating phosphorylated hollow titania spheres. RSC Adv. 2016, 6, 68407–68415.

[45]

Singha, S.; Jana, T. Structure and properties of polybenzimidazole/silica nanocomposite electrolyte membrane: Influence of organic/inorganic interface. ACS Appl. Mater. Interfaces 2014, 6, 21286–21296.

[46]

Cao, L.; He, X. Y.; Jiang, Z. Y.; Li, X. Q.; Li, Y. F.; Ren, Y. X.; Yang, L. X.; Wu, H. Channel-facilitated molecule and ion transport across polymer composite membranes. Chem. Soc. Rev. 2017, 46, 6725–6745.

[47]

Alashkar, A.; Al-Othman, A.; Tawalbeh, M.; Qasim, M. A critical review on the use of ionic liquids in proton exchange membrane fuel cells. Membranes 2022, 12, 178.

[48]

Mondal, S.; Agam, Y.; Nandi, R.; Amdursky, N. Exploring long-range proton conduction, the conduction mechanism and inner hydration state of protein biopolymers. Chem. Sci. 2020, 11, 3547–3556.

[49]

Biedermann, F.; Uzunova, V. D.; Scherman, O. A.; Nau, W. M.; De Simone, A. Release of high-energy water as an essential driving force for the high-affinity binding of cucurbit[n]urils. J. Am. Chem. Soc. 2012, 134, 15318–15323.

[50]

Xue, Q.; Yang, D. J.; Wang, J.; Li, B.; Ming, P. W.; Zhang, C. M. Enhanced mass transfer and proton conduction of cathode catalyst layer for proton exchange membrane fuel cell through filling polyhedral oligomeric silsesquioxane. J. Power Sources 2021, 487, 229413.

Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 15 May 2023
Revised: 09 July 2023
Accepted: 16 July 2023
Published: 19 August 2023
Issue date: February 2024

Copyright

© The Author(s) 2023

Acknowledgements

Acknowledgements

This work was supported by the Royal Society (No. RGS\R2\202203Lan_4824933) and the Engineering and Physical Sciences Research Council (Nos. EP/N509577/1, EP/T517793/1, and EP/S03305X/1).

Rights and permissions

Copyright: © 2023 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return