Journal Home > Volume 17 , Issue 3

Flexible inorganic double helical semiconductors similar to DNA have fueled the demand for efficient materials with innovative structures and excellent properties. The recent discovery of tin phosphide iodide (SnIP), the first carbon-free double helical semiconductor at an atomic level, has opened new avenues of research for semiconducting devices such as thermoelectric and sensor devices, solar cells, and photocatalysis. It has drawn significant academic attention due to its high structural flexibility, band gap in the visible spectrum range, and non-toxic elements. Herein, the recent progress in developing SnIP, including its prestigious structure, versatile and intriguing properties, and synthesis, is summarized. Other analogues of SnIP and SnIP-based hybrid materials and their applications in photocatalysis are also discussed. Finally, the review concludes with a critical summary and future aspects of this new inorganic semiconductor.


menu
Abstract
Full text
Outline
About this article

SnIP-type atomic-scale inorganic double-helix semiconductors: Synthesis, properties, and applications

Show Author's information Mudussar AliBowen ZhangMuhammad KhurramQingfeng Yan( )
Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China

Abstract

Flexible inorganic double helical semiconductors similar to DNA have fueled the demand for efficient materials with innovative structures and excellent properties. The recent discovery of tin phosphide iodide (SnIP), the first carbon-free double helical semiconductor at an atomic level, has opened new avenues of research for semiconducting devices such as thermoelectric and sensor devices, solar cells, and photocatalysis. It has drawn significant academic attention due to its high structural flexibility, band gap in the visible spectrum range, and non-toxic elements. Herein, the recent progress in developing SnIP, including its prestigious structure, versatile and intriguing properties, and synthesis, is summarized. Other analogues of SnIP and SnIP-based hybrid materials and their applications in photocatalysis are also discussed. Finally, the review concludes with a critical summary and future aspects of this new inorganic semiconductor.

Keywords: photocatalysis, inorganic semiconductor, inorganic double helix, SnIP-based hybrids, flexible material, tin phosphide iodide (SnIP)

References(137)

[1]

Watson, J. D.; Crick, F. H. C. Molecular structure of nucleic acids: A structure for deoxyribose nucleic acid. Nature 1953, 171, 737–738.

[2]

Franklin, R. E.; Gosling, R. G. Molecular configuration in sodium thymonucleate. Nature 1953, 171, 740–741.

[3]

Wilkins, M. H. F.; Stokes, A. R.; Wilson, H. R. Molecular structure of nucleic acids: Molecular structure of deoxypentose nucleic acids. Nature 1953, 171, 738–740.

[4]

Nielsen, P. E. Peptide nucleic acid: A versatile tool in genetic diagnostics and molecular biology. Curr. Opin. Biotechnol. 2001, 12, 16–20.

[5]

Malyshev, D. A.; Dhami, K.; Lavergne, T.; Chen, T. J.; Dai, N.; Foster, J. M.; Corrêa, I. R.; Romesberg, F. E. A semi-synthetic organism with an expanded genetic alphabet. Nature 2014, 509, 385–388.

[6]

Zhao, M. Q.; Zhang, Q.; Tian, G. L.; Wei, F. Emerging double helical nanostructures. Nanoscale 2014, 6, 9339–9354.

[7]

Robbie, K.; Brett, M. J. Sculptured thin films and glancing angle deposition: Growth mechanics and applications. J. Vac. Sci. Technol. A 1997, 15, 1460–1465.

[8]

Hanus, M. J.; Harris, A. T. Synthesis, characterisation and applications of coiled carbon nanotubes. J. Nanosci. Nanotechnol. 2010, 10, 2261–2283.

[9]

Yang, S.; Zhao, L. Z.; Yu, C. Z.; Zhou, X. F.; Tang, J. W.; Yuan, P.; Chen, D. Y.; Zhao, D. Y. On the origin of helical mesostructures. J. Am. Chem. Soc. 2006, 128, 10460–10466.

[10]

Jin, S.; Bierman, M. J.; Morin, S. A. A new twist on nanowire formation: Screw-dislocation-driven growth of nanowires and nanotubes. J. Phys. Chem. Lett. 2010, 1, 1472–1480.

[11]

Wang, Y.; Wang, Q. X.; Sun, H.; Zhang, W. Q.; Chen, G.; Wang, Y. W.; Shen, X. S.; Han, Y.; Lu, X. M.; Chen, H. Y. Chiral transformation: From single nanowire to double helix. J. Am. Chem. Soc. 2011, 133, 20060–20063.

[12]

Lee, C. C.; Grenier, C.; Meijer, E. W.; Schenning, A. P. H. J. Preparation and characterization of helical self-assembled nanofibers. Chem. Soc. Rev. 2009, 38, 671–683.

[13]

Hönle, W.; von Schnering, Η. G. Zur struktur von LiP und KSb. Z. Kristallogr. Cryst. Mater. 1981, 155, 307–314.

[14]

Ivanov, A. S.; Morris, A. J.; Bozhenko, K. V.; Pickard, C. J.; Boldyrev, A. I. Inorganic double-helix structures of unusually simple lithium-phosphorus species. Angew. Chem., Int. Ed. 2012, 51, 8330–8333.

[15]

Jissy, A. K.; Datta, A. What stabilizes the LinPn inorganic double helices? J. Phys. Chem. Lett. 2013, 4, 1018–1022.

[16]

Fan, X.; Dickey, E. C.; Eklund, P. C.; Williams, K. A.; Grigorian, L.; Buczko, R.; Pantelides, S. T.; Pennycook, S. J. Atomic arrangement of iodine atoms inside single-walled carbon nanotubes. Phys. Rev. Lett. 2000, 84, 4621–4624.

[17]

Fujimori, T.; Morelos-Gómez, A.; Zhu, Z.; Muramatsu, H.; Futamura, R.; Urita, K.; Terrones, M.; Hayashi, T.; Endo, M.; Young Hong, S. et al. Conducting linear chains of sulphur inside carbon nanotubes. Nat. Commun. 2013, 4, 2162.

[18]

Fujimori, T.; dos Santos, R. B.; Hayashi, T.; Endo, M.; Kaneko, K.; Tománek, D. Formation and properties of selenium double-helices inside double-wall carbon nanotubes: Experiment and theory. ACS Nano 2013, 7, 5607–5613.

[19]

Ivanov, A. S.; Kar, T.; Boldyrev, A. I. Nanoscale stabilization of zintl compounds: 1D ionic Li-P double helix confined inside a carbon nanotube. Nanoscale 2016, 8, 3454–3460.

[20]

Soghomonian, V.; Chen, Q.; Haushalter, R. C.; Zubieta, J.; O’Connor, C. J. An inorganic double helix: Hydrothermal synthesis, structure, and magnetism of chiral[(CH3)2NH2]K4[V10O10(H2O)2(OH)4(PO4)7]·4H2O. Science 1993, 259, 1596–1599.

[21]

Liu, L. C.; Zhang, L. Q.; Kim, S. M.; Park, S. Helical metallic micro-and nanostructures: Fabrication and application. Nanoscale 2014, 6, 9355–9365.

[22]

Tang, Z. Y.; Zhang, Z. L.; Wang, Y.; Glotzer, S. C.; Kotov, N. A. Self-assembly of CdTe nanocrystals into free-floating sheets. Science 2006, 314, 274–278.

[23]

Sone, E. D.; Zubarev, E. R.; Stupp, S. I. Supramolecular templating of single and double nanohelices of cadmium sulfide. Small 2005, 1, 694–697.

[24]

Goldberger, J.; He, R. R.; Zhang, Y. F.; Lee, S.; Yan, H. Q.; Choi, H. J.; Yang, P. D. Single-crystal gallium nitride nanotubes. Nature 2003, 422, 599–602.

[25]

Morito, H.; Yamane, H. Double-helical silicon microtubes. Angew. Chem. 2010, 122, 3720–3723.

[26]

Lange, S.; Schmidt, P.; Nilges, T. Au3SnP7@black phosphorus: An easy access to black phosphorus. Inorg. Chem. 2007, 46, 4028–4035.

[27]

Köpf, M.; Eckstein, N.; Pfister, D.; Grotz, C.; Krüger, I.; Greiwe, M.; Hansen, T.; Kohlmann, H.; Nilges, T. Access and in situ growth of phosphorene-precursor black phosphorus. J. Cryst. Growth 2014, 405, 6–10.

[28]

Pfister, D.; Schäfer, K.; Ott, C.; Gerke, B.; Pöttgen, R.; Janka, O.; Baumgartner, M.; Efimova, A.; Hohmann, A.; Schmidt, P. et al. Inorganic double helices in semiconducting SnIP. Adv. Mater. 2016, 28, 9783–9791.

[29]

Saleh, L. M. A.; Dziedzic, R.; Spokoyny, A. M. An inorganic twist in nanomaterials: Making an atomically precise double helix. ACS Cent. Sci. 2016, 2, 685–686.

[30]

Baumgartner, M.; Weihrich, R.; Nilges, T. Inorganic SnIP-type double helices in main-group chemistry. Chem.—Eur. J. 2017, 23, 6452–6457.

[31]

Li, X. R.; Dai, Y.; Ma, Y. D.; Li, M. M.; Yu, L.; Huang, B. B. Landscape of DNA-like inorganic metal free double helical semiconductors and potential applications in photocatalytic water splitting. J. Mater. Chem. A 2017, 5, 8484–8492.

[32]

Baumer, F.; Reiter, F.; Nilges, T. Towards MXPn-type compounds in the systems Ge-I-Pn (Pn = P, As)—new insights in the structures and properties of inverse type I clathrates. Z. Anorg. Allg. Chem. 2017, 643, 1444–1450.

[33]

Reiter, F.; Pielmeier, M.; Vogel, A.; Jandl, C.; Plodinec, M.; Rohner, C.; Lunkenbein, T.; Nisi, K.; Holleitner, A.; Nilges, T. SnBrP-A SnIP-type representative in the Sn-Br-P system. Z. Anorg. Allg. Chem. 2022, 648, e202100347.

[34]
Müller, U. Symmetry Relationships Between Crystal Structures: Applications of Crystallographic Group Theory in Crystal Chemistry; Oxford University Press: Oxford, 2013.
DOI
[35]
Aroyo, M. I. International Tables for Crystallography; Wiley Online Library, 2013.
[36]

Wu, J. B.; Wang, N.; Xie, Y. R.; Liu, H. F.; Huang, X. H.; Cong, X.; Chen, H. Y.; Ma, J. H.; Liu, F. X.; Zhao, H. B. et al. Polymer-like inorganic double helical van der Waals semiconductor. Nano Lett. 2022, 22, 9054–9061.

[37]

Osters, O.; Nilges, T.; Bachhuber, F.; Pielnhofer, F.; Weihrich, R.; Schöneich, M.; Schmidt, P. Synthesis and identification of metastable compounds: Black arsenic—science or fiction? Angew. Chem., Int. Ed. 2012, 51, 2994–2997.

[38]

Doll, K.; Dovesi, R.; Orlando, R. Analytical Hartree-Fock gradients with respect to the cell parameter for systems periodic in three dimensions. Theor. Chem. Acc. 2004, 112, 394–402.

[39]

Sun, Y.; Rogers, J. A. Inorganic semiconductors for flexible electronics. Adv. Mater. 2007, 19, 1897–1916.

[40]

Graetzel, M.; Janssen, R. A. J.; Mitzi, D. B.; Sargent, E. H. Materials interface engineering for solution-processed photovoltaics. Nature 2012, 488, 304–312.

[41]

Chung, I.; Lee, B.; He, J. Q.; Chang, R. P. H.; Kanatzidis, M. G. All-solid-state dye-sensitized solar cells with high efficiency. Nature 2012, 485, 486–489.

[42]

Nie, W. Y.; Tsai, H.; Asadpour, R.; Blancon, J. C.; Neukirch, A. J.; Gupta, G.; Crochet, J. J.; Chhowalla, M.; Tretiak, S.; Alam, M. A. et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 2015, 347, 522–525.

[43]

Chen, W.; Wu, Y. Z.; Yue, Y. F.; Liu, J.; Zhang, W. J.; Yang, X. D.; Chen, H.; Bi, E. B.; Ashraful, I.; Grätzel, M. et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 2015, 350, 944–948.

[44]

Ott, C.; Reiter, F.; Baumgartner, M.; Pielmeier, M.; Vogel, A.; Walke, P.; Burger, S.; Ehrenreich, M.; Kieslich, G.; Daisenberger, D. et al. Flexible and ultrasoft inorganic 1D semiconductor and heterostructure systems based on SnIP. Adv. Funct. Mater. 2019, 29, 1900233.

[45]
Adachi, S. Properties of Semiconductor Alloys: Group-IV, III-V and II-VI Semiconductors; John Wiley & Sons: Chichester, 2009.
DOI
[46]

Al-Douri, Y.; Abid, H.; Aourag, H. Correlation between the bulk modulus and the transition pressure in semiconductors. Mater. Lett. 2005, 59, 2032–2034.

[47]

Kumar, V.; Shrivastava, A. K.; Jha, V. Bulk modulus and microhardness of tetrahedral semiconductors. J. Phys. Chem. Solids 2010, 71, 1513–1520.

[48]

Yue, Y. H.; Zhang, Q.; Yang, Z. Y.; Gong, Q. H.; Guo, L. Study of the mechanical behavior of radially grown fivefold twinned nanowires on the atomic scale. Small 2016, 12, 3503–3509.

[49]

Purschke, D. N.; Pielmeier, M. R. P.; Üzer, E.; Ott, C.; Jensen, C.; Degg, A.; Vogel, A.; Amer, N.; Nilges, T.; Hegmann, F. A. Ultrafast photoconductivity and terahertz vibrational dynamics in double-helix snip nanowires. Adv. Mater. 2021, 33, 2100978.

[50]
Gere, J. M.; Timoshenko, S. Mechanics of Materials; PWS: Boston, MA, 1997.
[51]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[52]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[53]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[54]
Parker, E. R. Materials Data Book for Engineers and Scientists; McGraw-Hill: New York, 1967.
[55]

Peng, J.; Snyder, G. J. A figure of merit for flexibility. Science 2019, 366, 690–691.

[56]

Tang, D. M.; Ren, C. L.; Wang, M. S.; Wei, X. L.; Kawamoto, N.; Liu, C.; Bando, Y.; Mitome, M.; Fukata, N.; Golberg, D. Mechanical properties of Si nanowires as revealed by in situ transmission electron microscopy and molecular dynamics simulations. Nano Lett. 2012, 12, 1898–1904.

[57]

Wang, S. L.; Shan, Z. W.; Huang, H. The mechanical properties of nanowires. Adv. Sci. 2017, 4, 1600332.

[58]

Zhang, H. T.; Tersoff, J.; Xu, S.; Chen, H. X.; Zhang, Q. B.; Zhang, K. L.; Yang, Y.; Lee, C. S.; Tu, K. N.; Li, J. et al. Approaching the ideal elastic strain limit in silicon nanowires. Sci. Adv. 2016, 2, e1501382.

[59]

Ostroverkhova, O. Organic optoelectronic materials: Mechanisms and applications. Chem. Rev. 2016, 116, 13279–13412.

[60]

Liu, X. Y.; Liu, Z. Y.; Li, J. J.; Tan, X. H.; Sun, B.; Fang, H.; Xi, S.; Shi, T. L.; Tang, Z. R.; Liao, G. L. Ultrafast, self-powered and charge-transport-layer-free photodetectors based on high-quality evaporated CsPbBr3 perovskites for applications in optical communication. J. Mater. Chem. C 2020, 8, 3337–3350.

[61]

Ulbricht, R.; Hendry, E.; Shan, J.; Heinz, T. F.; Bonn, M. Carrier dynamics in semiconductors studied with time-resolved terahertz spectroscopy. Rev. Mod. Phys. 2011, 83, 543–586.

[62]

Joyce, H. J.; Boland, J. L.; Davies, C. L.; Baig, S. A.; Johnston, M. B. A review of the electrical properties of semiconductor nanowires: Insights gained from terahertz conductivity spectroscopy. Semicond. Sci. Technol. 2016, 31, 103003.

[63]

Kužel, P.; Němec, H. Terahertz spectroscopy of nanomaterials: A close look at charge-carrier transport. Adv. Opt. Mater. 2020, 8, 1900623.

[64]

Shi, X.; Chen, H. Y.; Hao, F.; Liu, R. H.; Wang, T.; Qiu, P. F.; Burkhardt, U.; Grin, Y.; Chen, L. D. Room-temperature ductile inorganic semiconductor. Nat. Mater. 2018, 17, 421–426.

[65]

Qin, J. K.; Liao, P. Y.; Si, M. W.; Gao, S. Y.; Qiu, G.; Jian, J.; Wang, Q. X.; Zhang, S. Q.; Huang, S. Y.; Charnas, A. et al. Raman response and transport properties of tellurium atomic chains encapsulated in nanotubes. Nat. Electron. 2020, 3, 141–147.

[66]

Hoff, D. A.; Rego, L. G. C. Chirality-induced propagation velocity asymmetry. Nano Lett. 2021, 21, 8190–8196.

[67]

Peng, B.; Murakami, S.; Monserrat, B.; Zhang, T. T. Degenerate topological line surface phonons in quasi-1D double helix crystal SnIP. Npj Comput. Mater. 2021, 7, 195.

[68]

Liu, D.; Wei, R.; Han, L.; Zhu, C.; Dong, S. Ferroelectricity induced by the absorption of water molecules on double helix SnIP. Chin. Phys. B 2022, 32, 037701.

[69]

Wang, D. Y.; Luo, F.; Lu, M.; Xie, X. J.; Huang, L.; Huang, W. Chemical vapor transport reactions for synthesizing layered materials and their 2D counterparts. Small 2019, 15, 1804404.

[70]

Khurram, M.; Sun, Z. J.; Zhang, Z. M.; Yan, Q. F. Chemical vapor transport growth of bulk black phosphorus single crystals. Inorg. Chem. Front. 2020, 7, 2867–2879.

[71]

Wu, Z. X.; Curtin, W. A. Mechanism and energetics of c + a dislocation cross-slip in hcp metals. Proc. Natl. Acad. Sci. USA 2016, 113, 11137–11142.

[72]

Wang, P.; Zhao, R.; Wu, L. X.; Zhang, M. Z. Effect of Y doping on high-pressure behavior of Ag2S nanocrystals. RSC Adv. 2017, 7, 35105–35110.

[73]

Aksoy, R.; Selvi, E.; Ma, Y. Z. X-ray diffraction study of molybdenum diselenide to 35.9 GPa. J. Phys. Chem. Solids 2008, 69, 2138–2140.

[74]

Pradhan, N. R.; Rhodes, D.; Xin, Y.; Memaran, S.; Bhaskaran, L.; Siddiq, M.; Hill, S.; Ajayan, P. M.; Balicas, L. Ambipolar molybdenum diselenide field-effect transistors: Field-effect and hall mobilities. ACS Nano 2014, 8, 7923–7929.

[75]

Dong, J. S.; Ouyang, G. Thickness-dependent semiconductor-to-metal transition in molybdenum tungsten disulfide alloy under hydrostatic pressure. ACS Omega 2019, 4, 8641–8649.

[76]

Schmidt, H.; Wang, S. F.; Chu, L. Q.; Toh, M.; Kumar, R.; Zhao, W. J.; Castro Neto, A. H.; Martin, J.; Adam, S.; Özyilmaz, B. et al. Transport properties of monolayer MoS2 grown by chemical vapor deposition. Nano Lett. 2014, 14, 1909–1913.

[77]

Cui, Y.; Xin, R.; Yu, Z. H.; Pan, Y. M.; Ong, Z. Y.; Wei, X. X.; Wang, J. Z.; Nan, H. Y.; Ni, Z. H.; Wu, Y. et al. High-performance monolayer WS2 field-effect transistors on high-κ dielectrics. Adv. Mater. 2015, 27, 5230–5234.

[78]

Kumar, V.; Singh, J. K.; Prasad, G. M. Elastic properties of elemental, binary and ternary semiconductor materials. Indian J. Pure Appl. Phys. 2015, 53, 429–435.

[79]
Madelung, O. Semiconductors-Basic Data; Springer Science & Business Media: Berlin, 2012.
[80]

Feng, J. Mechanical properties of hybrid organic–inorganic CH3NH3BX3 (B = Sn, Pb; X = Br, I) perovskites for solar cell absorbers. APL Mater. 2014, 2, 081801.

[81]

Herz, L. M. Charge-carrier mobilities in metal halide perovskites: Fundamental mechanisms and limits. ACS Energy Lett. 2017, 2, 1539–1548.

[82]

Ferreira, A. C.; Létoublon, A.; Paofai, S.; Raymond, S.; Ecolivet, C.; Rufflé, B.; Cordier, S.; Katan, C.; Saidaminov, M. I.; Zhumekenov, A. A. et al. Elastic softness of hybrid lead halide perovskites. Phys. Rev. Lett. 2018, 121, 085502.

[83]

Kresse, G.; Furthmüller, J.; Hafner, J. Theory of the crystal structures of selenium and tellurium: The effect of generalized-gradient corrections to the local-density approximation. Phys. Rev. B 1994, 50, 13181–13185.

[84]

Bhaskar, P.; Achtstein, A. W.; Diedenhofen, S. L.; Siebbeles, L. D. A. Mobility and decay dynamics of charge carriers in one-dimensional selenium van der Waals solid. J. Phys. Chem. C 2017, 121, 18917–18921.

[85]

Bandyopadhyay, A. K.; Singh, D. B. Pressure induced phase transformations and band structure of different high pressure phases in tellurium. Pramana 1999, 52, 303–319.

[86]
Qiu, G.; Si, M. W.; Wang, Y. X.; Lyu, X.; Wu, W. Z.; Ye, P. D. High-performance few-layer tellurium CMOS devices enabled by atomic layer deposited dielectric doping technique. In 76th Device Research Conference (DRC), Santa Barbara, CA, USA, 2018, pp 1–2.
DOI
[87]

Oehzelt, M.; Aichholzer, A.; Resel, R.; Heimel, G.; Venuti, E.; Della Valle, R. G. Crystal structure of oligoacenes under high pressure. Phys. Rev. B 2006, 74, 104103.

[88]

Jurchescu, O. D.; Popinciuc, M.; van Wees, B. J.; Palstra, T. T. M. Interface-controlled, high-mobility organic transistors. Adv. Mater. 2007, 19, 688–692.

[89]

Reese, C.; Chung, W. J.; Ling, M. M.; Roberts, M.; Bao, Z. N. High-performance microscale single-crystal transistors by lithography on an elastomer dielectric. Appl. Phys. Lett. 2006, 89, 202108.

[90]

Wu, Y. F.; Chew, A. R.; Rojas, G. A.; Sini, G.; Haugstad, G.; Belianinov, A.; Kalinin, S. V.; Li, H.; Risko, C.; Brédas, J. L. et al. Strain effects on the work function of an organic semiconductor. Nat. Commun. 2016, 7, 10270.

[91]

Yamagishi, M.; Takeya, J.; Tominari, Y.; Nakazawa, Y.; Kuroda, T.; Ikehata, S.; Uno, M.; Nishikawa, T.; Kawase, T. High-mobility double-gate organic single-crystal transistors with organic crystal gate insulators. Appl. Phys. Lett. 2007, 90, 182117.

[92]

Appalakondaiah, S.; Vaitheeswaran, G.; Lebègue, S.; Christensen, N. E.; Svane, A. Effect of van der Waals interactions on the structural and elastic properties of black phosphorus. Phys. Rev. B 2012, 86, 035105.

[93]

Rudenko, A. N.; Brener, S.; Katsnelson, M. I. Intrinsic charge carrier mobility in single-layer black phosphorus. Phys. Rev. Lett. 2016, 116, 246401.

[94]
Liu, B.; Li, Y. J.; Yue, Y. J.; Tao, Y.; Qin, Z. B.; Cheng, C. Mechanically strengthened amorphous silicon by phosphorus: A molecular dynamics simulation and experimental study. DEStech Trans. Eng. Technol. Res., in press, https://doi.org/10.12783/dtetr/eeec2018/26884.
DOI
[95]

Gao, X. K.; Zhao, Z. High mobility organic semiconductors for field-effect transistors. Sci. China Chem. 2015, 58, 947–968.

[96]

Lang, U.; Naujoks, N.; Dual, J. Mechanical characterization of PEDOT:PSS thin films. Synth. Met. 2009, 159, 473–479.

[97]

Wang, X. X.; Zhang, X.; Sun, L.; Lee, D.; Lee, S.; Wang, M. H.; Zhao, J. J.; Shao-Horn, Y.; Dincă, M.; Palacios, T. et al. High electrical conductivity and carrier mobility in oCVD PEDOT thin films by engineered crystallization and acid treatment. Sci. Adv. 2018, 4, eaat5780.

[98]

Uddin, M. S.; Ju, J. Enhanced coarse-graining of thermoplastic polyurethane elastomer for multiscale modeling. J. Eng. Mater. Technol. 2017, 139, 011001.

[99]

Park, D. H.; Park, H. W.; Chung, J. W.; Nam, K.; Choi, S.; Chung, Y. S.; Hwang, H.; Kim, B.; Kim, D. H. Highly stretchable, high-mobility, free-standing all-organic transistors modulated by solid-state elastomer electrolytes. Adv. Funct. Mater. 2019, 29, 1808909.

[100]

Binnewies, M.; Glaum, R.; Schmidt, M.; Schmidt, P. Chemical vapor transport reactions—A historical review. Z. Anorg. Allg. Chem. 2013, 639, 219–229.

[101]

Zheng, L.; Wang, X. W.; Jiang, H. J.; Xu, M. Z.; Huang, W.; Liu, Z. Recent progress of flexible electronics by 2D transition metal dichalcogenides. Nano Res. 2022, 15, 2413–2432.

[102]

Lenz, M.; Gruehn, R. Developments in measuring and calculating chemical vapor transport phenomena demonstrated on Cr, Mo, W, and their compounds. Chem. Rev. 1997, 97, 2967–2994.

[103]
Zhang, T.; Sun, J. R.; Guan, J. Q. Self-supported transition metal chalcogenides for oxygen evolution. Nano Res., in press, https://doi.org/10.1007/s12274-023-5670-6.
DOI
[104]

Utrap, A.; Xiang, N. Y.; Nilges, T. A yield-optimized access to double-helical SnIP via a Sn/SnI2 approach. J. Cryst. Growth 2017, 475, 341–345.

[105]

Pielmeier, M. R. P.; Nilges, T. Formation mechanisms for phosphorene and SnIP. Angew. Chem., Int. Ed. 2021, 60, 6816–6823.

[106]

Pielmeier, M. R. P.; Karttunen, A. J.; Nilges, T. Toward atomic-scale inorganic double helices via carbon nanotube matrices-induction of chirality to carbon nanotubes. J. Phys. Chem. C 2020, 124, 13338–13347.

[107]

Krukau, A. V.; Vydrov, O. A.; Izmaylov, A. F.; Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 2006, 125, 224106.

[108]

Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

[109]

Bachhuber, F.; Rothballer, J.; Söhnel, T.; Weihrich, R. Phase stabilities at a glance II: Ternary ordering variants of pyrite and marcasite type structures. Comput. Mater. Sci. 2014, 89, 114–121.

[110]

Pfitzner, A.; Reiser, S.; Nilges, T. (CuI)2P8Se3: An adduct of D3-symmetrical P8Se3 cage molecules with Cu2I2 rhomboids. Angew. Chem., Int. Ed. 2000, 39, 4160–4162.

[111]

Nilges, S.; Nilges, T.; Haeuseler, H.; Pfitzner, A. (CuBr)2P8Se3: Preparation, structural, and vibrational spectroscopic characterization of an adduct of P8Se3 cages to Cu2Br2 rhombs. J. Mol. Struct. 2004, 706, 89–94.

[112]

Pfitzner, A.; Schmitz, D. Two new modifications of [P(C6H5)4]2[Cu2I4]. Z. Anorg. Allg. Chem. 1997, 623, 1555–1560.

[113]

Hartl, H.; Mahdjour-Hassan-Abadi, F. [(C6H5)4P] 1[Cu3I4]-The first compound with a helical chain of face-sharing tetrahedra as a structural element. Angew. Chem., Int. Ed. 1994, 33, 1841–1842.

[114]
Pfister, D. Reaktivität von phosphor mit hauptgruppenmetallhalogeniden. Ph.D. Dissertation, Technische Universität München, München, Germany, 2017.
[115]
Reiter, F. G. Eindimensionale halbleiter und verbindungen mit kettenförmiger polyphosphidteilstruktur im system der tetrel-phosphor-halogenide APX mit A = Ge, Sn, Pb und X = Br, I. Ph.D. Dissertation, Technische Universität München, München, Germany, 2022.
[116]

Bijoy, T. K.; Murugan, P.; Kumar, V. Atomic structure and electronic properties of A2B2XY (A = Si-Pb, B= Cl-I, and XY = PN and SiS) inorganic double helices: First principles calculations. Phys. Chem. Chem. Phys. 2018, 20, 10060–10068.

[117]

Bijoy, T. K.; Murugan, P.; Kumar, V. Atomic and electronic structure of solids of Ge2Br2PN, Ge2I2PN, Sn2Cl2PN, Sn2Br2PN and Sn2I2PN inorganic double helices: A first principles study. RSC Adv. 2020, 10, 14714–14719.

[118]

Kolosov, V. Y.; Thölén, A. R. Transmission electron microscopy studies of the specific structure of crystals formed by phase transition in iron oxide amorphous films. Acta Mater. 2000, 48, 1829–1840.

[119]

Wu, C. G.; Bein, T. Conducting polyaniline filaments in a mesoporous channel host. Science 1994, 264, 1757–1759.

[120]

Adekoya, G. J.; Sadiku, R. E.; Ray, S. S. Nanocomposites of PEDOT:PSS with graphene and its derivatives for flexible electronic applications: A review. Macromol. Mater. Eng. 2021, 306, 2000716.

[121]

Heremans, P.; Tripathi, A. K.; de Jamblinne de Meux, A.; Smits, E. C. P.; Hou, B.; Pourtois, G.; Gelinck, G. H. Mechanical and electronic properties of thin-film transistors on plastic, and their integration in flexible electronic applications. Adv. Mater. 2016, 28, 4266–4282.

[122]

Zhong, H. L.; Huang, J.; Wu, J.; Du, J. H. Electrospinning nanofibers to 1D, 2D, and 3D scaffolds and their biomedical applications. Nano Res. 2022, 15, 787–804.

[123]

Wang, T.; Bao, Y. W.; Zhuang, M. D.; Li, J. C.; Chen, J. C.; Xu, H. X. Nanoscale engineering of conducting polymers for emerging applications in soft electronics. Nano Res. 2021, 14, 3112–3125.

[124]

Yang, C. C.; Doong, R. A.; Chen, K. F.; Chen, G. S.; Tsai, Y. P. The photocatalytic degradation of methylene blue by green semiconductor films that is induced by irradiation by a light-emitting diode and visible light. J. Air Waste Manag. Assoc. 2018, 68, 29–38.

[125]

Üzer, E.; Kumar, P.; Kisslinger, R.; Kar, P.; Thakur, U. K.; Shankar, K.; Nilges, T. Vapor growth of binary and ternary phosphorus-based semiconductors into TiO2 nanotube arrays and application in visible light driven water splitting. Nanoscale Adv. 2019, 1, 2881–2890.

[126]

Mor, G. K.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A. Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 2006, 6, 215–218.

[127]

Grotz, C.; Köpf, M.; Baumgartner, M.; Jantke, L. A.; Raudaschl-Sieber, G.; Fässler, T. F.; Nilges, T. Synthesis, structure, and properties of NaP7, a phosphorus-rich polyphosphide. Z. Anorg. Allg. Chem. 2015, 641, 1395–1399.

[128]

Zhang, J. Y.; Zhao, D.; Xiao, D. B.; Ma, C. S.; Du, H. C.; Li, X.; Zhang, L. H.; Huang, J. L.; Huang, H. Y.; Jia, C. L. et al. Assembly of ring-shaped phosphorus within carbon nanotube nanoreactors. Angew. Chem., Int. Ed. 2017, 56, 1850–1854.

[129]

Hart, M.; White, E. R.; Chen, J.; McGilvery, C. M.; Pickard, C. J.; Michaelides, A.; Sella, A.; Shaffer, M. S. P.; Salzmann, C. G. Encapsulation and polymerization of white phosphorus inside single-wall carbon nanotubes. Angew. Chem. 2017, 129, 8256–8260.

[130]

Kumar, U.; Sikarwar, S.; Sonker, R. K.; Yadav, B. C. Carbon nanotube: Synthesis and application in solar cell. J. Inorg. Organomet. Polym. Mater. 2016, 26, 1231–1242.

[131]

Pielmeier, M. R. P.; Degg, A.; Vosseler, K.; Nilges, T. Nanotube matrices for flexible SnIP nanowires. J. Phys. Chem. C 2022, 126, 12603–12614.

[132]
Wu, H.; Huang, Q. X.; Shi, Y. Y.; Chang, J. W.; Lu, S. Y. Electrocatalytic water splitting: Mechanism and electrocatalyst design. Nano Res., in press, https://doi.org/10.1007/s12274-023-5502-8.
DOI
[133]

Li, J. H.; Zhang, Y. M.; Huang, Y. L.; Luo, B.; Jing, L.; Jing, D. W. Noble-metal free plasmonic nanomaterials for enhanced photocatalytic applications—A review. Nano Res. 2022, 15, 10268–10291.

[134]

Fedotov, V. A.; Mladyonov, P. L.; Prosvirnin, S. L.; Rogacheva, A. V.; Chen, Y.; Zheludev, N. I. Asymmetric propagation of electromagnetic waves through a planar chiral structure. Phys. Rev. Lett. 2006, 97, 167401.

[135]

Plum, E.; Zhou, J.; Dong, J.; Fedotov, V. A.; Koschny, T.; Soukoulis, C. M.; Zheludev, N. I. Metamaterial with negative index due to chirality. Phys. Rev. B 2009, 79, 035407.

[136]

Zhou, J. F.; Dong, J. F.; Wang, B. N.; Koschny, T.; Kafesaki, M.; Soukoulis, C. M. Negative refractive index due to chirality. Phys. Rev. B 2009, 79, 121104.

[137]

Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 2004, 428, 911–918.

Publication history
Copyright
Acknowledgements

Publication history

Received: 30 May 2023
Revised: 05 July 2023
Accepted: 08 July 2023
Published: 24 August 2023
Issue date: March 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 52072198).

Return