AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Communication

Antimony oxides-protected ultrathin Ir-Sb nanowires as bifunctional hydrogen electrocatalysts

Bingyan Xu1,§Xuan Huang1,§Shangheng Liu1Zhiwei Hu2Cheng-Wei Kao3Ting-Shan Chan3Hongbo Geng4Ying Zhang5( )Xiaoqing Huang1( )
Country State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
Max Planck Institute for Chemical Physics of Solids, Dresden 01187, Germany
“National Synchrotron Radiation Research Center”, Hsinchu 30076, Taiwan, China
School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, China
Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China

§ Bingyan Xu and Xuan Huang contributed equally to this work.

Show Author Information

Graphical Abstract

Benefiting from the introduction of oxyphilic SbOx, the ultrafine Ir-Sb nanowires have been applied as an efficient bifunctional hydrogen oxidation reaction (HOR)/hydrogen evolution reaction (HER) electrocatalyst.

Abstract

Developing electrocatalysts with fast kinetics and long-term stability for alkaline hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) is of considerable importance for the industrial production of green and sustainable energy. Here, an ultrathin Ir-Sb nanowires ( Ir-Sb NWs) protected by antimony oxides (SbOx) was synthesized as an efficient bifunctional catalyst for both HOR and HER under alkaline media. Except from the much higher mass activities of Ir-Sb nanowires than those of Ir nanowires (Ir NWs) and commercial Pt/C, the SbOx protective layer also contributes to the maintenance of morphology and anti-CO poisoning ability, leading to the long-term cycling performance in the presence of CO. Specifically, the Ir-Sb NW/SbOx exhibits the highest catalytic activities, which are about 3.5 and 4.8 times to those of Ir NW/C and commercial Pt/C toward HOR, respectively. This work provides that the ultrathin morphology and H2O-occupied Sb sites can exert the intrinsic high activity of Ir and effectively optimize the absorption of OH* both in alkaline HER/HOR electrolysis.

Electronic Supplementary Material

Download File(s)
12274_2023_5996_MOESM1_ESM.pdf (1.6 MB)

References

[1]

Steele, B. C. H.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001, 414, 345–352.

[2]

Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

[3]

Cano, Z. P.; Banham, D.; Ye, S. Y.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. W. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 2018, 3, 279–289.

[4]

Zhang, H. B.; Zuo, S. W.; Qiu, M.; Wang, S. B.; Zhang, Y. F.; Zhang, J.; Lou, X. W. Direct probing of atomically dispersed Ru species over multi-edged TiO2 for highly efficient photocatalytic hydrogen evolution. Sci. Adv. 2020, 6, eabb9823.

[5]

Huang, W. H.; Su, C. Y.; Zhu, C.; Bo, T. T.; Zuo, S. W.; Zhou, W.; Ren, Y. F.; Zhang, Y. N.; Zhang, J.; Rueping, M. et al. Isolated electron trap-induced charge accumulation for efficient photocatalytic hydrogen production. Angew. Chem., Int. Ed. 2023, 62, e202304634.

[6]

Lin, Y.; Cui, X. J.; Zhao, Y. L.; Liu, Z. C.; Zhang, G. X.; Pan, Y. Heterojunction interface editing in Co/NiCoP nanospheres by oxygen atoms decoration for synergistic accelerating hydrogen and oxygen evolution electrocatalysis. Nano Res. 2023, 16, 8765–8772.

[7]

Wang, Y. J.; Wilkinson, D. P.; Zhang, J. J. Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts. Chem. Rev. 2011, 111, 7625–7651.

[8]

Kua, J.; Goddard, W. A. Oxidation of methanol on 2nd and 3rd row group VIII transition Metals (Pt, Ir, Os, Pd, Rh, and Ru): Application to direct methanol fuel cells. J. Am. Chem. Soc. 1999, 121, 10928–10941.

[9]

Juarez, F.; Salmazo, D.; Quaino, P.; Schmickler, W. Hydrogen oxidation in alkaline media: The bifunctional mechanism for water formation. Electrocatalysis 2019, 10, 584–590.

[10]

Wu, X.; Zhang, H. B.; Zuo, S. W.; Dong, J. C.; Li, Y.; Zhang, J.; Han, Y. Engineering the coordination sphere of isolated active sites to explore the intrinsic activity in single-atom catalysts. Nano-Micro Lett. 2021, 13, 136.

[11]

Montero, M. A.; de Chialvo, M. R. G.; Chialvo, A. C. Kinetics of the hydrogen oxidation reaction on nanostructured rhodium electrodes in alkaline solution. J. Power Sources 2015, 283, 181–186.

[12]

Liu, H. L.; Nosheen, F.; Wang, X. Noble metal alloy complex nanostructures: Controllable synthesis and their electrochemical property. Chem. Soc. Rev. 2015, 44, 3056–3078.

[13]

Zheng, Y.; Jiao, Y.; Vasileff, A.; Qiao, S. Z. The hydrogen evolution reaction in alkaline solution: From theory, single crystal models, to practical electrocatalysts. Angew. Chem., Int. Ed. 2018, 57, 7568–7579.

[14]

Wang, M. M.; Sun, K. A.; Mi, W. L.; Feng, C.; Guan, Z. K.; Liu, Y. Q.; Pan, Y. Interfacial water activation by single-atom Co-N3 sites coupled with encapsulated Co nanocrystals for accelerating electrocatalytic hydrogen evolution. ACS Catal. 2022, 12, 10771–10780.

[15]

Zhou, Y. Y.; Xie, Z. Y.; Jiang, J. X.; Wang, J.; Song, X. Y.; He, Q.; Ding, W.; Wei, Z. D. Lattice-confined Ru clusters with high CO tolerance and activity for the hydrogen oxidation reaction. Nat. Catal. 2020, 3, 454–462.

[16]

Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B: Environ. 2005, 56, 9–35.

[17]

Fan, Z. X.; Luo, Z. M.; Huang, X.; Li, B.; Chen, Y.; Wang, J.; Hu, Y. L.; Zhang, H. Synthesis of 4H/fcc noble multimetallic nanoribbons for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 2016, 138, 1414–1419.

[18]

Li, M. T.; Zheng, X. Q.; Li, L.; Wei, Z. D. Research progress of hydrogen oxidation and hydrogen evolution reaction mechanism in alkaline media. Acta Phys. Chim. Sin. 2021, 37, 2007054.

[19]

Wang, M. M.; Zheng, X. H.; Qin, D. L.; Li, M.; Sun, K. A.; Liu, C. H.; Cheong, W. C.; Liu, Z.; Chen, Y. J.; Liu, S. J. et al. Atomically dispersed CoN3C1-TeN1C3 diatomic sites anchored in N-doped carbon as efficient bifunctional catalyst for synergistic electrocatalytic hydrogen evolution and oxygen reduction. Small 2022, 18, 2201974.

[20]

Li, M.; Zhu, H. Y.; Yuan, Q.; Li, T. Y.; Wang, M. M.; Zhang, P.; Zhao, Y. L.; Qin, D. L.; Guo, W. Y.; Liu, B. et al. Proximity electronic effect of Ni/Co diatomic sites for synergistic promotion of electrocatalytic oxygen reduction and hydrogen evolution. Adv. Funct. Mater. 2023, 33, 2210867.

[21]

Durst, J.; Siebel, A.; Simon, C.; Hasché, F.; Herranz, J.; Gasteiger, H. A. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 2014, 7, 2255–2260.

[22]

Sheng, W. C.; Myint, M.; Chen, J. G.; Yan, Y. S. Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ. Sci. 2013, 6, 1509–1512.

[23]

Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23–J26.

[24]

Nørskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 2009, 1, 37–46.

[25]

Sheng, M. Q.; Jiang, B. B.; Wu, B.; Liao, F.; Fan, X.; Lin, H. P.; Li, Y. Y.; Lifshitz, Y.; Lee, S. T.; Shao, M. W. Approaching the volcano top: Iridium/silicon nanocomposites as efficient electrocatalysts for the hydrogen evolution reaction. ACS Nano 2019, 13, 2786–2794.

[26]

Sheng, W. C.; Zhuang, Z. B.; Gao, M. R.; Zheng, J.; Chen, J. G.; Yan, Y. S. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat. Commun. 2015, 6, 5848.

[27]

Liu, D.; Lu, S. Q.; Xue, Y. R.; Guan, Z.; Fang, J. J.; Zhu, W.; Zhuang, Z. B. One-pot synthesis of IrNi@Ir core-shell nanoparticles as highly active hydrogen oxidation reaction electrocatalyst in alkaline electrolyte. Nano Energy 2019, 59, 26–32.

[28]

Ramaswamy, N.; Ghoshal, S.; Bates, M. K.; Jia, Q. Y.; Li, J. K.; Mukerjee, S. Hydrogen oxidation reaction in alkaline media: Relationship between electrocatalysis and electrochemical double-layer structure. Nano Energy 2017, 41, 765–771.

[29]

Peng, L. S.; Zheng, X. Q.; Li, L.; Zhang, L.; Yang, N.; Xiong, K.; Chen, H. M.; Li, J.; Wei, Z. D. Chimney effect of the interface in metal oxide/metal composite catalysts on the hydrogen evolution reaction. Appl. Catal. B: Environ. 2019, 245, 122–129.

[30]

Liu, L.; Liu, Y. Y.; Liu, C. G. Enhancing the understanding of hydrogen evolution and oxidation reactions on Pt(111) through ab initio simulation of electrode/electrolyte kinetics. J. Am. Chem. Soc. 2020, 142, 4985–4989.

[31]

Danilovic, N.; Subbaraman, R.; Strmcnik, D.; Chang, K. C.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts. Angew. Chem., Int. Ed. 2012, 51, 12495–12498.

[32]

Fu, L. H.; Li, Y. B.; Yao, N.; Yang, F. L.; Cheng, G. Z.; Luo, W. IrMo nanocatalysts for efficient alkaline hydrogen electrocatalysis. ACS Catal. 2020, 10, 7322–7327.

[33]

Fu, L. H.; Yang, F. L.; Hu, Y. C.; Li, Y. B.; Chen, S. L.; Luo, W. Discrepant roles of adsorbed OH* species on IrWOx for boosting alkaline hydrogen electrocatalysis. Sci. Bull. 2020, 65, 1735–1742.

[34]

Ohyama, J.; Kumada, D.; Satsuma, A. Improved hydrogen oxidation reaction under alkaline conditions by ruthenium-iridium alloyed nanoparticles. J. Mater. Chem. A 2016, 4, 15980–15985.

[35]

Cong, Y. Y.; McCrum, I. T.; Gao, X. Q.; Lv, Y.; Miao, S.; Shao, Z. G.; Yi, B. L.; Yu, H. M.; Janik, M. J.; Song, Y. J. Uniform Pd0.33Ir0.67 nanoparticles supported on nitrogen-doped carbon with remarkable activity toward the alkaline hydrogen oxidation reaction. J. Mater. Chem. A 2019, 7, 3161–3169.

[36]

Ishikawa, K.; Ohyama, J.; Okubo, K.; Murata, K.; Satsuma, A. Enhancement of alkaline hydrogen oxidation reaction of Ru-Ir alloy nanoparticles through bifunctional mechanism on Ru-Ir pair site. ACS Appl. Mater. Interfaces 2020, 12, 22771–22777.

[37]

Zhang, S. M.; Liu, K.; Liu, Z. J.; Liu, M. X.; Zhang, Z. X.; Qiao, Z.; Ming, L.; Gao, C. B. Highly strained Au-Ag-Pd alloy nanowires for boosted electrooxidation of biomass-derived alcohols. Nano Lett. 2021, 21, 1074–1082.

[38]

Feng, H. L.; Calder, S.; Ghimire, M. P.; Yuan, Y. H.; Shirako, Y.; Tsujimoto, Y.; Matsushita, Y.; Hu, Z. W.; Kuo, C. Y.; Tjeng, L. H. et al. Ba2NiOsO6: A dirac-mott insulator with ferromagnetism near 100 K. Phys. Rev. B 2016, 94, 235158.

[39]

Agrestini, S.; Chen, K.; Kuo, C. Y.; Zhao, L.; Lin, H. J.; Chen, C. T.; Rogalev, A.; Ohresser, P.; Chan, T. S.; Weng, S. C. et al. Nature of the magnetism of iridium in the double perovskite Sr2CoIrO6. Phys. Rev. B 2019, 100, 014443.

[40]

Zhang, B. H.; Zhao, G. Q.; Zhang, B. X.; Xia, L. X.; Jiang, Y. Z.; Ma, T. Y.; Gao, M. X.; Sun, W. P.; Pan, H. G. Lattice-confined Ir clusters on Pd nanosheets with charge redistribution for the hydrogen oxidation reaction under alkaline conditions. Adv. Mater. 2021, 33, 2105400.

[41]

Li, L. L.; Sun, H. N.; Hu, Z. W.; Zhou, J.; Huang, Y. C.; Huang, H. L.; Song, S. Z.; Pao, C. W.; Chang, Y. C.; Komarek, A. C. et al. In situ/operando capturing unusual Ir6+ facilitating ultrafast electrocatalytic water oxidation. Adv. Funct. Mater. 2021, 31, 2104746.

[42]

Dupin, J. C.; Gonbeau, D.; Vinatier, P.; Levasseur, A. Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys. Chem. Chem. Phys. 2000, 2, 1319–1324.

[43]

Reiche, R.; Dobler, D.; Holgado, J. P.; Barranco, A.; Martı́n-Concepción, A. I.; Yubero, F.; Espinós, J. P.; González-Elipe, A. R. The auger parameter and the study of chemical and electronic interactions at the Sb2Ox/SnO2 and Sb2Ox/Al2O3 interfaces. Surf. Sci. 2003, 537, 228–240.

[44]

Kim, D. H.; Kwon, D. W.; Hong, S. C. Structural characteristics of V-based catalyst with Sb on selective catalytic NOx reduction with NH3. Appl. Surf. Sci. 2021, 538, 148088.

[45]

Zheng, J.; Zhuang, Z. B.; Xu, B. J.; Yan, Y. S. Correlating hydrogen oxidation/evolution reaction activity with the minority weak hydrogen-binding sites on Ir/C catalysts. ACS Catal. 2015, 5, 4449–4455.

[46]

Wang, M. M.; Wang, M. J.; Zhan, C. H.; Geng, H. B.; Li, Y. H.; Huang, X. Q.; Bu, L. Z. Ultrafine platinum-iridium distorted nanowires as robust catalysts toward bifunctional hydrogen catalysis. J. Mater. Chem. A 2022, 10, 18972–18977.

[47]

Zhang, Y.; Li, G.; Zhao, Z. L.; Han, L. L.; Feng, Y. G.; Liu, S. H.; Xu, B. Y.; Liao, H. G.; Lu, G.; Xin, H. L. et al. Atomically isolated Rh sites within highly branched Rh2Sb nanostructures enhance bifunctional hydrogen electrocatalysis. Adv. Mater. 2021, 33, 2105049.

[48]

Zhuang, Z. B.; Giles, S. A.; Zheng, J.; Jenness, G. R.; Caratzoulas, S.; Vlachos, D. G.; Yan, Y. S. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte. Nat. Commun. 2016, 7, 10141.

[49]

Zhao, G. Q.; Jiang, Y. Z.; Dou, S. X.; Sun, W. P.; Pan, H. G. Interface engineering of heterostructured electrocatalysts towards efficient alkaline hydrogen electrocatalysis. Sci. Bull. 2021, 66, 85–96.

Nano Research
Pages 1042-1049
Cite this article:
Xu B, Huang X, Liu S, et al. Antimony oxides-protected ultrathin Ir-Sb nanowires as bifunctional hydrogen electrocatalysts. Nano Research, 2024, 17(3): 1042-1049. https://doi.org/10.1007/s12274-023-5996-0
Topics:

586

Views

6

Crossref

6

Web of Science

6

Scopus

0

CSCD

Altmetrics

Received: 10 May 2023
Revised: 01 July 2023
Accepted: 13 July 2023
Published: 30 August 2023
© Tsinghua University Press 2023
Return