Journal Home > Volume 17 , Issue 3

The rapid diffusion of renewable energy boosts the wide deployment of large-scale energy storage system. With the low cost and high crustal abundance, sodium-ion battery (SIB) technology is expected to become a dominant technology in that area in the future. Toward the practical application, novel cathode materials are urged to develop that show high energy density without sacrificing their cost and benignity to the environment. While the years of many studies, this still remains a huge challenge to battery scientists. In this review, we discuss recent breakthroughs in SIB cathode materials with high energy density, namely fluorphosphates and fluorosulfates. The design of materials, the crystal structure, the electrochemical performance, and the underlaying intercalation mechanism are systematically reviewed. Useful strategies and research directions are also provided to advance future high-energy, low-cost, and ecofriendly cathode materials for next generation SIB.


menu
Abstract
Full text
Outline
About this article

Fluorophosphates and fluorosulfates cathode materials: Progress towards high energy density sodium-ion battery

Show Author's information Mohammed Hadouchi1,2( )Jingrong Hou2Toshinari Koketsu2,3Abdelilah Lahmar4Jiwei Ma2( )
Laboratoire de Chimie Appliquée des Matériaux, Centre des Sciences des Matériaux, Faculty of Science, Mohammed V University in Rabat, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
Shanghai Key Laboratory for R&D and Application of Metallic Functional Materials, Institute of New Energy for Vehicles, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
Battery Materials Development Section, Business Creation Sector R&D Center, Mitsui Mining & Smelting Co., Ltd., 362-0021 Saitama, Japan
Laboratoiry of Condensed Matter Physics, University of Picardie Jules Verne, 33 Rue Saint-Leu 80039, Amiens, France

Abstract

The rapid diffusion of renewable energy boosts the wide deployment of large-scale energy storage system. With the low cost and high crustal abundance, sodium-ion battery (SIB) technology is expected to become a dominant technology in that area in the future. Toward the practical application, novel cathode materials are urged to develop that show high energy density without sacrificing their cost and benignity to the environment. While the years of many studies, this still remains a huge challenge to battery scientists. In this review, we discuss recent breakthroughs in SIB cathode materials with high energy density, namely fluorphosphates and fluorosulfates. The design of materials, the crystal structure, the electrochemical performance, and the underlaying intercalation mechanism are systematically reviewed. Useful strategies and research directions are also provided to advance future high-energy, low-cost, and ecofriendly cathode materials for next generation SIB.

Keywords: crystal structure, high energy density, sodium-ion battery, fluorophosphates, fluorosulfates, intercalation mechanism

References(101)

[1]

Li, B. B.; Gao, X. F.; Li, J. Y.; Yuan, C. Life cycle environmental impact of high-capacity lithium ion battery with silicon nanowires anode for electric vehicles. Environ. Sci. Technol. 2014, 48, 3047–3055.

[2]

Dunn, B.; Kamath, H.; Tarascon, J. M. Electrical energy storage for the grid: A battery of choices. Science 2011, 334, 928–935.

[3]

Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. The lithium-ion battery: State of the art and future perspectives. Renew. Sustain. Energy Rev. 2018, 89, 292–308.

[4]

Scrosati, B.; Hassoun, J.; Sun, Y. K. Lithium-ion batteries. A look into the future. Energy Environ. Sci. 2011, 4, 3287–3295.

[5]

Tarascon, J. M. Is lithium the new gold. Nat. Chem. 2010, 2, 510–510.

[6]

Pan, H. L.; Hu, Y. S.; Chen, L. Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 2013, 6, 2338–2360.

[7]

Bauer, A.; Song, J.; Vail, S.; Pan, W.; Barker, J.; Lu, Y. H. The scale-up and commercialization of nonaqueous Na-ion battery technologies. Adv. Energy Mater. 2018, 8, 1702869.

[8]

Ren, M.; Fang, H. Y.; Wang, C. C.; Li, H. X.; Li, F. J. Advances on manganese-oxide-based cathodes for Na-ion batteries. Energy Fuels 2020, 34, 13412–13426.

[9]

Goikolea, E.; Palomares, V.; Wang, S. J.; de Larramendi, I. R.; Guo, X.; Wang, G. X.; Rojo, T. Na-ion batteries-approaching old and new challenges. Adv. Energy Mater. 2020, 10, 2002055.

[10]

Zhang, L. P.; Wang, W.; Lu, S. f.; Xiang, Y. Carbon anode materials: A detailed comparison between Na-ion and K-ion batteries. Adv. Energy Mater. 2021, 11, 2003640.

[11]

Hu, Y. S.; Li, Y. Q. Unlocking sustainable Na-ion batteries into industry. ACS Energy Lett. 2021, 6, 4115–4117.

[12]

Chayambuka, K.; Mulder, G.; Danilov, D. L.; Notten, P. H. From Li-ion batteries toward Na-ion chemistries: Challenges and opportunities. Adv. Energy Mater. 2020, 10, 2001310.

[13]

Hou, J. R.; Hadouchi, M.; Sui, L.; Liu, J.; Tang, M. X.; Kan, W. H.; Avdeev, M.; Zhong, G. M.; Liao, Y. K.; Lai, Y. H. et al. Unlocking fast and reversible sodium intercalation in NASICON Na4MnV(PO4)3 by fluorine substitution. Energy Storage Mater. 2021, 42, 307–316.

[14]

Hadouchi, M.; Yaqoob, N.; Kaghazchi, P.; Tang, M. X.; Liu, J.; Sang, P. F.; Fu, Y. Z.; Huang, Y. H.; Ma, J. W. Fast sodium intercalation in Na3.41£0.59FeV(PO4)3: A novel sodium-deficient NASICON cathode for sodium-ion batteries. Energy Storage Mater. 2021, 35, 192–202.

[15]

Yan, G. C.; Mariyappan, S.; Rousse, G.; Jacquet, Q.; Deschamps, M.; David, R.; Mirvaux, B.; Freeland, J. W.; Tarascon, J. M. Higher energy and safer sodium ion batteries via an electrochemically made disordered Na3V2(PO4)2F3 material. Nat. Commun. 2019, 10, 585.

[16]

Vaalma, C.; Buchholz, D.; Weil, M.; Passerini, S. A cost and resource analysis of sodium-ion batteries. Nat. Rev. Mater. 2018, 3, 18013.

[17]

Li, W. J.; Han, C.; Wang, W. L.; Gebert, F.; Chou, S. L.; Liu, H. K.; Zhang, X. H.; Dou, S. X. Commercial prospects of existing cathode materials for sodium ion storage. Adv. Energy Mater. 2017, 7, 1700274.

[18]

Li, H. X.; Xu, M.; Zhang, Z. A.; Lai, Y. Q.; Ma, J. M. Engineering of polyanion type cathode materials for sodium-ion batteries: Toward higher energy/power density. Adv. Funct. Mater. 2020, 30, 2000473.

[19]

Barpanda, P.; Nishimura, S. I.; Yamada, A. High-voltage pyrophosphate cathodes. Adv. Energy Mater. 2012, 2, 841–859.

[20]

Ni, Q.; Bai, Y.; Wu, F.; Wu, C. Polyanion-type electrode materials for sodium-ion batteries. Adv. Sci. 2017, 4, 1600275.

[21]

Li, H. X.; Jin, T.; Chen, X. B.; Lai, Y. Q.; Zhang, Z. A.; Bao, W. Z.; Jiao, L. F. Rational architecture design enables superior Na storage in greener NASICON-Na4MnV(PO4)3 cathode. Adv. Energy Mater. 2018, 8, 1801418.

[22]

Manthiram, A.; Goodenough, J. B. Lithium-based polyanion oxide cathodes. Nat. Energy 2021, 6, 844–845.

[23]

Kim, M.; Kim, D.; Lee, W.; Jang, H. M.; Kang, B. New class of 3.7 V Fe-based positive electrode materials for Na-ion battery based on cation-disordered polyanion framework. Chem. Mater. 2018, 30, 6346–6352.

[24]

Law, M.; Balaya, P. NaVPO4F with high cycling stability as a promising cathode for sodium-ion battery. Energy Storage Mater. 2018, 10, 102–113.

[25]

Barpanda, P.; Ati, M.; Melot, B. C.; Rousse, G.; Chotard, J. N.; Doublet, M. L.; Sougrati, M. T.; Corr, S. A.; Jumas, J. C.; Tarascon, J. M. A 3.90 V iron-based fluorosulphate material for lithium-ion batteries crystallizing in the triplite structure. Nat. Mater. 2011, 10, 772–779.

[26]

Barpanda, P.; Oyama, G.; Nishimura, S. I.; Chung, S. C.; Yamada, A. A 3.8-V earth-abundant sodium battery electrode. Nat. Commun. 2014, 5, 4358.

[27]

Recham, N.; Chotard, J. N.; Dupont, L.; Delacourt, C.; Walker, W.; Armand, M.; Tarascon, J. M. A 3.6 V lithium-based fluorosulphate insertion positive electrode for lithium-ion batteries. Nat. Mater. 2010, 9, 68–74.

[28]

Wang, J. J.; Kang, J. Z.; Gu, Z. Y.; Liang, Q. H.; Zhao, X. Y.; Wang, X. M.; Guo, R. S.; Yu, H.; Du, C. F.; Wu, X. L. Localized electron density redistribution in fluorophosphate cathode: Dangling anion regulation and enhanced Na-ion diffusivity for sodium-ion batteries. Adv. Funct. Mater. 2022, 32, 2109694.

[29]

Morais, W. G.; Leite, M. M.; Torresi, R. M. Titanium- and niobium-doped fluorophosphates as positive electrodes for sodium-ion batteries. J. Electroanal. Chem. 2021, 897, 115595.

[30]

Gu, Z. Y.; Guo, J. Z.; Sun, Z. H.; Zhao, X. X.; Wang, X. T.; Liang, H. J.; Zhao, B.; Li, W. H.; Pan, X. M.; Wu, X. L. Aliovalent-ion-induced lattice regulation based on charge balance theory: Advanced fluorophosphate cathode for sodium-ion full batteries. Small 2021, 17, 2102010.

[31]

Chang, W.; Zhang, X. Y.; Qu, J.; Chen, Z.; Zhang, Y. J.; Sui, Y.; Ma, X. F.; Yu, Z. Z. Freestanding Na3V2O2(PO4)2F/graphene aerogels as high-performance cathodes of sodium-ion full batteries. ACS Appl. Mater. Interfaces 2020, 12, 41419–41428.

[32]

Zheng, L. M.; Zhang, D. T.; Wang, X. Y.; Guo, G. S. Continuous-flow rapid and controllable microfluidic synthesis of sodium vanadium fluorophosphate as a cathode material. Appl. Mater. Today 2021, 23, 101032.

[33]

Ellis, B. L.; Makahnouk, W. R. M.; Makimura, Y.; Toghill, K.; Nazar, L. F. A multifunctional 3.5 V iron-based phosphate cathode for rechargeable batteries. Nat. Mater. 2007, 6, 749–753.

[34]

Ellis, B. L.; Michael Makahnouk, W. R.; Rowan-Weetaluktuk, W. N.; Ryan, D. H.; Nazar, L. F. Crystal structure and electrochemical properties of A2MPO4F fluorophosphates (A = Na, Li; M = Fe, Mn, Co, Ni). Chem. Mater. 2010, 22, 1059–1070.

[35]

Kabalov, Y. K.; Simonov, M. A.; Belov, N. V. Crystalline structure of basic iron ortho-phosphate, Na2FePO4(OH). Dokl. Akad. Nauk SSSR 1974, 215, 850–853.

[36]

Sanz, F.; Parada, C.; Ruíz-Valero, C. Crystal growth, crystal structure and magnetic properties of disodium cobalt fluorophosphate. J. Mater. Chem. 2001, 11, 208–211.

[37]

Kawabe, Y.; Yabuuchi, N.; Kajiyama, M.; Fukuhara, N.; Inamasu, T.; Okuyama, R.; Nakai, I.; Komaba, S. Synthesis and electrode performance of carbon coated Na2FePO4F for rechargeable Na batteries. Electrochem. Commun. 2011, 13, 1225–1228.

[38]

Ling, R.; Cai, S.; Shen, S. B.; Hu, X. D.; Xie, D. L.; Zhang, F. Y.; Sun, X. H.; Yu, N.; Wang, F. W. Synthesis of carbon coated Na2FePO4F as cathode materials for high-performance sodium ion batteries. J. Alloys Compd. 2017, 704, 631–640.

[39]

Deng, X.; Shi, W. X.; Sunarso, J.; Liu, M. L.; Shao, Z. P. A green route to a Na2FePO4F-based cathode for sodium ion batteries of high rate and long cycling life. ACS Appl. Mater. Interfaces 2017, 9, 16280–16287.

[40]

Ko, W.; Yoo, J. K.; Park, H.; Lee, Y.; Kim, H.; Oh, Y.; Myung, S. T.; Kim, J. Development of Na2FePO4F/conducting-polymer composite as an exceptionally high performance cathode material for Na-ion batteries. J. Power Sources 2019, 432, 1–7.

[41]

Wang, F. F.; Zhang, N.; Zhao, X. D.; Wang, L. X.; Zhang, J.; Wang, T. S.; Liu, F. F.; Liu, Y. C.; Fan, L. Z. Realizing a high-performance Na-storage cathode by tailoring ultrasmall Na2FePO4F nanoparticles with facilitated reaction kinetics. Adv. Sci. 2019, 6, 1900649.

[42]

Langrock, A.; Xu, Y. H.; Liu, Y. H.; Ehrman, S.; Manivannan, A.; Wang, C. S. Carbon coated hollow Na2FePO4F spheres for Na-ion battery cathodes. J. Power Sources 2013, 223, 62–67.

[43]

Yan, J. H.; Liu, X. B.; Li, B. Y. Nano-assembled Na2FePO4F/carbon nanotube multi-layered cathodes for Na-ion batteries. Electrochem. Commun. 2015, 56, 46–50.

[44]

Smiley, D. L.; Goward, G. R. Ex situ 23Na solid-state NMR reveals the local Na-ion distribution in carbon-coated Na2FePO4F during electrochemical cycling. Chem. Mater. 2016, 28, 7654–7656.

[45]

Li, Q.; Liu, Z. G.; Zheng, F.; Liu, R.; Lee, J.; Xu, G. L.; Zhong, G. M.; Hou, X.; Fu, R. Q.; Chen, Z. H. et al. Identifying the structural evolution of the sodium ion battery Na2FePO4F Cathode. Angew. Chem. 2018, 130, 12094–12099.

[46]

Yakubovich, O. V.; Karimova, O. V.; Mel’nikov, O. K. The mixed anionic framework in the structure of Na2{MnF[PO4]}. Acta Cryst. 1997, 53, 395–397.

[47]

Recham, N.; Chotard, J. N.; Dupont, L.; Djellab, K.; Armand, M.; Tarascon, J. M. Ionothermal synthesis of sodium-based fluorophosphate cathode materials. J. Electrochem. Soc. 2009, 156, A993.

[48]

Zhong, Y. J.; Wu, Z. G.; Tang, Y.; Xiang, W.; Guo, X. D.; Zhong, B. H. Micro-nano structure Na2MnPO4F/C as cathode material with excellent sodium storage properties. Mater. Lett. 2015, 145, 269–272.

[49]

Wu, L.; Hu, Y.; Zhang, X. P.; Liu, J. Q.; Zhu, X.; Zhong, S. K. Synthesis of carbon-coated Na2MnPO4F hollow spheres as a potential cathode material for Na-ion batteries. J. Power Sources 2018, 374, 40–47.

[50]

Hu, Y.; Wu, L.; Liao, G. X.; Yang, Y.; Ye, F.; Chen, J. B.; Zhu, X.; Zhong, S. K. Electrospinning synthesis of Na2MnPO4F/C nanofibers as a high voltage cathode material for Na-ion batteries. Ceram. Int. 2018, 44, 17577–17584.

[51]

Ling, R.; Cai, S.; Shen, K. E.; Sang, Z. Y.; Xie, D. L.; Sun, J. Y.; Xiong, K. Z.; Guo, J. Z.; Sun, X. H. Dual carbon-confined Na2MnPO4F nanoparticles as a superior cathode for rechargeable sodium-ion battery. Ceram. Int. 2019, 45, 19799–19807.

[52]

Kubota, K.; Yokoh, K.; Yabuuchi, N.; Komaba, S. Na2CoPO4F as a high-voltage electrode material for Na-ion batteries. Electrochemistry 2014, 82, 909–911.

[53]

Zou, H.; Li, S.; Wu, X.; McDonald, M. J.; Yang, Y. Spray-drying synthesis of pure Na2CoPO4F as cathode material for sodium ion batteries. ECS Electrochem. Lett. 2015, 4, A53–A55.

[54]

Barker, J.; Saidi, M. Y.; Swoyer, J. L. A sodium-ion cell based on the fluorophosphate compound NaVPO4 F. Electrochem. Solid-State Lett. 2003, 6, A1.

[55]

Barker, J.; Saidi, M. Y.; Swoyer, J. L. A comparative investigation of the Li insertion properties of the novel fluorophosphate phases, NaVPO4F and LiVPO4F. J. Electrochem. Soc. 2004, 151, A1670.

[56]

Zhuo, H. T.; Wang, X. Y.; Tang, A. P.; Liu, Z. M.; Gamboa, S.; Sebastian, P. J. The preparation of NaV1−xCrxPO4F cathode materials for sodium-ion battery. J. Power Sources 2006, 160, 698–703.

[57]

Liu, Z. M.; WANG, X. Y.; Wang, Y.; Tang, A. P.; Yang, S. Y.; He, L. F. Preparation of NaV1−xAlxPO4F cathode materials for application of sodium-ion battery. Trans. Nonferrous Met. Soc. China 2008, 18, 346–350.

[58]

Zhao, J. Q.; He, J. P.; Ding, X. C.; Zhou, J. H.; Ma, Y.; Wu, S. C.; Huang, R. M. A novel sol–gel synthesis route to NaVPO4F as cathode material for hybrid lithium ion batteries. J. Power Sources 2010, 195, 6854–6859.

[59]

Lu, Y.; Zhang, S.; Li, Y.; Xue, L. G.; Xu, G. J.; Zhang, X. W. Preparation and characterization of carbon-coated NaVPO4F as cathode material for rechargeable sodium-ion batteries. J. Power Sources 2014, 247, 770–777.

[60]

Ruan, Y. L.; Wang, K.; Song, S. D.; Han, X.; Cheng, B. W. Graphene modified sodium vanadium fluorophosphate as a high voltage cathode material for sodium ion batteries. Electrochim. Acta 2015, 160, 330–336.

[61]

Xu, M. W.; Cheng, C. J.; Sun, Q. Q.; Bao, S. J.; Niu, Y. B.; He, H.; Li, Y. T.; Song, J. Correction: A 3D porous interconnected NaVPO4F/C network: Preparation and performance for Na-ion batteries. RSC Adv. 2015, 5, 56686–566686.

[62]

Jin, T.; Liu, Y. C.; Li, Y.; Cao, K. Z.; Wang, X. J.; Jiao, L. F. Electrospun NaVPO4F/C nanofibers as self-standing cathode material for ultralong cycle life Na-ion batteries. Adv. Energy Mater. 2017, 7, 1700087.

[63]

Chang, C. Y.; Li, Y.; He, W.; Li, G. B.; Guo, W. J.; Zhu, P. H.; Yao, M. M.; Feng, J. J. NaVPO4F prepared under air as a cathode material for sodium-ion batteries. Mater. Lett. 2017, 209, 82–85.

[64]

Feng, P. Y.; Wang, W.; Hou, J.; Wang, K. L.; Cheng, S. J.; Jiang, K. A 3D coral-like structured NaVPO4F/C constructed by a novel synthesis route as high-performance cathode material for sodium-ion battery. Chem. Eng. J. 2018, 353, 25–33.

[65]

Cheng, B.; Zhang, S. J.; Zou, F. X.; Luo, L. L.; Chen, Y. X.; Chen, S. J.; Zhuo, H. T.; Zeng, X. R. Nano-NaVPO4F enwrapped in reduced graphene oxide as a cathode material for long-cycle and high-rate sodium-ion batteries. J. Alloys Compd. 2019, 811, 151828.

[66]

Ge, X. C.; Li, X. H.; Wang, Z. X.; Guo, H. J.; Yan, G. C.; Wu, X. W.; Wang, J. X. Facile synthesis of NaVPO4F/C cathode with enhanced interfacial conductivity towards long-cycle and high-rate sodium-ion batteries. Chem. Eng. J. 2019, 357, 458–462.

[67]

Ling, M. X.; Li, F.; Yi, H. M.; Li, X. F.; Hou, G. J.; Zheng, Q.; Zhang, H. M. Superior Na-storage performance of molten-state-blending-synthesized monoclinic NaVPO4F nanoplates for Na-ion batteries. J. Mater. Chem. A 2018, 6, 24201–24209.

[68]

Chen, C. C.; Li, T. J.; Tian, H.; Zou, Y. B.; Sun, J. C. Building highly stable and industrial NaVPO4F/C as bipolar electrodes for high-rate symmetric rechargeable sodium-ion full batteries. J. Mater. Chem. A 2019, 7, 18451–18457.

[69]

Le Meins, J. M.; Crosnier-Lopez, M. P.; Hemon-Ribaud, A.; Courbion, G. Phase transitions in the Na3M2(PO4)2F3 family (M = Al3+, V3+, Cr3+, Fe3+, Ga3+): Synthesis, thermal, structural, and magnetic studies. J. Solid State Chem. 1999, 148, 260–277.

[70]

Sauvage, F.; Quarez, E.; Tarascon, J. M.; Baudrin, E. Crystal structure and electrochemical properties vs. Na+ of the sodium fluorophosphate Na1.5VOPO4F0.5. Solid State Sci. 2006, 8, 1215–1221.

[71]

Massa, W.; Yakubovich, O. V.; Dimitrova, O. V. Crystal structure of a new sodium vanadyl(IV) fluoride phosphate NA3{V2O2F[PO4]2}. Solid State Sci. 2002, 4, 495–501.

[72]

Gover, R. K. B.; Bryan, A.; Burns, P.; Barker, J. The electrochemical insertion properties of sodium vanadium fluorophosphate, Na3V2(PO4)2F3. Solid State Ionics 2006, 177, 1495–1500.

[73]

Jiang, T.; Chen, G.; Li, A.; Wang, C. Z.; Wei, Y. J. Sol–gel preparation and electrochemical properties of Na3V2(PO4)2F3/C composite cathode material for lithium ion batteries. J. Alloys Compd. 2009, 478, 604–607.

[74]

Shakoor, R. A.; Seo, D. H.; Kim, H.; Park, Y. U.; Kim, J.; Kim, S. W.; Gwon, H.; Lee, S.; Kang, K. A combined first principles and experimental study on Na3V2(PO4)2F3 for rechargeable Na batteries. J. Mater. Chem. 2012, 22, 20535–20541.

[75]

Tsirlin, A. A.; Nath, R.; Abakumov, A. M.; Furukawa, Y.; Johnston, D. C.; Hemmida, M.; Krug Von Nidda, H. A.; Loidl, A.; Geibel, C.; Rosner, H. Phase separation and frustrated square lattice magnetism of Na1.5VOPO4F0.5. Phys. Rev. B 2011, 84, 014429.

[76]

Serras, P.; Palomares, V.; Goñi, A.; Gil De Muro, I.; Kubiak, P.; Lezama, L.; Rojo, T. High voltage cathode materials for Na-ion batteries of general formula Na3V2O2x(PO4)2F3−2x. J. Mater. Chem. 2012, 22, 22301–22308.

[77]

Serras, P.; Palomares, V.; Alonso, J.; Sharma, N.; López del Amo, J. M.; Kubiak, P.; Fdez-Gubieda, M. L.; Rojo, T. Electrochemical Na extraction/insertion of Na3V2O2x(PO4)2F3−2x. Chem. Mater. 2013, 25, 4917–4925.

[78]

Park, Y. U.; Seo, D. H.; Kim, H.; Kim, J.; Lee, S.; Kim, B.; Kang, K. A family of high-performance cathode materials for Na-ion batteries, Na3(VO1−xPO4)2F1+2x (0 ≤ x ≤ 1): Combined first-principles and experimental study. Adv. Funct. Mater. 2014, 24, 4603–4614.

[79]

Liu, Z. G.; Hu, Y. Y.; Dunstan, M. T.; Huo, H.; Hao, X. G.; Zou, H.; Zhong, G. M.; Yang, Y.; Grey, C. P. Local structure and dynamics in the Na ion battery positive electrode material Na3V2(PO4)2F3. Chem. Mater. 2014, 26, 2513–2521.

[80]

Bianchini, M.; Brisset, N.; Fauth, F.; Weill, F.; Elkaim, E.; Suard, E.; Masquelier, C.; Croguennec, L. Na3V2(PO4)2F3 revisited: A high-resolution diffraction study. Chem. Mater. 2014, 26, 4238–4247.

[81]

Bianchini, M.; Fauth, F.; Brisset, N.; Weill, F.; Suard, E.; Masquelier, C.; Croguennec, L. Comprehensive investigation of the Na3V2(PO4)2F3-NaV2(PO4)2F3 system by operando high resolution synchrotron X-ray diffraction. Chem. Mater. 2015, 27, 3009–3020.

[82]

Broux, T.; Bamine, T.; Fauth, F.; Simonelli, L.; Olszewski, W.; Marini, C.; Ménétrier, M.; Carlier, D.; Masquelier, C.; Croguennec, L. Strong impact of the oxygen content in Na3V2(PO4)2F3−yOy (0 ≤ y ≤ 2) on its structural and electrochemical properties. Chem. Mater. 2016, 28, 7683–7692.

[83]

Liu, Q.; Meng, X.; Wei, Z. X.; Wang, D. X.; Gao, Y.; Wei, Y. J.; Du, F.; Chen, G. Core/double-shell structured Na3V2(PO4)2F3@C nanocomposite as the high power and long lifespan cathode for sodium-ion batteries. ACS Appl. Mater. Interfaces 2016, 8, 31709–31715.

[84]

Zhu, C. B.; Wu, C.; Chen, C. C.; Kopold, P.; Van Aken, P. A.; Maier, J.; Yu, Y. A high power-high energy Na3V2(PO4)2F3 sodium cathode: Investigation of transport parameters, rational design and realization. Chem. Mater. 2017, 29, 5207–5215.

[85]

Broux, T.; Fauth, F.; Hall, N.; Chatillon, Y.; Bianchini, M.; Bamine, T.; Leriche, J. B.; Suard, E.; Carlier, D.; Reynier, Y. et al. High rate performance for carbon-coated Na3V2(PO4)2F3 in Na-ion batteries. Small Methods 2019, 3, 1800215.

[86]

Yi, H. M.; Lin, L.; Ling, M. X.; Lv, Z. Q.; Li, R.; Fu, Q.; Zhang, H. M.; Zheng, Q.; Li, X. F. Scalable and economic synthesis of high-performance Na3V2(PO4)2F3 by a solvothermal-ball-milling method. ACS Energy Lett. 2019, 4, 1565–1571.

[87]

Zhang, B.; Dugas, R.; Rousse, G.; Rozier, P.; Abakumov, A. M.; Tarascon, J. M. Insertion compounds and composites made by ball milling for advanced sodium-ion batteries. Nat. Commun. 2016, 7, 10308.

[88]

Mukherjee, A.; Sharabani, T.; Perelshtein, I.; Noked, M. Three-sodium ion activity of a hollow spherical Na3V2(PO4)2F3 cathode: Demonstrating high capacity and stability. Batter. Supercaps 2020, 3, 52–55.

[89]

Fang, R. H.; Olchowka, J.; Pablos, C.; Camacho, P. S.; Carlier, D.; Croguennec, L.; Cassaignon, S. Effect of the particles morphology on the electrochemical performance of Na3V2(PO4)2F3−yOy. Batter. Supercaps 2022, 5, e202100179.

[90]
Essehli, R.; Yahia, H. B.; Amin, R.; Li, M. Y.; Morales, D.; Greenbaum, S. G.; Abouimrane, A.; Parejiya, A.; Mahmoud, A.; Boulahya, K. et al. Sodium rich vanadium oxy-fluorophosphate—Na3.2Ni0.2V1.8(PO4)2F2O—as advanced cathode for sodium ion batteries. Adv. Sci., in press, https://doi.org/10.1002/advs.202301091.
DOI
[91]

Liang, Z. T.; Zhang, X. F.; Liu, R.; Ortiz, G. F.; Zhong, G. M.; Xiang, Y. X.; Chen, S. J.; Mi, J. X.; Wu, S. Q.; Yang, Y. New dimorphs of Na5V(PO4)2F2 as an ultrastable cathode material for sodium-ion batteries. ACS Appl. Energy Mater. 2020, 3, 1181–1189.

[92]

Mazumder, M.; Pati, S. K. Theoretical insights into Na5M(PO4)2F2 (M = Cr, V): A fluorophosphate-based high-performance cathode system for sodium-ion batteries. J. Phys. Chem. C 2021, 125, 19593–19599.

[93]

Barpanda, P.; Chotard, J. N.; Recham, N.; Delacourt, C.; Ati, M.; Dupont, L.; Armand, M.; Tarascon, J. M. Structural, transport, and electrochemical investigation of novel AMSO4F (A = Na, Li; M = Fe, Co, Ni, Mn) metal fluorosulphates prepared using low temperature synthesis routes. Inorg. Chem. 2010, 49, 7401–7413.

[94]

Ati, M.; Sougrati, M. T.; Recham, N.; Barpanda, P.; Reynaud, M.; Delacourt, C.; Armand, M.; Jumas, J. C.; Tarascon, J. M. Synthesis of new fluorosulphate materials using different approaches. ECS Trans. 2019, 35, 57–63.

[95]

Tripathi, R.; Ramesh, T. N.; Ellis, B. L.; Nazar, L. F. Scalable synthesis of tavorite LiFeSO4F and NaFeSO4F cathode materials. Angew. Chem., Int. Ed. 2010, 49, 8738–8742.

[96]

Ati, M.; Dupont, L.; Recham, N.; Chotard, J. N.; Walker, W. T.; Davoisne, C.; Barpanda, P.; Sarou-Kanian, V.; Armand, M.; Tarascon, J. M. Synthesis, structural, and transport properties of novel bihydrated fluorosulphates NaMSO4F·2H2O (M = Fe, Co, and Ni). Chem. Mater. 2010, 22, 4062–4068.

[97]

Reynaud, M.; Barpanda, P.; Rousse, G.; Chotard, J. N.; Melot, B. C.; Recham, N.; Tarascon, J. M. Synthesis and crystal chemistry of the NaMSO4F family (M = Mg, Fe, Co, Cu, Zn). Solid State Sci. 2012, 14, 15–20.

[98]

Barpanda, P.; Ati, M.; Recham, N.; Chotard, J. N.; Walker, W.; Armand, M.; Tarascon, J. M. Crystal structure and electrochemical study of A(Fe1−xMx)SO4F (A = Li/Na; M = Co/Ni/Mn) fluorosulfates prepared by low temperature ionothermal synthesis. ECS Trans. 2019, 28, 1–9.

[99]

Momida, H.; Kitajou, A.; Okada, S.; Oguchi, T. First-principles study of X-ray absorption spectra in NaFeSo4F for exploring Na-ion battery reactions. J. Phys. Soc. Japan 2019, 88, 124709.

[100]

Recham, N.; Rousse, G.; Sougrati, M. T.; Chotard, J. N.; Frayret, C.; Mariyappan, S.; Melot, B. C.; Jumas, J. C.; Tarascon, J. M. Preparation and characterization of a stable FeSO4F-based framework for alkali ion insertion electrodes. Chem. Mater. 2012, 24, 4363–4370.

[101]

Lander, L.; Rousse, G.; Abakumov, A. M.; Sougrati, M.; van Tendeloo, G.; Tarascon, J. M. Structural, electrochemical and magnetic properties of a novel KFeSO4F polymorph. J. Mater. Chem. A 2015, 3, 19754–19764.

Publication history
Copyright
Acknowledgements

Publication history

Received: 24 May 2023
Revised: 27 June 2023
Accepted: 13 July 2023
Published: 05 August 2023
Issue date: March 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22179098).

Return