Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Developing electrocatalysts with fast kinetics and long-term stability for alkaline hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) is of considerable importance for the industrial production of green and sustainable energy. Here, an ultrathin Ir-Sb nanowires ( Ir-Sb NWs) protected by antimony oxides (SbOx) was synthesized as an efficient bifunctional catalyst for both HOR and HER under alkaline media. Except from the much higher mass activities of Ir-Sb nanowires than those of Ir nanowires (Ir NWs) and commercial Pt/C, the SbOx protective layer also contributes to the maintenance of morphology and anti-CO poisoning ability, leading to the long-term cycling performance in the presence of CO. Specifically, the Ir-Sb NW/SbOx exhibits the highest catalytic activities, which are about 3.5 and 4.8 times to those of Ir NW/C and commercial Pt/C toward HOR, respectively. This work provides that the ultrathin morphology and H2O-occupied Sb sites can exert the intrinsic high activity of Ir and effectively optimize the absorption of OH* both in alkaline HER/HOR electrolysis.
Steele, B. C. H.; Heinzel, A. Materials for fuel-cell technologies. Nature 2001, 414, 345–352.
Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.
Cano, Z. P.; Banham, D.; Ye, S. Y.; Hintennach, A.; Lu, J.; Fowler, M.; Chen, Z. W. Batteries and fuel cells for emerging electric vehicle markets. Nat. Energy 2018, 3, 279–289.
Zhang, H. B.; Zuo, S. W.; Qiu, M.; Wang, S. B.; Zhang, Y. F.; Zhang, J.; Lou, X. W. Direct probing of atomically dispersed Ru species over multi-edged TiO2 for highly efficient photocatalytic hydrogen evolution. Sci. Adv. 2020, 6, eabb9823.
Huang, W. H.; Su, C. Y.; Zhu, C.; Bo, T. T.; Zuo, S. W.; Zhou, W.; Ren, Y. F.; Zhang, Y. N.; Zhang, J.; Rueping, M. et al. Isolated electron trap-induced charge accumulation for efficient photocatalytic hydrogen production. Angew. Chem., Int. Ed. 2023, 62, e202304634.
Lin, Y.; Cui, X. J.; Zhao, Y. L.; Liu, Z. C.; Zhang, G. X.; Pan, Y. Heterojunction interface editing in Co/NiCoP nanospheres by oxygen atoms decoration for synergistic accelerating hydrogen and oxygen evolution electrocatalysis. Nano Res. 2023, 16, 8765–8772.
Wang, Y. J.; Wilkinson, D. P.; Zhang, J. J. Noncarbon support materials for polymer electrolyte membrane fuel cell electrocatalysts. Chem. Rev. 2011, 111, 7625–7651.
Kua, J.; Goddard, W. A. Oxidation of methanol on 2nd and 3rd row group VIII transition Metals (Pt, Ir, Os, Pd, Rh, and Ru): Application to direct methanol fuel cells. J. Am. Chem. Soc. 1999, 121, 10928–10941.
Juarez, F.; Salmazo, D.; Quaino, P.; Schmickler, W. Hydrogen oxidation in alkaline media: The bifunctional mechanism for water formation. Electrocatalysis 2019, 10, 584–590.
Wu, X.; Zhang, H. B.; Zuo, S. W.; Dong, J. C.; Li, Y.; Zhang, J.; Han, Y. Engineering the coordination sphere of isolated active sites to explore the intrinsic activity in single-atom catalysts. Nano-Micro Lett. 2021, 13, 136.
Montero, M. A.; de Chialvo, M. R. G.; Chialvo, A. C. Kinetics of the hydrogen oxidation reaction on nanostructured rhodium electrodes in alkaline solution. J. Power Sources 2015, 283, 181–186.
Liu, H. L.; Nosheen, F.; Wang, X. Noble metal alloy complex nanostructures: Controllable synthesis and their electrochemical property. Chem. Soc. Rev. 2015, 44, 3056–3078.
Zheng, Y.; Jiao, Y.; Vasileff, A.; Qiao, S. Z. The hydrogen evolution reaction in alkaline solution: From theory, single crystal models, to practical electrocatalysts. Angew. Chem., Int. Ed. 2018, 57, 7568–7579.
Wang, M. M.; Sun, K. A.; Mi, W. L.; Feng, C.; Guan, Z. K.; Liu, Y. Q.; Pan, Y. Interfacial water activation by single-atom Co-N3 sites coupled with encapsulated Co nanocrystals for accelerating electrocatalytic hydrogen evolution. ACS Catal. 2022, 12, 10771–10780.
Zhou, Y. Y.; Xie, Z. Y.; Jiang, J. X.; Wang, J.; Song, X. Y.; He, Q.; Ding, W.; Wei, Z. D. Lattice-confined Ru clusters with high CO tolerance and activity for the hydrogen oxidation reaction. Nat. Catal. 2020, 3, 454–462.
Gasteiger, H. A.; Kocha, S. S.; Sompalli, B.; Wagner, F. T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs. Appl. Catal. B: Environ. 2005, 56, 9–35.
Fan, Z. X.; Luo, Z. M.; Huang, X.; Li, B.; Chen, Y.; Wang, J.; Hu, Y. L.; Zhang, H. Synthesis of 4H/fcc noble multimetallic nanoribbons for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 2016, 138, 1414–1419.
Li, M. T.; Zheng, X. Q.; Li, L.; Wei, Z. D. Research progress of hydrogen oxidation and hydrogen evolution reaction mechanism in alkaline media. Acta Phys. Chim. Sin. 2021, 37, 2007054.
Wang, M. M.; Zheng, X. H.; Qin, D. L.; Li, M.; Sun, K. A.; Liu, C. H.; Cheong, W. C.; Liu, Z.; Chen, Y. J.; Liu, S. J. et al. Atomically dispersed CoN3C1-TeN1C3 diatomic sites anchored in N-doped carbon as efficient bifunctional catalyst for synergistic electrocatalytic hydrogen evolution and oxygen reduction. Small 2022, 18, 2201974.
Li, M.; Zhu, H. Y.; Yuan, Q.; Li, T. Y.; Wang, M. M.; Zhang, P.; Zhao, Y. L.; Qin, D. L.; Guo, W. Y.; Liu, B. et al. Proximity electronic effect of Ni/Co diatomic sites for synergistic promotion of electrocatalytic oxygen reduction and hydrogen evolution. Adv. Funct. Mater. 2023, 33, 2210867.
Durst, J.; Siebel, A.; Simon, C.; Hasché, F.; Herranz, J.; Gasteiger, H. A. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 2014, 7, 2255–2260.
Sheng, W. C.; Myint, M.; Chen, J. G.; Yan, Y. S. Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ. Sci. 2013, 6, 1509–1512.
Nørskov, J. K.; Bligaard, T.; Logadottir, A.; Kitchin, J. R.; Chen, J. G.; Pandelov, S.; Stimming, U. Trends in the exchange current for hydrogen evolution. J. Electrochem. Soc. 2005, 152, J23–J26.
Nørskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Towards the computational design of solid catalysts. Nat. Chem. 2009, 1, 37–46.
Sheng, M. Q.; Jiang, B. B.; Wu, B.; Liao, F.; Fan, X.; Lin, H. P.; Li, Y. Y.; Lifshitz, Y.; Lee, S. T.; Shao, M. W. Approaching the volcano top: Iridium/silicon nanocomposites as efficient electrocatalysts for the hydrogen evolution reaction. ACS Nano 2019, 13, 2786–2794.
Sheng, W. C.; Zhuang, Z. B.; Gao, M. R.; Zheng, J.; Chen, J. G.; Yan, Y. S. Correlating hydrogen oxidation and evolution activity on platinum at different pH with measured hydrogen binding energy. Nat. Commun. 2015, 6, 5848.
Liu, D.; Lu, S. Q.; Xue, Y. R.; Guan, Z.; Fang, J. J.; Zhu, W.; Zhuang, Z. B. One-pot synthesis of IrNi@Ir core-shell nanoparticles as highly active hydrogen oxidation reaction electrocatalyst in alkaline electrolyte. Nano Energy 2019, 59, 26–32.
Ramaswamy, N.; Ghoshal, S.; Bates, M. K.; Jia, Q. Y.; Li, J. K.; Mukerjee, S. Hydrogen oxidation reaction in alkaline media: Relationship between electrocatalysis and electrochemical double-layer structure. Nano Energy 2017, 41, 765–771.
Peng, L. S.; Zheng, X. Q.; Li, L.; Zhang, L.; Yang, N.; Xiong, K.; Chen, H. M.; Li, J.; Wei, Z. D. Chimney effect of the interface in metal oxide/metal composite catalysts on the hydrogen evolution reaction. Appl. Catal. B: Environ. 2019, 245, 122–129.
Liu, L.; Liu, Y. Y.; Liu, C. G. Enhancing the understanding of hydrogen evolution and oxidation reactions on Pt(111) through ab initio simulation of electrode/electrolyte kinetics. J. Am. Chem. Soc. 2020, 142, 4985–4989.
Danilovic, N.; Subbaraman, R.; Strmcnik, D.; Chang, K. C.; Paulikas, A. P.; Stamenkovic, V. R.; Markovic, N. M. Enhancing the alkaline hydrogen evolution reaction activity through the bifunctionality of Ni(OH)2/metal catalysts. Angew. Chem., Int. Ed. 2012, 51, 12495–12498.
Fu, L. H.; Li, Y. B.; Yao, N.; Yang, F. L.; Cheng, G. Z.; Luo, W. IrMo nanocatalysts for efficient alkaline hydrogen electrocatalysis. ACS Catal. 2020, 10, 7322–7327.
Fu, L. H.; Yang, F. L.; Hu, Y. C.; Li, Y. B.; Chen, S. L.; Luo, W. Discrepant roles of adsorbed OH* species on IrWOx for boosting alkaline hydrogen electrocatalysis. Sci. Bull. 2020, 65, 1735–1742.
Ohyama, J.; Kumada, D.; Satsuma, A. Improved hydrogen oxidation reaction under alkaline conditions by ruthenium-iridium alloyed nanoparticles. J. Mater. Chem. A 2016, 4, 15980–15985.
Cong, Y. Y.; McCrum, I. T.; Gao, X. Q.; Lv, Y.; Miao, S.; Shao, Z. G.; Yi, B. L.; Yu, H. M.; Janik, M. J.; Song, Y. J. Uniform Pd0.33Ir0.67 nanoparticles supported on nitrogen-doped carbon with remarkable activity toward the alkaline hydrogen oxidation reaction. J. Mater. Chem. A 2019, 7, 3161–3169.
Ishikawa, K.; Ohyama, J.; Okubo, K.; Murata, K.; Satsuma, A. Enhancement of alkaline hydrogen oxidation reaction of Ru-Ir alloy nanoparticles through bifunctional mechanism on Ru-Ir pair site. ACS Appl. Mater. Interfaces 2020, 12, 22771–22777.
Zhang, S. M.; Liu, K.; Liu, Z. J.; Liu, M. X.; Zhang, Z. X.; Qiao, Z.; Ming, L.; Gao, C. B. Highly strained Au-Ag-Pd alloy nanowires for boosted electrooxidation of biomass-derived alcohols. Nano Lett. 2021, 21, 1074–1082.
Feng, H. L.; Calder, S.; Ghimire, M. P.; Yuan, Y. H.; Shirako, Y.; Tsujimoto, Y.; Matsushita, Y.; Hu, Z. W.; Kuo, C. Y.; Tjeng, L. H. et al. Ba2NiOsO6: A dirac-mott insulator with ferromagnetism near 100 K. Phys. Rev. B 2016, 94, 235158.
Agrestini, S.; Chen, K.; Kuo, C. Y.; Zhao, L.; Lin, H. J.; Chen, C. T.; Rogalev, A.; Ohresser, P.; Chan, T. S.; Weng, S. C. et al. Nature of the magnetism of iridium in the double perovskite Sr2CoIrO6. Phys. Rev. B 2019, 100, 014443.
Zhang, B. H.; Zhao, G. Q.; Zhang, B. X.; Xia, L. X.; Jiang, Y. Z.; Ma, T. Y.; Gao, M. X.; Sun, W. P.; Pan, H. G. Lattice-confined Ir clusters on Pd nanosheets with charge redistribution for the hydrogen oxidation reaction under alkaline conditions. Adv. Mater. 2021, 33, 2105400.
Li, L. L.; Sun, H. N.; Hu, Z. W.; Zhou, J.; Huang, Y. C.; Huang, H. L.; Song, S. Z.; Pao, C. W.; Chang, Y. C.; Komarek, A. C. et al. In situ/operando capturing unusual Ir6+ facilitating ultrafast electrocatalytic water oxidation. Adv. Funct. Mater. 2021, 31, 2104746.
Dupin, J. C.; Gonbeau, D.; Vinatier, P.; Levasseur, A. Systematic XPS studies of metal oxides, hydroxides and peroxides. Phys. Chem. Chem. Phys. 2000, 2, 1319–1324.
Reiche, R.; Dobler, D.; Holgado, J. P.; Barranco, A.; Martı́n-Concepción, A. I.; Yubero, F.; Espinós, J. P.; González-Elipe, A. R. The auger parameter and the study of chemical and electronic interactions at the Sb2Ox/SnO2 and Sb2Ox/Al2O3 interfaces. Surf. Sci. 2003, 537, 228–240.
Kim, D. H.; Kwon, D. W.; Hong, S. C. Structural characteristics of V-based catalyst with Sb on selective catalytic NOx reduction with NH3. Appl. Surf. Sci. 2021, 538, 148088.
Zheng, J.; Zhuang, Z. B.; Xu, B. J.; Yan, Y. S. Correlating hydrogen oxidation/evolution reaction activity with the minority weak hydrogen-binding sites on Ir/C catalysts. ACS Catal. 2015, 5, 4449–4455.
Wang, M. M.; Wang, M. J.; Zhan, C. H.; Geng, H. B.; Li, Y. H.; Huang, X. Q.; Bu, L. Z. Ultrafine platinum-iridium distorted nanowires as robust catalysts toward bifunctional hydrogen catalysis. J. Mater. Chem. A 2022, 10, 18972–18977.
Zhang, Y.; Li, G.; Zhao, Z. L.; Han, L. L.; Feng, Y. G.; Liu, S. H.; Xu, B. Y.; Liao, H. G.; Lu, G.; Xin, H. L. et al. Atomically isolated Rh sites within highly branched Rh2Sb nanostructures enhance bifunctional hydrogen electrocatalysis. Adv. Mater. 2021, 33, 2105049.
Zhuang, Z. B.; Giles, S. A.; Zheng, J.; Jenness, G. R.; Caratzoulas, S.; Vlachos, D. G.; Yan, Y. S. Nickel supported on nitrogen-doped carbon nanotubes as hydrogen oxidation reaction catalyst in alkaline electrolyte. Nat. Commun. 2016, 7, 10141.
Zhao, G. Q.; Jiang, Y. Z.; Dou, S. X.; Sun, W. P.; Pan, H. G. Interface engineering of heterostructured electrocatalysts towards efficient alkaline hydrogen electrocatalysis. Sci. Bull. 2021, 66, 85–96.