Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Nanoscale materials are gaining massive attention in recent years due to their potential to alleviate the present electrochemical electrode constraints. Possessing high conductivity (both thermally and electrically), high chemical and electrochemical stability, exceptional mechanical strength and flexibility, high specific surface area, large charge storage capacity, and excellent ion-adsorption, carbon nanotubes (CNTs) remain one of the most researched of other nanoscale materials for electrochemical energy storage. Rather than having them packed at random, CNTs perform better when packed/grown to order, vertically or horizontally aligned to a substrate. This study presents an overview of the impact of CNT alignment on the electrochemical performance of lithium-ion batteries (LIBs). The unique properties of vertically aligned CNTs (VACNTs) for LIB application were discussed. Furthermore, the mechanisms of charge storage and electrochemical performances in VACNT-based (pristine and composites) anodes and cathodes of LIBs were succinctly reviewed. In the end, the existing challenges and future directions in the field were also briefly discussed.
Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2008, 47, 2930–2946.
Pomerantseva, E.; Bonaccorso, F.; Feng, X. L.; Cui, Y.; Gogotsi, Y. Energy storage: The future enabled by nanomaterials. Science 2019, 366, eaan8285.
Majdi, H. S.; Latipov, Z. A.; Borisov, V.; Yuryevna, N. O.; Kadhim, M. M.; Suksatan, W.; Khlewee, I. H.; Kianfar, E. Nano and battery anode: A review. Nanoscale Res. Lett. 2021, 16, 177.
Sun, Z. H.; Shu, M.; Li, J. B.; Liu, B.; Yao, H. Y.; Guan, S. W.; Sun, Z. H. Carbon nanotube-hyperbranched polymer core–shell nanowires with highly accessible redox-active sites for fast-charge organic lithium batteries. J. Energy Chem. 2023, 78, 30–36.
Darkwa, K. M.; Ampong, D. N.; Boamah, R.; Akromah, S.; Amedalor, R.; Agyei-Tuffour, B.; Dodoo-Arhin, D.; Goosen, N. J.; Gupta, R. K. Nanowires for electrochemical energy storage applications. Nanowires 2023, 113–134.
Wang, G. X.; Shen, X. P.; Yao, J.; Park, J. Graphene nanosheets for enhanced lithium storage in lithiumion batteries. Carbon 2009, 47, 2049–2053.
Mo, R. W.; Tan, X. Y.; Li, F.; Tao, R.; Xu, J. H.; Kong, D. J.; Wang, Z. Y.; Xu, B.; Wang, X.; Wang, C. M. et al. Tin-graphene tubes as anodes for lithium-ion batteries with high volumetric and gravimetric energy densities. Nat. Commun. 2020, 11, 1374.
Mu, Y. B.; Han, M. S.; Li, J. Y.; Liang, J. B.; Yu, J. Growing vertical graphene sheets on natural graphite for fast charging lithium-ion batteries. Carbon 2021, 173, 477–484.
Tian, M. Y.; Ben, L.; Jin, Z.; Ji, H. X.; Yu, H. L.; Zhao, W. W.; Huang, X. J. Excellent low-temperature electrochemical cycling of an anode consisting of Si nanoparticles seeded in Sn nanowires for lithium-ion batteries. Electrochim. Acta 2021, 396, 139224.
Nam, K. T.; Kim, D.; Yoo, P. J.; Chiang, C.; Meethong, N.; Hammond, P. T.; Chiang, Y.; Belcher, A. M. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 2006, 80, 885–888.
Zhong, Y.; Deng, K.; Zheng, J.; Zhang, T. T.; Liu, P.; Lv, X. B.; Tian, W.; Ji, J. Y. One-step growth of the interconnected carbon nanotubes/graphene hybrids from cuttlebone-derived bi-functional catalyst for lithium-ion batteries. J. Mater. Sci. Technol. 2023, 149, 205–213.
Chen, T.; Liu, B. C.; Zheng, M. L.; Luo, Y. S. Suspensions based on LiFePO4/carbon nanotubes composites with three-dimensional conductive network for lithium-ion semi-solid flow batteries. J. Energy Storage 2023, 57, 106300.
Zhang, M. M.; Chen, J. Y.; Li, H.; Wang, C. R. Recent progress in Li-ion batteries with TiO2 nanotube anodes grown by electrochemical anodization. Rare Met. 2021, 40, 249–271.
Yin, H.; Li, Q. W.; Cao, M. L.; Zhang, W.; Zhao, H.; Li, C.; Huo, K. F.; Zhu, M. Q. Nanosized-bismuth-embedded 1D carbon nanofibers as high-performance anodes for lithium-ion and sodium-ion batteries. Nano Res. 2017, 10, 2156–2167.
Zhang, T.; Qiu, D. P.; Hou, Y. L. Free-standing and consecutive ZnSe@carbon nanofibers architectures as ultra-long lifespan anode for flexible lithium-ion batteries. Nano Energy. 2022, 94, 106909.
Yu, S. X.; Guo, B. B.; Zeng, T. B.; Qu, H. Q.; Yang, J. L.; Bai, J. M. Graphene-based lithium-ion battery anode materials manufactured by mechanochemical ball milling process: A review and perspective. Compos. Part B: Eng. 2022, 246, 110232.
Sun, X.; Yang, C. K.; Zhao, Y. J.; Li, Y.; Shang, Z. C.; Zhou, H. H.; Liu, W.; Luo, L.; Sun, X. M. Ultrathin aluminum nanosheets grown on carbon nanotubes for high performance lithium Ion batteries. Adv. Funct. Mater. 2022, 32, 2109112.
Chang, C. B.; Tsai, C. Y.; Chen, K. T.; Tuan, H. Y. Solution-grown phosphorus-hyperdoped silicon nanowires/carbon nanotube bilayer fabric as a high-performance lithium-ion battery anode. ACS Appl. Energy Mater. 2021, 4, 3160–3168.
Shi, J.; Jiang, X. S.; Ban, B. Y.; Li, J. W.; Chen, J. Carbon nanotubes-enhanced lithium storage capacity of recovered silicon/carbon anodes produced from solar-grade silicon kerf scrap. Electrochim. Acta 2021, 381, 138269.
Tian, F.; Nie, W.; Zhong, S. W.; Liu, X. L.; Tang, X. D.; Zhou, M. M.; Guo, Q. K.; Hu, S. Highly ordered carbon nanotubes to improve the conductivity of LiNi0.8Co0.15Al0.05O2 for Li-ion batteries. J. Mater. Sci. 2020, 55, 12082–12090.
Gupta, N.; Gupta, S. M.; Sharma, S. K. Carbon nanotubes: Synthesis, properties, and engineering applications. Carbon Lett. 2019, 29, 419–447.
Inoue, Y.; Hayashi, K.; Karita, M.; Nakano, T.; Shimamura, Y.; Shirasu, K.; Yamamoto, G.; Hashida, T. Study on the mechanical and electrical properties of twisted CNT yarns fabricated from CNTs with various diameters. Carbon 2021, 176, 400–410.
Okwundu, O. S.; Aniekwe, E. U.; Nwanno, C. E. Unlimited potentials of carbon: Different structures and uses (a review). Metall. Mater. Eng. 2018, 24, 145–171.
Hsia, B.; Marschewski, J.; Wang, S.; In, J. B.; Carraro, C.; Poulikakos, D.; Grigoropoulos, C. P.; Maboudian, R. Highly flexible, all solid-state micro-supercapacitors from vertically aligned carbon nanotubes. Nanotechnology 2014, 25, 055401.
Reit, R.; Nguyen, J.; Ready, W. J. Growth time performance dependence of vertically aligned carbon nanotube supercapacitors grown on aluminum substrates. Electrochim. Acta. 2013, 91, 96–100.
Wang, X. H.; Sun, L. M.; Susantyoko, R. A.; Fan, Y.; Zhang, Q. Ultrahigh volumetric capacity lithium ion battery anodes with CNT-Si film. Nano Energy 2014, 8, 71–77.
Sun, L. M.; Wang, X. H.; Wang, Y. R.; Zhang, Q. Roles of carbon nanotubes in novel energy storage devices. Carbon 2017, 122, 462–474.
Huang, S.; Du, X. F.; Ma, M. B.; Xiong, L. L. Recent progress in the synthesis and applications of vertically aligned carbon nanotube materials. Nanotechnol. Rev. 2021, 10, 1592–1623.
Sharma, P.; Pavelyev, V.; Kumar, S.; Mishra, P.; Islam, S. S.; Tripathi, N. Analysis on the synthesis of vertically aligned carbon nanotubes: Growth mechanism and techniques. J. Mater. Sci. Mater. Electr. 2020, 31, 4399–4443.
Abdollahi, A.; Abnavi, A.; Ghasemi, S.; Mohajerzadeh, S.; Sanaee, Z. Flexible free-standing vertically aligned carbon nanotube on activated reduced graphene oxide paper as a high performance lithium ion battery anode and supercapacitor. Electrochim. Acta. 2019, 320, 134598.
Welna, D. T.; Qu, L. T.; Taylor, B. E.; Dai, L. M.; Durstock, M. F. Vertically aligned carbon nanotube electrodes for lithium-ion batteries. J. Power Sources 2011, 196, 1455–1460.
Futaba, D. N.; Hata, K.; Yamada, T.; Hiraoka, T.; Hayamizu, Y.; Kakudate, Y.; Tanaike, O.; Hatori, H.; Yumura, M.; Iijima, S. Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes. Nat. Mater. 2006, 5, 987–994.
Honda, Y.; Haramoto, T.; Takeshige, M.; Shiozaki, H.; Kitamura, T.; Ishikawa, M. Aligned MWCNT sheet electrodes prepared by transfer methodology providing high-power capacitor performance. Electrochem. Solid-State Lett. 2007, 10, A106–A110.
Kasavajjula, U.; Wang, C. S.; Appleby, A. J. Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J. Power Sources 2007, 163, 1003–1039.
Wang, W.; Epur, R.; Kumta, P. N. Vertically aligned silicon/carbon nanotube (VASCNT) arrays: Hierarchical anodes for lithium-ion battery. Electrochem. Commun. 2011, 13, 429–432.
Li, S. S.; Luo, Y. H.; Lv, W.; Yu, W. J.; Wu, S. D.; Hou, P. X.; Yang, Q. H.; Meng, Q. B.; Liu, C.; Cheng, H. M. Vertically aligned carbon nanotubes grown on graphene paper as electrodes in lithium-ion batteries and dye-sensitized solar cells. Adv. Energy Mater. 2011, 1, 486–490.
Jiang, H. F.; Wei, Z. X.; Cai, X. Y.; Lai, L. F.; Ma, J. M.; Huang, W. A cathode for Li-ion batteries made of vanadium oxide on vertically aligned carbon nanotube arrays/graphene foam. Chem. Eng. J. 2019, 359, 1668–1676.
Dörfler, S.; Hagen, M.; Althues, H.; Tübke, J.; Kaskel, S.; Hoffmann, M. J. High capacity vertical aligned carbon nanotube/sulfur composite cathodes for lithium-sulfur batteries. Chem. Commun. 2012, 48, 4097–4099.
Li, X. L.; Zhang, J. X.; Qi, G. C.; Cheng, J. L.; Wang, B. Vertically aligned N-doped carbon nanotubes arrays as efficient binder-free catalysts for flexible Li-CO2 batteries. Energy Storage Mater. 2021, 35, 148–156.
Abdollahi, A.; Abnavi, A.; Ghasemi, F.; Ghasemi, S.; Sanaee, Z.; Mohajerzadeh, S. Facile synthesis and simulation of MnO2 nanoflakes on vertically aligned carbon nanotubes, as a high-performance electrode for Li-ion battery and supercapacitor. Electrochim. Acta. 2021, 390, 138826.
Zou, Q. M.; Deng, L. M.; Li, D. W.; Zhou, Y. S.; Golgir, H. R.; Keramatnejad, K.; Fan, L. S.; Jiang, L.; Silvain, J. F.; Lu, Y. F. Thermally stable and electrically conductive, vertically aligned carbon nanotube/silicon infiltrated composite structures for high-temperature electrodes. ACS Appl. Mater. Interfaces 2017, 9, 37340–37349.
Hahm, M. G.; Hashim, D. P.; Vajtai, R.; Ajayan, P. M. A review: Controlled synthesis of vertically aligned carbon nanotubes. Carbon Lett. 2011, 12, 185–193.
Liu, Q. X.; Shi, X. F.; Jiang, Q. Y.; Li, R.; Zhong, S.; Zhang, R. F. Growth mechanism and kinetics of vertically aligned carbon nanotube arrays. EcoMat. 2021, 3, e12118.
Gangele, A.; Sharma, C. S.; Pandey, A. K. Synthesis of patterned vertically aligned carbon nanotubes by PECVD using different growth techniques: A review. J. Nanosci. Nanotechnol. 2017, 17, 2256–2273.
Shi, W. B.; Plata, D. L. Vertically aligned carbon nanotubes: Production and applications for environmental sustainability. Green Chem. 2018, 20, 5245–5260.
Wang, X.; Wang, T. Y.; Borovilas, J.; He, X. D.; Du, S. Y.; Yang, Y. Vertically-aligned nanostructures for electrochemical energy storage. Nano Res. 2019, 12, 2002–2017.
Zhang, Q.; Huang, J. Q.; Zhao, M. Q.; Qian, W. Z.; Wei, F. Carbon nanotube mass production: Principles and processes. ChemSusChem 2011, 4, 864–889.
Su, F. B.; Zhao, X. S.; Wang, Y.; Zeng, J. H.; Zhou, Z. C.; Lee, J. Y. Synthesis of graphitic ordered macroporous carbon with a three-dimensional interconnected pore structure for electrochemical applications. J. Phys. Chem. B. 2005, 109, 20200–20206.
Tomar, R.; Abdala, A. A.; Chaudhary, R. G.; Singh, N. B. Photocatalytic degradation of dyes by nanomaterials. Mater. Today Proc. 2020, 29, 967–973.
Leslie-Pelecky, D. L.; Rieke, R. D. Magnetic properties of nanostructured materials. Chem. Mater. 1996, 8, 1770–1783.
Krishnan, S. K.; Singh, E.; Singh, P.; Meyyappan, M.; Nalwa, H. S. A review on graphene-based nanocomposites for electrochemical and fluorescent biosensors. RSC Adv. 2019, 9, 8778–8881.
Geoffrion, L. D.; Guisbiers, G. Quantum confinement: Size on the grill! J. Phys. Chem. Solids 2020, 140, 109320.
Wu, Q.; Miao, W. S.; Zhang, Y. D.; Gao, H. J.; Hui, D. Mechanical properties of nanomaterials: A review. Nanotechnol. Rev. 2020, 9, 259–273.
Lai, C. M.; Lia, L. Y.; Luo, B. Y.; Shen, J. W.; Shao, J. W. Current advances and prospects in carbon nanomaterials-based drug deliver systems for cancer therapy. Curr. Med. Chem. 2023, 30, 2710–2733.
Khorsandi, Z.; Borjian-Boroujeni, M.; Yekani, R.; Varma, R. S. Carbon nanomaterials with chitosan: A winning combination for drug delivery systems. J. Drug Deliv. Sci. Technol. 2021, 66, 102847.
Li, Z.; Xu, K.; Qin, L. L.; Zhao, D. C.; Yang, N. L.; Wang, D.; Yang, Y. Hollow nanomaterials in advanced drug delivery systems: From single-to multiple shells. Adv. Mater. 2022, 35, 2203890.
Alipour, A.; Gholami, A.; Kalashgrani, Y. Nano protein and peptides for drug delivery and anticancer agents. J. Adv. Appl. NanoBio-Technol. 2022, 3, 60–64.
Zhang, Q. F.; Uchaker, E.; Candelaria, S. L.; Cao, G. Z. Nanomaterials for energy conversion and storage. Chem. Soc. Rev. 2013, 42, 3127–3171.
Liu, X. H.; Zhong, L.; Huang, S.; Mao, S. X.; Zhu, T.; Huang, J. Y. Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 2012, 6, 1522–1531.
Manthiram, A.; Murugan, A. V.; Sarkar, A.; Muraliganth, T. Nanostructured electrode materials for electrochemical energy storage and conversion. Energy Environ. Sci. 2008, 1, 621–638.
Gan, Z. H.; Yin, J. Y.; Xu, X.; Cheng, Y. H.; Yu, T. Nanostructure and advanced energy storage: Elaborate material designs lead to high-rate pseudocapacitive ion storage. ACS Nano. 2022, 16, 5131–5152.
Chen, J. M.; Lin, Y. P.; Wang, H.; Li, J. M.; Liu, S. J.; Lee, J.-M.; Zhao, Q. 2D molybdenum compounds for electrocatalytic energy conversion. Adv. Funct. Mater. 2023, 33, 2210236.
Shahid, M.; Javed, H. M. A.; Ahmad, M. I.; Qureshi, A. A.; Khan, M. I.; Alnuwaiser, M. A.; Ahmed, A.; Khan, M. A.; Tag-ElDin, E. S. M.; Shahid, A. et al. A brief assessment on recent developments in efficient electrocatalytic nitrogen reduction with 2D non-metallic nanomaterials. Nanomaterials (Basel) 2022, 12, 3413.
Li, Z. J.; Zhai, L.; Ge, Y. Y.; Huang, Z. Q.; Shi, Z. Y.; Liu, J. W.; Zhai, W.; Liang, J. Z.; Zhang, H. Wet-chemical synthesis of two-dimensional metal nanomaterials for electrocatalysis. Natl. Sci. Rev. 2022, 9, nwab142.
Liu, Y. Y.; Wang, Y. H.; Zhao, S. L.; Tang, Z. Y. Metal-organic framework-based nanomaterials for electrocatalytic oxygen evolution. Small Methods 2022, 6, 2200773.
Eivazzadeh-Keihan, R.; Noruzi, E. B.; Chidar, E.; Jafari, M.; Davoodi, F.; Kashtiaray, A.; Gorab, M. G.; Hashemi, S. M.; Javanshir, S.; Cohan, R. A. et al. Applications of carbon-based conductive nanomaterials in biosensors. Chem. Eng. J. 2022, 442, 136183.
Song, F. X.; Xu, X. J.; Ding, H. Z.; Yu, L.; Huang, H. C.; Hao, J. T.; Wu, C. H.; Liang, R.; Zhang, S. H. Recent progress in nanomaterial-based biosensors and theranostic nanomedicine for bladder cancer. Biosensors (Basel) 2023, 13, 106.
Holzinger, M.; Le Goff, A.; Cosnier, S. Nanomaterials for biosensing applications: A review. Front. Chem. 2014, 2, 63.
Yang, G. H.; Liu, F. L.; Zhao, J. Y.; Fu, L. J.; Gu, Y. Q.; Qu, L. L.; Zhu, C. Z.; Zhu, J. J.; Lin, Y. H. MXenes-based nanomaterials for biosensing and biomedicine. Coord. Chem. Rev. 2023, 479, 215002.
Shahid-Ul-Islam; Bairagi, S.; Kamali, M. R. Review on green biomass-synthesized metallic nanoparticles and composites and their photocatalytic water purification applications: Progress and perspectives. Chem. Eng. J. Adv. 2023, 14, 100460.
Yu, S. J.; Tang, H.; Zhang, D.; Wang, S. Q.; Qiu, M. Q.; Song, G.; Fu, D.; Hu, B. W.; Wang, X. K. MXenes as emerging nanomaterials in water purification and environmental remediation. Sci. Total Environ. 2022, 811, 152280.
Singh, K. K.; Singh, A.; Rai, S. A study on nanomaterials for water purification. Mater. Today Proc. 2022, 51, 1157–1163.
Savage, N.; Diallo, M. S. Nanomaterials and water purification: Opportunities and challenges. J. Nanopart. Res. 2005, 7, 331–342.
Rahman, M. A.; Song, G. S.; Bhatt, A. I.; Wong, Y. C.; Wen, C. E. Nanostructured silicon anodes for high-performance lithium-ion batteries. Adv. Funct. Mater. 2016, 26, 647–678.
Ge, M. Z.; Cao, C. Y.; Biesold, G. M.; Sewell, C. D.; Hao, S. M.; Huang, J. Y.; Zhang, W.; Lai, Y. K.; Lin, Z. Q. Recent advances in silicon-based electrodes: From fundamental research toward practical applications. Adv. Mater. 2021, 33, 2004577.
Wu, H.; Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012, 7, 414–429.
Guo, Y. G.; Hu, J. S.; Wan, L. J. Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 2008, 20, 2878–2887.
Jiao, F.; Bruce, P. G. Mesoporous crystalline β-MnO2-A reversible positive electrode for rechargeable lithium batteries. Adv. Mater. 2007, 19, 657–660.
Zhu, S.; Sheng, J.; Chen, Y.; Ni, J. F.; Li, Y. Carbon nanotubes for flexible batteries: Recent progress and future perspective. Natl. Sci. Rev. 2021, 8, nwaa261.
Tîlmaciu, C. M.; Morris, M. C. Carbon nanotube biosensors. Front. Chem. 2015, 3, 59.
Thostenson, E. T.; Ren, Z. F.; Chou, T. W. Advances in the science and technology of carbon nanotubes and their composites: A review. Compos. Sci. Technol. 2001, 61, 1899–1912.
Lin, C. T.; Lee, C. Y.; Chin, T. S.; Xiang, R.; Ishikawa, K.; Shiomi, J.; Maruyama, S. Anisotropic electrical conduction of vertically-aligned single-walled carbon nanotube films. Carbon 2011, 49, 1446–1452.
Ganesh, E. N. Single walled and multi walled carbon nanotube structure, synthesis and applications. Int. J. Innov. Technol. Explor. Eng. 2013, 2, 311–320.
Devi, R.; Gill, S. S. A squared bossed diaphragm piezoresistive pressure sensor based on CNTs for low pressure range with enhanced sensitivity. Microsyst. Technol. 2021, 27, 3225–3233.
Baughman, R. H.; Zakhidov, A. A.; De Heer, W. A. Carbon nanotubes—The route toward applications. Science 2002, 297, 787–792.
Spitalsky, Z.; Tasis, D.; Papagelis, K.; Galiotis, C. Carbon nanotube-polymer composites: Chemistry, processing, mechanical, and electrical properties. Prog. Polym. Sci. 2010, 35, 357–401.
Collins, P. G.; Avouris, P. The electronic properties of carbon nanotubes. Contemp. Concep. Conden. Matt. Sci., 2008, 3, 49–81.
Flygare, M.; Svensson, K. Influence of crystallinity on the electrical conductivity of individual carbon nanotubes. Carbon Trends. 2021, 5, 100125.
Collins, P. G.; Arnold, M. S.; Avouris, P. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 2001, 292, 706–709.
Das, S. A review on Carbon Nano-tubes—A new era of nanotechnology. Int. J. Emerg. Technol. Adv. Eng. 2013, 3, 774–783.
Treacy, M. M. J.; Ebbesen, T. W.; Gibson, J. M. Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 1996, 381, 678–680.
Abdalla, M.; Dean, D.; Theodore, M.; Fielding, J.; Nyairo, E.; Price, G. Magnetically processed carbon nanotube/epoxy nanocomposites: Morphology, thermal, and mechanical properties. Polymer 2010, 51, 1614–1620.
Lan, Y. C.; Wang, Y.; Ren, Z. F. Physics and applications of aligned carbon nanotubes. Adv. Phys. 2011, 60, 553–678.
Yu, M. F.; Files, B. S.; Arepalli, S.; Ruoff, R. S. Tensile loading of ropes of single wall carbon nanotubes and their mechanical properties. Phys. Rev. Lett. 2000, 84, 5552–5555.
Ruoff, R. S.; Tersoff, J.; Lorents, D. C.; Subramoney, S.; Chan, B. Radial deformation of carbon nanotubes by van der Waals forces. Nature 1993, 364, 514–516.
Pothnis, J. R.; Kalyanasundaram, D.; Gururaja, S. Enhancement of open hole tensile strength via alignment of carbon nanotubes infused in glass fiber-epoxy-CNT multi-scale composites. Compos. Part A: Appl. Sci. Manuf. 2021, 140, 106155.
Chen, S.; Tao, K. J.; Chen, X.; Meng, Y. Q.; Wang, M. Y.; Zhou, J.; Chen, C.; Wang, Y. L.; Hui, K. N.; Bielawski, C. W. et al. Regulating lithium plating and stripping by using vertically aligned graphene/CNT channels decorated with ZnO particles. Chem.—Eur. J. 2021, 27, 15706–15715.
Sun, X. M.; Chen, T.; Yang, Z. B.; Peng, H. S. The alignment of carbon nanotubes: An effective route to extend their excellent properties to macroscopic scale. Acc. Chem. Res. 2013, 46, 539–549.
Zhang, H.; Cao, G. P.; Yang, Y. S.; Gu, Z. N. Comparison between electrochemical properties of aligned carbon nanotube array and entangled carbon nanotube electrodes. J. Electrochem. Soc. 2008, 155, K19–K22.
Rahman, R.; Servati, P. Effects of inter-tube distance and alignment on tunnelling resistance and strain sensitivity of nanotube/polymer composite films. Nanotechnology 2012, 23, 055703.
Thostenson, E. T.; Chou, T. W. Aligned multi-walled carbon nanotube-reinforced composites: Processing and mechanical characterization. J. Phys. D Appl. Phys. 2002, 35, L77–L80.
Mei, H.; Bai, Q. L.; Dassios, K.; Li, H. Q.; Cheng, L. F.; Galiotis, C. Morphological and microstructural property comparison of bulk and aligned Cvd-grown carbon nanotubes. Adv. Compos. Lett. 2014, 23, 10.1177/096369351402300101.
Chen, J. J. Effects of structure, purity, and alignment on the heat conduction properties of a nanostructured material comprising carbon nanotubes. DYSONA Appl. Sci. 2022, 3, 46–55.
Cao, Q.; Hur, S. H.; Zhu, Z. T.; Sun, Y. G.; Wang, C. J.; Meitl, M. A.; Shim, M.; Rogers, J. A. Highly bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductors with elastomeric dielectrics. Adv. Mater. 2006, 18, 304–309.
Ishikawa, F. N.; Chang, H. K.; Ryu, K.; Chen, P. C.; Badmaev, A.; De Arco, L. G.; Shen, G. Z.; Zhou, C. W. Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates. ACS Nano 2009, 3, 73–79.
Seah, C. M.; Chai, S. P.; Mohamed, A. R. Synthesis of aligned carbon nanotubes. Carbon 2011, 49, 4613–4635.
Zhang, M.; Atkinson, K. R.; Baughman, R. H. Multifunctional carbon nanotube yarns by downsizing an ancient technology. Science 2004, 306, 1358–1361.
Liu, K.; Sun, Y. H.; Chen, L.; Feng, C.; Feng, X. F.; Jiang, K. L.; Zhao, Y. G.; Fan, S. S. Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties. Nano Lett. 2008, 8, 700–705.
Goh, P. S.; Ismail, A. F.; Ng, B. C. Directional alignment of carbon nanotubes in polymer matrices: Contemporary approaches and future advances. Compos. Part A: Appl. Sci. Manuf. 2014, 56, 103–126.
Goh, G. L.; Agarwala, S.; Yeong, W. Y. Directed and on-demand alignment of carbon nanotube: A review toward 3D printing of electronics. Adv. Mater. Interfaces 2019, 6, 1801318.
Ma, Y. F.; Wang, B.; Wu, Y. P.; Huang, Y.; Chen, Y. S. The production of horizontally aligned single-walled carbon nanotubes. Carbon 2011, 49, 4098–4110.
Azam, M. A.; Manaf, N. S. A.; Talib, E.; Bistamam, M. S. A. Aligned carbon nanotube from catalytic chemical vapor deposition technique for energy storage device: A review. Ionics 2013, 19, 1455–1476.
Zhang, R. F.; Zhang, Y. Y.; Wei, F. Horizontally aligned carbon nanotube arrays: Growth mechanism, controlled synthesis, characterization, properties, and applications. Chem. Soc. Rev. 2017, 46, 3661–3715.
Yin, Z. F.; Ding, A.; Zhang, H.; Zhang, W. The relevant approaches for aligning carbon nanotubes. Micromachines (Basel) 2022, 13, 1863.
Cao, Y. F.; Zhou, T.; Wu, K. J.; Yong, Z. Z.; Zhang, Y. Y. Aligned carbon nanotube fibers for fiber-shaped solar cells, supercapacitors, and batteries. RSC Adv. 2021, 11, 6628–6643.
Kohls, A.; Ditty, M. M.; Dehghandehnavi, F.; Zheng, S. Y. Vertically aligned carbon nanotubes as a unique material for biomedical applications. ACS Appl. Mater. Interfaces 2022, 14, 6287–6306.
Mizuno, K.; Ishii, J.; Kishida, H.; Hayamizu, Y.; Yasuda, S.; Futaba, D. N.; Yumura, M.; Hata, K. A black body absorber from vertically aligned single-walled carbon nanotubes. Proc. Natl. Acad. Sci. USA 2009, 106, 6044–6047.
Paul, S. J.; Elizabeth, I.; Gupta, B. K. Ultrasensitive wearable strain sensors based on a VACNT/PDMS thin film for a wide range of human motion monitoring. ACS Appl. Mater. Interfaces 2021, 13, 8871–8879.
Ertl, G. Press Release, Nobel Prize, Chemie 2019. Nobel Lect. Chem. 2015, 37–69.
Winter, M.; Barnett, B.; Xu, K. Before Li Ion batteries. Chem. Rev. 2018, 118, 11433–11456.
Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.
De Las Casas, C.; Li, W. Z. A review of application of carbon nanotubes for lithium ion battery anode material. J. Power Sources 2012, 208, 74–85.
Lee, S. H.; Yu, S. H.; Lee, J. E.; Jin, A. H.; Lee, D. J.; Lee, N.; Jo, H.; Shin, K.; Ahn, T. Y.; Kim, Y. W. et al. Self-assembled Fe3O4 nanoparticle clusters as high-performance anodes for lithium ion batteries via geometric confinement. Nano Lett. 2013, 13, 4249–4256.
Wang, H. L.; Cui, L. F.; Yang, Y.; Casalongue, H. S.; Robinson, J. T.; Liang, Y. Y.; Cui, Y.; Dai, H. J. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 2010, 132, 13978–13980.a.
Cabana, J.; Monconduit, L.; Larcher, D.; Palacín, M. R. Beyond intercalation-based Li-ion batteries: The state of the art and challenges of electrode materials reacting through conversion reactions. Adv. Mater. 2010, 22, E170–E192.
Su, J.; Gao, Z. G.; Xie, Y. Y.; Zhang, Z. L.; Wang, H. Boosting Li-storage properties of conversion-type anodes for lithium-ion batteries via steric effect of intercalation-type materials: A case of MnCO3. Compos. Part B: Eng. 2021, 212, 108733.
Lee, S.; Song, M.; Kim, S.; Mathew, V.; Sambandam, B.; Hwang, J. Y.; Kim, J. High lithium storage properties in a manganese sulfide anodeviaan intercalation-cum-conversion reaction. J. Mater. Chem. A 2020, 8, 17537–17549.
Yu, S. H.; Feng, X. R.; Zhang, N.; Seok, J.; Abruña, H. D. Understanding conversion-type electrodes for lithium rechargeable batteries. Acc. Chem. Res. 2018, 51, 273–281.
Wang, F.; Robert, R.; Chernova, N. A.; Pereira, N.; Omenya, F.; Badway, F.; Hua, X.; Ruotolo, M.; Zhang, R. G.; Wu, L. J. et al. Conversion reaction mechanisms in lithium ion batteries: Study of the binary metal fluoride electrodes. J. Am. Chem. Soc. 2011, 133, 18828–18836.
Sun, Y. M.; Liu, N.; Cui, Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries. Nat. Energy 2016, 1, 16071.
Goward, G. R.; Taylor, N. J.; Souza, D. C. S.; Nazar, L. F. The true crystal structure of Li17M4 (M = Ge, Sn, Pb)-revised from Li22M5. J. Alloys Compd. 2001, 329, 82–91.
Garcia, A.; Biswas, S.; McNulty, D.; Roy, A.; Raha, S.; Trabesinger, S.; Nicolosi, V.; Singha, A.; Holmes, J. D. One-step grown carbonaceous germanium nanowires and their application as highly efficient lithium-ion battery anodes. ACS Appl. Energy Mater. 2022, 5, 1922–1932.
Chan, C. K.; Patel, R. N.; O’Connell, M. J.; Korgel, B. A.; Cui, Y. Solution-grown silicon nanowires for lithium-ion battery anodes. ACS Nano 2010, 4, 1443–1450.
Wang, F.; Li, P.; Li, W.; Wang, D. H. Electrochemical synthesis of multidimensional nanostructured silicon as a negative electrode material for lithium-ion battery. ACS Nano 2022, 16, 4689–7700.
Gavrilin, I. M.; Kudryashova, Y. O.; Kuz’mina, A. A.; Kulova, T. L.; Skundin, A. M.; Emets, V. V.; Volkov, R. L.; Dronov, A. A.; Borgardt, N. I.; Gavrilov, S. A. High-rate and low-temperature performance of germanium nanowires anode for lithium-ion batteries. J. Electroanal. Chem. 2021, 888, 115209.
Yang, Z. X.; Dong, Y. J.; Liu, C.; Feng, X. Q.; Jin, H. C.; Ma, X. H.; Ding, F.; Li, B. Q.; Bai, L. Y.; Ouyang, Y. G. et al. Design and synthesis of high-silicon silicon suboxide nanowires by radio-frequency thermal plasma for high-performance lithium-ion battery anodes. Appl. Surf. Sci. 2023, 614, 156235.
Gao, S. S.; Zhao, T. Y.; Wang, D. X.; Huang, J.; Xiang, Y. L.; Yu, Y. J. Ge nanowires on top of a Ge substrate for applications in anodes of Li and Na ion batteries: A first-principles study. RSC Adv. 2022, 12, 9163–9169.
Chandran, K. S. R. A critical review of silicon nanowire electrodes and their energy storage capacities in Li-ion cells. RSC Adv. 2023, 13, 3947–3957.
Zheng, X.; Miao, X.; Xiao, Y. F.; Chen, Y.; Hu, T.; Gong, X. H.; Wu, C. G.; Wang, G. J.; Hou, Y. J. Synthesis and electrochemical performance of Ag nanowires coating tungsten diselenide as efficient nanocomposite for lithium-ion storage. Mater. Lett. 2023, 336, 133820.
Rashad, M.; Geaney, H. Vapor-solid-solid growth of silicon nanowires using magnesium seeds and their electrochemical performance in Li-ion battery anodes. Chem. Eng. J. 2023, 452, 139397.
Wen, Z. H.; Lu, G. H.; Mao, S.; Kim, H.; Cui, S. M.; Yu, K. H.; Huang, X. K.; Hurley, P. T.; Mao, O.; Chen, J. H. Silicon nanotube anode for lithium-ion batteries. Electrochem. Commun. 2013, 9, 67–70.
Song, T.; Xia, J. L.; Lee, J. H.; Lee, D. H.; Kwon, M. S.; Choi, J. M.; Wu, J.; Doo, S. K.; Chang, H.; Park, W. I. et al. Arrays of sealed silicon nanotubes as anodes for lithium ion batteries. Nano Lett. 2010, 10, 1710–1716.
Guo, T.; Luo, G. Y.; Shi, C. Y.; Shi, H. L.; Shi, Z. X.; He, B. F.; Chen, J. B. Thermal burst synthesis of high-performance Si nanotube sheets for lithium-ion batteries. ACS Sustainable Chem. Eng. 2022, 10, 4031–4039.
Kim, J. H.; Kim, S.; Han, J. H.; Seo, S. B.; Choi, Y. R.; Lim, J.; Kim, Y. A. Perspective on carbon nanotubes as conducting agent in lithium-ion batteries: The status and future challenges. Carbon Lett. 2023, 33, 325–333.
Yang, X. X.; Wu, L. W.; Hou, J.; Meng, B. Y.; Ali, R.; Liu, Y. F.; Jian, X. Symmetrical growth of carbon nanotube arrays on FeSiAl micro-flake for enhancement of lithium-ion battery capacity. Carbon 2022, 189, 93–103.
Zhong, S. Y.; Liu, H. Z.; Wei, D. H.; Hu, J.; Zhang, H.; Hou, H. S.; Peng, M. X.; Zhang, G. H.; Duan, H. G. Long-aspect-ratio N-rich carbon nanotubes as anode material for sodium and lithium ion batteries. Chem. Eng. J. 2020, 395, 125054.
Moyer-Vanderburgh, K.; Ma, M. C.; Park, S. J.; Jue, M. L.; Buchsbaum, S. F.; Wu, K. J.; Wood, M.; Ye, J. C.; Fornasiero, F. Growth and performance of high-quality SWCNT forests on Inconel foils as lithium-ion battery anodes. ACS Appl. Mater. Interfaces 2022, 14, 54981–54991.
Chen, H. Y.; Li, M. X.; Li, C. P.; Li, X.; Wu, Y. L.; Chen, X. C.; Wu, J. X.; Li, X. Y.; Chen, Y. M. Electrospun carbon nanofibers for lithium metal anodes: Progress and perspectives. Chin. Chem. Lett. 2022, 33, 141–152.
Zhao, Y.; Yan, J. H.; Yu, J. Y.; Ding, B. Electrospun nanofiber electrodes for lithium-ion batteries. Macromol. Rapid Commun. 2022, 44, 2200740.
Xin, Y.; Mou, H. Y.; Miao, C.; Nie, S. Q.; Wen, M. Y.; He, G. W.; Xiao, W. Encapsulating Sn-Cu alloy particles into carbon nanofibers as improved performance anodes for lithium-ion batteries. J. Alloys Compd. 2022, 922, 166176.
Culebras, M.; Collins, G. A.; Beaucamp, A.; Geaney, H.; Collins, M. N. Lignin/Si hybrid carbon nanofibers towards highly efficient sustainable Li-ion anode materials. Eng. Sci. 2022, 17, 195–203.
Jiao, L. S.; Liu, Z. B.; Sun, Z. H.; Wu, T. S.; Gao, Y. Z.; Li, H. Y.; Li, F. H.; Niu, L. An advanced lithium ion battery based on a high quality graphitic graphene anode and a Li[Ni0.6Co0.2Mn0.2]O2 cathode. Electrochim. Acta 2018, 259, 48–55.
Kukułka, W.; Kierzek, K.; Stankiewicz, N.; Chen, X. C.; Tang, T.; Mijowska, E. Well-designed porous graphene flakes for lithium-ion batteries with outstanding rate performance. Langmuir 2019, 35, 12613–12619.
Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R. K.; Tan, W. K.; Kar, K. K.; Matsuda, A. Recent progress in the synthesis of graphene and derived materials for next generation electrodes of high performance lithium ion batteries. Prog. Energy Combust. Sci. 2019, 75, 100786.
Sun, H.; Varzi, A.; Pellegrini, V.; Dinh, D. A.; Raccichini, R.; Del Rio-Castillo, A. E.; Prato, M.; Colombo, M.; Cingolani, R.; Scrosati, B. et al. How much does size really matter. Exploring the limits of graphene as Li ion battery anode material. Solid State Commun. 2017, 251, 88–93.
Kokai, F.; Sorin, R.; Chigusa, H.; Hanai, K.; Koshio, A.; Ishihara, M.; Koga, Y.; Hasegawa, M.; Imanishi, N.; Takeda, Y. Ultrasonication fabrication of high quality multilayer graphene flakes and their characterization as anodes for lithium ion batteries. Diam. Relat. Mater. 2012, 29, 63–68.
Kim, W. S.; Hwa, Y.; Jeun, J. H.; Sohn, H. J.; Hong, S. H. Synthesis of SnO2 Nano hollow spheres and their size effects in lithium ion battery anode application. J. Power Sources 2013, 225, 108–112.
Wang, F.; Wang, B.; Yu, Z. L.; Lv, Q.; Jin, F.; Bao, C. Y.; Wang, D. L. A simple and green self-conversion method to construct silicon hollow spheres for high-performance Li-ion battery anodes. Electrochim. Acta 2023, 443, 141950.
Pan, Q. C.; Ding, Y. J.; Yan, Z. X.; Cai, Y. Z.; Zheng, F. H.; Huang, Y. G.; Wang, H. Q.; Li, Q. Y. Designed synthesis of Fe3O4@NC yolk–shell hollow spheres as high performance anode material for lithium-ion batteries. J. Alloys Compd. 2020, 821, 153569.
Sun, B.; Chen, Z. X.; Kim, H. S.; Ahn, H.; Wang, G. X. MnO/C core–shell nanorods as high capacity anode materials for lithium-ion batteries. J. Power Sources 2011, 196, 3346–3349.
Van, C. D.; Jeong, J. R.; Yoon, K.; Kang, K.; Lee, M. H. Core–shell structure of Mo-based nanoparticle/carbon nanotube/amorphous carbon composites as high-performance anodes for lithium-ion batteries. ACS Appl. Nano Mater. 2022, 5, 6555–6563.
Su, J. T.; Lin, S. H.; Cheng, C. C.; Cheng, P. Y.; Lu, S. Y. Porous core–shell B-doped silicon-carbon composites as electrode materials for lithium ion capacitors. J. Power Sources 2022, 531, 231345.
An, W. L.; He, P.; Che, Z. Z.; Xiao, C. M.; Guo, E. M.; Pang, C. L.; He, X. Q.; Ren, J. G.; Yuan, G. H.; Du, N. et al. Scalable synthesis of pore-rich Si/C@C core–shell-structured microspheres for practical long-life lithium-ion battery anodes. ACS Appl. Mater. Interfaces 2022, 14, 10308–10318.
Sun, C. H.; Lin, Y. Y.; Li, W. L.; Fan, Y. C.; Liu, H. Y.; Sun, Y. H.; Nan, J. M. In-situ growth of core–shell structure of tremella fuciformis shaped SnS@Sulfur doped carbon composite as anode materials for high performance lithium-ion batteries. J. Alloys Compd. 2023, 935, 168087.
Shi, Q. T.; Zhou, J. H.; Ullah, S.; Yang, X. Q.; Tokarska, K.; Trzebicka, B.; Ta, H. Q.; Rümmeli, M. H. A review of recent developments in Si/C composite materials for Li-ion batteries. Energy Storage Mater. 2021, 34, 735–754.
Yang, X.; Zheng, G. X.; Wang, Q. Y.; Chen, X.; Han, Y.; Zhang, D. Q.; Zhang, Y. C. Functional application of multi-element metal composite materials. J. Alloys Compd. 2022, 895, 162622.
Rehman, W. U.; Jiang, Z. Y.; Qu, Z. G.; Xu, Y. L.; Wang, X.; Ullah, I. Preparation of Mn2SnO4 wrapped with N-doped reduced graphene oxide as a stable anode material for lithium-ion storage. J. Alloys Compd. 2023, 939, 168829.
Yuan, S.; Lai, Q. H.; Duan, X.; Wang, Q. Carbon-based materials as anode materials for lithium-ion batteries and lithium-ion capacitors: A review. J. Energy Storage 2023, 61, 106716.
Wang, Y.; Luo, S. N.; Chen, M.; Wu, L. M. Uniformly confined germanium quantum dots in 3D ordered porous carbon framework for high-performance Li-ion battery. Adv. Funct. Mater. 2020, 30, 2000373.
Wei, C. L.; Wang, Y. S.; Zhang, Y. C.; Tan, L. W.; Qian, Y.; Tao, Y.; Xiong, S. L.; Feng, J. K. Flexible and stable 3D lithium metal anodes based on self-standing MXene/COF frameworks for high-performance lithium-sulfur batteries. Nano Res. 2021, 14, 3576–3584.
Gao, W. L.; Pumera, M. 3D printed nanocarbon frameworks for Li-ion battery cathodes. Adv. Funct. Mater. 2021, 31, 2007285.
Li, Y. J.; Li, J. P.; Xiao, H.; Xie, T. C.; Zheng, W. T.; He, J. L.; Zhu, H. J.; Huang, S. M. A novel 3D Li/Li9Al4/Li-Mg alloy anode for superior lithium metal batteries. Adv. Funct. Mater. 2023, 33, 2213905.
Chen, Y.; Zou, Y. M.; Shen, X. P.; Qiu, J. X.; Lian, J. B.; Pu, J. R.; Li, S.; Du, F. H.; Li, S. Q.; Ji, Z. Y. et al. Ge nanoparticles uniformly immobilized on 3D interconnected porous graphene frameworks as anodes for high-performance lithium-ion batteries. J. Energy Chem. 2022, 69, 161–173.
Burukhin, A.; Brylev, O.; Hany, P.; Churagulov, B. R. Hydrothermal synthesis of LiCoO2 for lithium rechargeable batteries. Solid State Ion. 2002, 151, 259–263.
Cao, Q.; Zhang, H. P.; Wang, G. J.; Xia, Q.; Wu, Y. P.; Wu, H. Q. A novel carbon-coated LiCoO2 as cathode material for lithium ion battery. Electrochem. Commun. 2007, 9, 1228–1232.
Zhang, J.; Xiang, Y. J.; Yu, Y.; Xie, S.; Jiang, G. S.; Chen, C. H. Electrochemical evaluation and modification of commercial lithium cobalt oxide powders. J. Power Sources 2004, 132, 187–194.
Huang, X.; Rui, X. H.; Hng, H. H.; Yan, Q. Y. Vanadium pentoxide-based cathode materials for lithium-ion batteries: Morphology control, carbon hybridization, and cation doping. Part. Part. Syst. Charact. 2015, 32, 276–294.
Tang, X.; Lin, B. H.; Ge, Y.; Ge, Y.; Lu, C. J.; Savilov, S. V.; Aldoshin, S. M.; Xia, H. LiMn2O4 nanorod arrays: A potential three-dimensional cathode for lithium-ion microbatteries. Mater. Res. Bull. 2015, 69, 2–6.
Gnanaraj, J. S.; Pol, V. G.; Gedanken, A.; Aurbach, D. Improving the high-temperature performance of LiMn2O4 spinel electrodes by coating the active mass with MgO via a sonochemical method. Electrochem. Commun. 2003, 5, 940–945.
Eftekhari, A. LiMn2O4 electrode prepared by gold-titanium codeposition with improved cyclability. J. Power Sources 2004, 130, 260–265.
Xu, Y. N.; Chung, S. Y.; Bloking, J. T.; Chiang, Y. M.; Ching, W. Y. Electronic structure and electrical conductivity of undoped LiFePO4. Electrochem. Solid-State Lett. 2004, 7, A131–A134.
Shi, S. Q.; Liu, L. J.; Ouyang, C. Y.; Wang, D. S.; Wang, Z. X.; Chen, L. Q.; Huang, X. J. Enhancement of electronic conductivity of LiFePO4 by Cr doping and its identification by first-principles calculations. Phys. Rev. B 2003, 68, 195108.
Prosini, P. P.; Lisi, M.; Zane, D.; Pasquali, M. Determination of the chemical diffusion coefficient of lithium in LiFePO4. Solid State Ion. 2002, 148, 45–51.
Kang, J.; Mathew, V.; Gim, J.; Kim, S.; Song, J. J.; Im, W. B.; Han, J.; Lee, J. Y.; Kim, J. Pyro-synthesis of a high rate nano-Li3V2(PO4)3/C cathode with mixed morphology for advanced Li-ion batteries. Sci. Rep. 2015, 4, 4047.
Wang, Q. H.; Xu, J. T.; Zhang, W. C.; Mao, M. L.; Wei, Z. X.; Wang, L.; Cui, C. Y.; Zhu, Y. X.; Ma, J. M. Research progress on vanadium-based cathode materials for sodium ion batteries. J. Mater. Chem. A 2018, 6, 8815–8838.
Wang, Y.; Cao, G. Z. Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv. Mater. 2008, 20, 2251–2269.
Wang, S. Q.; Lu, Z. D.; Wang, D.; Li, C. G.; Chen, C. H.; Yin, Y. D. Porous monodisperse V2O5 microspheres as cathode materials for lithium-ion batteries. J. Mater. Chem. 2011, 21, 6365–6369.
Mai, L.; Xu, L.; Han, C. H.; Xu, X.; Luo, Y. Z.; Zhao, S. Y.; Zhao, Y. L. Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries. Nano Lett. 2010, 10, 4750–4755.
Ventrapragada, L. K.; Zhu, J. Y.; Creager, S. E.; Rao, A. M.; Podila, R. A versatile carbon nanotube-based scalable approach for improving interfaces in Li-ion battery electrodes. ACS Omega. 2018, 3, 4502–4508.
Cao, W. J.; Greenleaf, M.; Li, Y. X.; Adams, D.; Hagen, M.; Doung, T.; Zheng, J. P. The effect of lithium loadings on anode to the voltage drop during charge and discharge of Li-ion capacitors. J. Power Sources 2015, 280, 600–605.
Luo, Y. F.; Wang, K.; Li, Q. Q.; Fan, S. S.; Wang, J. P. Macroscopic carbon nanotube structures for lithium batteries. Small 2020, 16, 1902719.
Lu, W.; Goering, A.; Qu, L. T.; Dai, L. M. Lithium-ion batteries based on vertically-aligned carbon nanotube electrodes and ionic liquid electrolytes. Phys. Chem. Chem. Phys. 2012, 14, 12099–12104.
Yang, Z. H.; Wu, H. Q. Electrochemical intercalation of lithium into raw carbon nanotubes. Mater. Chem. Phys. 2001, 71, 7–11.
Zhao, J. J.; Buldum, A.; Han, J.; Lu, J. P. First-principles study of Li-intercalated carbon nanotube ropes. Phys. Rev. Lett. 2000, 85, 1706–1709.
Nishidate, K.; Hasegawa, M. Energetics of lithium ion adsorption on defective carbon nanotubes. Phys. Rev. B 2005, 71, 245418.
Nishidate, K.; Sasaki, K.; Oikawa, Y.; Baba, M.; Hasegawa, M. Density functional electronic structure calculations of lithium ion adsorption on defective carbon nanotubes. e-J. l Surf. Sci. Nanotechnol. 2005, 3, 358–361.
Fagan, S. B.; Guerini, S.; Filho, J. M.; Lemos, V. Lithium intercalation into single-wall carbon nanotube bundles. Microelectron. J. 2005, 36, 499–501.
Senami, M.; Ikeda, Y.; Fukushima, A.; Tachibana, A. Theoretical study of adsorption of lithium atom on carbon nanotube. AIP Adv. 2011, 1, 042106.
Shimoda, H.; Gao, B.; Tang, X. P.; Kleinhammes, A.; Fleming, L.; Wu, Y.; Zhou, O. Lithium intercalation into opened single-wall carbon nanotubes: Storage capacity and electronic properties. Phys. Rev. Lett. 2002, 88, 015502.
Khantha, M.; Cordero, N. A.; Alonso, J. A.; Cawkwell, M.; Girifalco, L. A. Interaction and concerted diffusion of lithium in a (5, 5) carbon nanotube. Phys. Rev. B 2008, 78, 115430.
Yang, J. L.; Liu, H. J.; Chan, C. T. Theoretical study of alkali-atom insertion into small-radius carbon nanotubes to form single-atom chains. Phys. Rev. B 2001, 64, 085420.
Zhao, M. W.; Xia, Y. Y.; Liu, X. D.; Tan, Z. Y.; Huang, B. D.; Li, F.; Ji, Y. J.; Song, C. Curvature-induced condensation of lithium confined inside single-walled carbon nanotubes: First-principles calculations. Phys. Lett. A 2005, 340, 434–439.
Meunier, V.; Kephart, J.; Roland, C.; Bernholc, J. Ab initio investigations of lithium diffusion in carbon nanotube systems. Phys. Rev. Lett. 2002, 88, 075506.
Dubot, P.; Cenedese, P. Modeling of molecular hydrogen and lithium adsorption on single-wall carbon nanotubes. Phys. Rev. B 2001, 63, 241402.
Garau, C.; Frontera, A.; Quiñonero, D.; Costa, A.; Ballester, P.; Deyà, P. M. Ab initio investigations of lithium diffusion in single-walled carbon nanotubes. Chem. Phys. 2004, 297, 85–91.
Yang, S. B.; Huo, J. P.; Song, H. H.; Chen, X. H. A comparative study of electrochemical properties of two kinds of carbon nanotubes as anode materials for lithium ion batteries. Electrochim. Acta. 2008, 53, 2238–2244.
Gao, B.; Bower, C.; Lorentzen, J. D.; Fleming, L.; Kleinhammes, A.; Tang, X. P.; McNeil, L. E.; Wu, Y.; Zhou, O. Enhanced saturation lithium composition in ball-milled single-walled carbon nanotubes. Chem. Phys. Lett. 2000, 327, 69–75.
Mi, C. H.; Cao, G. S.; Zhao, X. B. A non-GIC mechanism of lithium storage in chemical etched MWNTs. J. Electroanal. Chem. 2004, 562, 217–221.
Garau, C.; Frontera, A.; Quiñonero, D.; Costa, A.; Ballester, P.; Deyà, P. M. Lithium diffusion in single-walled carbon nanotubes: A theoretical study. Chem. Phys. Lett. 2003, 374, 548–555.
Frackowiak, E.; Béguin, F. Electrochemical storage of energy in carbon nanotubes and nanostructured carbons. Carbon 2002, 40, 1775–1787.
Hresko, W. Feature article. Remedial Spec. Educ. 1989, 10, 8.
Eatemadi, A.; Daraee, H.; Karimkhanloo, H.; Kouhi, M.; Zarghami, N.; Akbarzadeh, A.; Abasi, M.; Hanifehpour, Y.; Joo, S. W. Carbon nanotubes: Properties, synthesis, purification, and medical applications. Nanoscale Res. Lett. 2014, 9, 393.
Thess, A.; Lee, R.; Nikolaev, P.; Dai, H. J.; Petit, P.; Robert, J.; Xu, C. H.; Lee, Y. H.; Kim, S. G.; Rinzler, A. G. et al. Crystalline ropes of metallic carbon nanotubes. Science 1996, 273, 483–487.
Kawasaki, S.; Hara, T.; Iwai, Y.; Suzuki, Y. Metallic and semiconducting single-walled carbon nanotubes as the anode material of Li ion secondary battery. Mater. Lett. 2008, 62, 2917–2920.
Reddy, A. L. M.; Shaijumon, M. M.; Gowda, S. R.; Ajayan, P. M. Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. Nano Lett. 2009, 9, 1002–1006.
Zhang, H. X.; Feng, C.; Zhai, Y. C.; Jiang, K. L.; Li, Q. Q.; Fan, S. S. Cross-stacked carbon nanotube sheets uniformly loaded with SnO2 nanoparticles: A novel binder-free and high-capacity anode material for lithium-ion batteries. Adv. Mater. 2009, 21, 2299–2304.
Chen, N. N.; Chen, L.; Li, W. X.; Xu, Z. W.; Qian, X. M.; Liu, Y. Brush-like Ni/carbon nanofibers/carbon nanotubes multi-layer network for freestanding anode in lithium ion batteries. Ceram. Int. 2019, 45, 16676–16681.
Zhang, H.; Cao, G. P.; Wang, Z. Y.; Yang, Y. S.; Shi, Z. J.; Gu, Z. N. Carbon nanotube array anodes for high-rate Li-ion batteries. Electrochim. Acta 2010, 55, 2873–2877.
Man, Y. H.; Zhang, Y. P.; Guo, P. T. Freestanding ultralong aligned carbon nanotube films as electrode materials for a lithium-ion battery. Adv. Mater. Res. 2013, 798–799, 143–146.
Bulusheva, L. G.; Arkhipov, V. E.; Fedorovskaya, E. O.; Zhang, S.; Kurenya, A. G.; Kanygin, M. A.; Asanov, I. P.; Tsygankova, A. R.; Chen, X. H.; Song, H. H. et al. Fabrication of free-standing aligned multiwalled carbon nanotube array for Li-ion batteries. J. Power Sources 2016, 311, 42–48.
Masarapu, C.; Subramanian, V.; Zhu, H. W.; Wei, B. Q. Long-cycle electrochemical behavior of multiwall carbon nanotubes synthesized on stainless steel in Li ion batteries. Adv. Funct. Mater. 2009, 19, 1008–1014.
Wang, G. X.; Yao, J.; Liu, H. K.; Dou, S. X.; Ahn, J. H. Growth and lithium storage properties of vertically aligned carbon nanotubes. Met. Mater. Int. 2006, 12, 413–416.
Jung, H. Y.; Hong, S.; Yu, A.; Jung, S. M.; Jeoung, S. K.; Jung, Y. J. Efficient lithium storage from modified vertically aligned carbon nanotubes with open-ends. RSC Adv. 2015, 5, 68875–68880.
Ghosh, M.; Venkatesh, G.; Rao, G. M. Vertically aligned and tree-like carbon nanostructures as anode of lithium ion battery. Diam. Relat. Mater. 2018, 87, 56–60.
Wang, X. H.; Sun, L. M.; Susantyoko, R. A.; Zhang, Q. A hierarchical 3D carbon nanostructure for high areal capacity and flexible lithium ion batteries. Carbon 2016, 98, 504–509.
Frackowiak, E.; Gautier, S.; Gaucher, H.; Bonnamy, S.; Beguin, F. Electrochemical storage of lithium in multiwalled carbon nanotubes. Carbon 1999, 37, 61–69.
Wang, G. X.; Ahn, J. H.; Yao, J.; Lindsay, M.; Liu, H. K.; Dou, S. X. Preparation and characterization of carbon nanotubes for energy storage. J. Power Sources 2003, 119–121, 16–23.
Claye, A. S.; Fischer, J. E.; Huffman, C. B.; Rinzler, A. G.; Smalley, R. E. Solid-state electrochemistry of the Li single wall carbon nanotube system. J. Electrochem. Soc. 2000, 147, 2845–2852.
Gao, B.; Kleinhammes, A.; Tang, X. P.; Bower, C.; Fleming, L.; Wu, Y.; Zhou, O. Electrochemical intercalation of single-walled carbon nanotubes with lithium. Chem. Phys. Lett. 1999, 307, 153–157.
Wang, W.; Ruiz, I.; Guo, S. R.; Favors, Z.; Bay, H. H.; Ozkan, M.; Ozkan, C. S. Hybrid carbon nanotube and graphene nanostructures for lithium ion battery anodes. Nano Energy 2014, 3, 113–118.
Xu, J. M.; Han, Z.; Wu, J. S.; Song, K. X.; Wu, J.; Gao, H. F.; Mi, Y. H. Synthesis and electrochemical performance of vertical carbon nanotubes on few-layer graphene as an anode material for Li-ion batteries. Mater. Chem. Phys. 2018, 205, 359–365.
Yitzhack, N.; Auinat, M.; Sezin, N.; Ein-Eli, Y. Carbon nanotube tissue as anode current collector for flexible Li-ion batteries—Understanding the controlling parameters influencing the electrochemical performance. APL Mater. 2018, 6, 111102.
Adenusi, H.; Chass, G. A.; Passerini, S.; Tian, K. V.; Chen, G. H. Lithium batteries and the solid electrolyte interphase (SEI)—Progress and outlook. Adv. Energy Mater. 2023, 13, 2203307.
Heiskanen, S. K.; Kim, J.; Lucht, B. L. Generation and evolution of the solid electrolyte interphase of lithium-ion batteries. Joule 2019, 3, 2322–2333.
Wang, A. P.; Kadam, S.; Li, H.; Shi, S. Q.; Qi, Y. Review on modeling of the anode solid electrolyte interphase (SEI) for lithium-ion batteries. npj Comput. Mater. 2018, 4, 15.
Peled, E.; Menkin, S. Review—SEI: Past, present, and future. J. Electrochem. Soc. 2017, 164, A1703–A1719.
Ezzedine, M.; Zamfir, M. R.; Jardali, F.; Leveau, L.; Caristan, E.; Ersen, O.; Cojocaru, C. S.; Florea, I. Insight into the formation and stability of solid electrolyte interphase for nanostructured silicon-based anode electrodes used in Li-ion batteries. ACS Appl. Mater. Interfaces 2021, 13, 24734–24746.
Arai, S.; Fukuoka, R. A carbon nanotube-reinforced noble tin anode structure for lithium-ion batteries. J. Appl. Electrochem. 2016, 46, 331–338.
Chen, J. Z.; Zhang, L.; Gao, F.; Ren, M. X.; Hou, Y. L.; Zhao, D. L. Core–shell structured Si@Cu nanoparticles segregated in graphene-carbon nanotube networks enable high reversible capacity and rate capability of anode for lithium-ion batteries. J. Electroanal. Chem. 2023, 943, 117614.
Wang, W.; Kumta, P. N. Nanostructured hybrid silicon/carbon nanotube heterostructures: Reversible high-capacity lithium-ion anodes. ACS Nano 2010, 4, 2233–2241.
Sun, L.; Liu, Y. X.; Shao, R.; Wu, J.; Jiang, R. Y.; Jin, Z. Recent progress and future perspective on practical silicon anode-based lithium ion batteries. Energy Storage Mater. 2022, 46, 482–502.
Xue, L. G.; Xu, G. J.; Li, Y.; Li, S. L.; Fu, K.; Shi, Q.; Zhang, X. W. Carbon-coated Si nanoparticles dispersed in carbon nanotube networks as anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 2013, 5, 21–25.
Weng, W.; Lin, H. J.; Chen, X. L.; Ren, J.; Zhang, Z. T.; Qiu, L. B.; Guan, G. Z.; Peng, H. S. Flexible and stable lithium ion batteries based on three-dimensional aligned carbon nanotube/silicon hybrid electrodes. J. Mater. Chem. A 2014, 2, 9306–9312.
Fu, K.; Yildiz, O.; Bhanushali, H.; Wang, Y. X.; Stano, K.; Xue, L. G.; Zhang, X. W.; Bradford, P. D. Aligned carbon nanotube-silicon sheets: A novel nano-architecture for flexible lithium ion battery electrodes. Adv. Mater. 2013, 25, 5109–5114.
Yildiz, O.; Dirican, M.; Fang, X. M.; Fu, K.; Jia, H.; Stano, K.; Zhang, X. W.; Bradford, P. D. Hybrid carbon nanotube fabrics with sacrificial nanofibers for flexible high performance lithium-ion battery anodes. J. Electrochem. Soc. 2019, 166, A473–A479.
Evanoff, K.; Khan, J.; Balandin, A. A.; Magasinski, A.; Ready, W. J.; Fuller, T. F.; Yushin, G. Towards ultrathick battery electrodes: Aligned carbon nanotube-enabled architecture. Adv. Mater. 2012, 24, 533–537.
Barrett, L. K.; Fan, J.; Laughlin, K.; Baird, S.; Harb, J. N.; Vanfleet, R. R.; Davis, R. C. Carbon monolith scaffolding for high volumetric capacity silicon Li-ion battery anodes. J. Vac. Sci. Technol. B 2017, 35, 041802.
Fan, Y.; Zhang, Q.; Xiao, Q. Z.; Wang, X. H.; Huang, K. High performance lithium ion battery anodes based on carbon nanotube-silicon core–shell nanowires with controlled morphology. Carbon 2013, 59, 264–269.
Epur, R.; Ramanathan, M.; Datta, M. K.; Hong, D. H.; Jampani, P. H.; Gattu, B.; Kumta, P. N. Scribable multi-walled carbon nanotube-silicon nanocomposites: A viable lithium-ion battery system. Nanoscale 2015, 7, 3504–3510.
Fan, Y.; Zhang, Q.; Lu, C. X.; Xiao, Q. Z.; Wang, X. H.; Tay, B. K. High performance carbon nanotube-Si core–shell wires with a rationally structured core for lithium ion battery anodes. Nanoscale 2013, 5, 1503–1506.
Harpak, N.; Davidi, G.; Melamed, Y.; Cohen, A.; Patolsky, F. Self-catalyzed vertically aligned carbon nanotube-silicon core–shell array for highly stable, high-capacity lithium-ion batteries. Langmuir 2020, 36, 889–896.
Ho, D. N.; Yildiz, O.; Bradford, P.; Zhu, Y. T.; Fedkiw, P. S. A silicon-impregnated carbon nanotube mat as a lithium-ion cell anode. J. Appl. Electrochem. 2018, 48, 127–133.
Gohier, A.; Laïk, B.; Kim, K. H.; Maurice, J. L.; Pereira-Ramos, J. P.; Cojocaru, C. S.; Van, P. T. High-rate capability silicon decorated vertically aligned carbon nanotubes for Li-ion batteries. Adv. Mater. 2012, 24, 2592–2597.
Jessl, S.; Engelke, S.; Copic, D.; Baumberg, J. J.; De Volder, M. Anisotropic carbon nanotube structures with high aspect ratio nanopores for Li-ion battery anodes. ACS Appl. Nano Mater. 2021, 4, 6299–6305.
Yoon, S.; Park, C. M.; Sohn, H. J. Electrochemical characterizations of germanium and carbon-coated germanium composite anode for lithium-ion batteries. Electrochem. Solid-State Lett. 2008, 11, A42–A45.
Seo, M. H.; Park, M.; Lee, K. T.; Kim, K.; Kim, J.; Cho, J. High performance Ge nanowire anode sheathed with carbon for lithium rechargeable batteries. Energy Environ. Sci. 2011, 4, 425–428.
Park, C. M.; Kim, J. H.; Kim, H.; Sohn, H. J. Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 2010, 39, 3115–3141.
Cui, G. L.; Gu, L.; Kaskhedikar, N.; Van Aken, P. A.; Maier, J. A novel germanium/carbon nanotubes nanocomposite for lithium storage material. Electrochim. Acta 2010, 55, 985–988.
Susantyoko, R. A.; Wang, X. H.; Sun, L. M.; Pey, K. L.; Fitzgerald, E.; Zhang, Q. Germanium coated vertically-aligned multiwall carbon nanotubes as lithium-ion battery anodes. Carbon 2014, 77, 551–559.
Gao, C. T.; Kim, N. D.; Salvatierra, R. V.; Lee, S. K.; Li, L. L.; Li, Y. W.; Sha, J.; Silva, G. A. L.; Fei, H. L.; Xie, E. Q. et al. Germanium on seamless graphene carbon nanotube hybrids for lithium ion anodes. Carbon 2017, 123, 433–439.
Wang, X. H.; Susantyoko, R. A.; Fan, Y.; Sun, L. M.; Xiao, Q. Z.; Zhang, Q. Vertically aligned CNT-supported thick Ge films as high-performance 3D anodes for lithium ion batteries. Small 2014, 10, 2826–2829.
Courtney, I. A.; Dahn, J. R. Electrochemical and in situ X-Ray diffraction studies of the reaction of lithium with Tin oxide composites. J. Electrochem. Soc. 1997, 144, 2045–2052.
Kim, M. G.; Sim, S.; Cho, J. Novel core–shell Sn-Cu anodes for lithium rechargeable batteries prepared by a redox-transmetalation reaction. Adv. Mater. 2010, 22, 5154–5158.
Sun, L. M.; Wang, X. H.; Susantyoko, R. A.; Zhang, Q. High performance binder-free Sn coated carbon nanotube array anode. Carbon 2015, 82, 282–287.
Deng, W. N.; Chen, X. H.; Liu, Z.; Hu, A. P.; Tang, Q. L.; Li, Z.; Xiong, Y. N. Three-dimensional structure-based tin disulfide/vertically aligned carbon nanotube arrays composites as high-performance anode materials for lithium ion batteries. J. Power Sources 2015, 277, 131–138.
Liu, X. M.; Huang, Z. D.; Oh, S. W.; Zhang, B.; Ma, P. C.; Yuen, M. M. F.; Kim, J. K. Carbon nanotube (CNT)-based composites as electrode material for rechargeable Li-ion batteries: A review. Compos. Sci. Technol. 2012, 72, 121–144.
Mallakpour, S.; Khadem, E. Carbon nanotube-metal oxide nanocomposites: Fabrication, properties and applications. Chem. Eng. J. 2016, 302, 344–367.
Zhao, Y.; Wang, L. P.; Sougrati, M. T.; Feng, Z. X.; Leconte, Y.; Fisher, A.; Srinivasan, M.; Xu, Z. C. A review on design strategies for carbon based metal oxides and sulfides nanocomposites for high performance Li and Na ion battery anodes. Adv. Energy Mater. 2017, 7, 1601424.
Wu, Y.; Wang, J. P.; Jiang, K. L.; Fan, S. S. Applications of carbon nanotubes in high performance lithium ion batteries. Front. Phys. 2014, 9, 351–369.
Seman, R. N. A. R.; Azam, M. A.; Mohamad, A. A. Systematic gap analysis of carbon nanotube-based lithium-ion batteries and electrochemical capacitors. Renew. Sustain. Energy Rev. 2017, 75, 644–659.
Cao, K. Z.; Jin, T.; Yang, L.; Jiao, L. F. Recent progress in conversion reaction metal oxide anodes for Li-ion batteries. Mater. Chem. Front. 2017, 1, 2213–2242.
Chen, Y.; Chen, X. Y.; Zhang, Y. L. A comprehensive review on metal-oxide nanocomposites for high-performance lithium-ion battery anodes. Energy Fuels 2021, 35, 6420–6442.
Chen, J. S.; Lou, X. W. D. SnO2-based nanomaterials: Synthesis and application in lithium-ion batteries. Small 2013, 9, 1877–1893.
Sehrawat, P.; Julien, C.; Islam, S. S. Carbon nanotubes in Li-ion batteries: A review. Mater. Sci. Eng. B 2016, 213, 12–40.
Zhu, K. L.; Luo, Y. F.; Zhao, F.; Hou, J. W.; Wang, X. W.; Ma, H.; Wu, H.; Zhang, Y. G.; Jiang, K. L.; Fan, S. S. et al. Free-standing, binder-free Titania/super-aligned carbon nanotube anodes for flexible and fast-charging Li-ion batteries. ACS Sustainable Chem. Eng. 2018, 6, 3426–3433.
Pawlitzek, F.; Pampel, J.; Schmuck, M.; Althues, H.; Schumm, B.; Kaskel, S. High-power lithium ion batteries based on preorganized necklace type Li4Ti5O12/VACNT Nano-composites. J. Power Sources 2016, 325, 1–6.
Sun, L.; Kong, W. B.; Wu, H. C.; Wu, Y.; Wang, D. T.; Zhao, F.; Jiang, K. L.; Li, Q. Q.; Wang, J. P.; Fan, S. S. Mesoporous Li4Ti5O12 nanoclusters anchored on super-aligned carbon nanotubes as high performance electrodes for lithium ion batteries. Nanoscale 2016, 8, 617–625.
Wu, Y.; Wu, H. C.; Luo, S.; Wang, K.; Zhao, F.; Wei, Y.; Liu, P.; Jiang, K. L.; Wang, J. P.; Fan, S. S. Entrapping electrode materials within ultrathin carbon nanotube network for flexible thin film lithium ion batteries. RSC Adv. 2014, 4, 20010–20016.
Ohzuku, T.; Ueda, A.; Yamamoto, N. Zero-strain insertion material of Li [Li1/3Ti5/3]O4 for rechargeable lithium cells. J. Electrochem. Soc. 1995, 142, 1431–1435.
Belharouak, I.; Koenig, G. M.; Amine, K. Electrochemistry and safety of Li4Ti5O12 and graphite anodes paired with LiMn2O4 for hybrid electric vehicle Li-ion battery applications. J. Power Sources 2011, 196, 10344–10350.
Yuan, T.; Yu, X.; Cai, R.; Zhou, Y. K.; Shao, Z. P. Synthesis of pristine and carbon-coated Li4Ti5O12 and their low-temperature electrochemical performance. J. Power Sources 2010, 195, 4997–5004.
Bach, S.; Pereira-Ramos, J. P.; Baffier, N. Electrochemical properties of sol-gel Li4/3Ti5/3O4. J. Power Sources 1999, 81–82, 273–276.
Lou, F. L.; Zhou, H. T.; Tran, T. D.; Buan, M. E. M.; Vullum-Bruer, F.; Rønning, M.; Walmsley, J. C.; Chen, D. Coaxial carbon/metal oxide/aligned carbon nanotube arrays as high-performance anodes for lithium ion batteries. ChemSusChem 2014, 7, 1335–1346.
Luo, S.; Wu, H. C.; Wu, Y.; Jiang, K. L.; Wang, J. P.; Fan, S. S. Mn3O4 nanoparticles anchored on continuous carbon nanotube network as superior anodes for lithium ion batteries. J. Power Sources 2014, 249, 463–469.
Li, Q.; Wu, Y. Q.; Wang, Z. M.; Ming, H.; Wang, W. X.; Yin, D. M.; Wang, L. M.; Alshareef, H. N.; Ming, J. Carbon nanotubes coupled with metal ion diffusion layers stabilize oxide conversion reactions in high-voltage lithium-ion batteries. ACS Appl. Mater. Interfaces 2020, 12, 16276–16285.
Jessl, S.; Copic, D.; Engelke, S.; Ahmad, S.; De Volder, M. Hydrothermal coating of patterned carbon nanotube forest for structured lithium-ion battery electrodes. Small 2019, 15, 1901201.
Wu, Y.; Wei, Y.; Wang, J. P.; Jiang, K. L.; Fan, S. S. Conformal Fe3O4 sheath on aligned carbon nanotube scaffolds as high-performance anodes for lithium ion batteries. Nano Lett. 2013, 13, 818–823.
Susantyoko, R. A.; Wang, X. H.; Xiao, Q. Z.; Fitzgerald, E.; Zhang, Q. Sputtered nickel oxide on vertically-aligned multiwall carbon nanotube arrays for lithium-ion batteries. Carbon 2014, 68, 619–627.
Deng, W. N.; Chen, X. H.; Hu, A. P.; Zhang, S. Y. Graphitic carbon-wrapped NiO embedded three dimensional nitrogen doped aligned carbon nanotube arrays with long cycle life for lithium ion batteries. RSC Adv. 2018, 8, 28440–28446.
He, X. F.; Wu, Y.; Zhao, F.; Wang, J. P.; Jiang, K. L.; Fan, S. S. Enhanced rate capabilities of Co3O4/carbon nanotube anodes for lithium ion battery applications. J. Mater. Chem. A. 2013, 1, 11121–11125.
Liu, W. W.; Lu, C. X.; Liang, K.; Tay, B. K. A high-performance anode material for Li-ion batteries based on a vertically aligned CNTs/NiCo2O4 core/shell structure. Part. Part. Syst. Charact. 2014, 31, 1151–1157.
Zhu, K. L.; Li, C. Y.; Jiao, Y. S.; Zhu, J. W.; Ren, H. T.; Luo, Y. F.; Fan, S. S.; Liu, K. Free-standing hybrid films comprising of ultra-dispersed Titania nanocrystals and hierarchical conductive network for excellent high rate performance of lithium storage. Nano Res. 2021, 14, 2301–2308.
Park, M.; Zhang, X. C.; Chung, M.; Less, G. B.; Sastry, A. M. A review of conduction phenomena in Li-ion batteries. J. Power Sources 2010, 195, 7904–7929.
Pawlitzek, F.; Althues, H.; Schumm, B.; Kaskel, S. Nanostructured networks for energy storage: Vertically aligned carbon nanotubes (VACNT) as current collectors for high-power Li4Ti5O12 (LTO)//LiMn2O4 (LMO) lithium-ion batteries. Batteries 2017, 3, 37.
Ning, G. Q.; Zhang, S. C.; Xiao, Z. H.; Wang, H. B.; Ma, X. L. Efficient conductive networks constructed from ultra-low concentration carbon nanotube suspension for Li ion battery cathodes. Carbon 2018, 132, 323–328.
Yilmaz, M.; Raina, S.; Hsu, S. H.; Kang, W. P. Micropatterned arrays of vertically-aligned CNTs grown on aluminum as a new cathode platform for LiFePO4 integration in lithium-ion batteries. Ionics 2019, 25, 421–427.
Luo, S.; Wang, K.; Wang, J. P.; Jiang, K. L.; Li, Q. Q.; Fan, S. S. Binder-free LiCoO2/carbon nanotube cathodes for high-performance lithium ion batteries. Adv. Mater. 2012, 24, 2294–2298.