Journal Home > Volume 17 , Issue 3

Room temperature sodium-sulfur (Na-S) batteries, known for their high energy density and low cost, are one of the most promising next-generation energy storage systems. However, the polysulfide shuttling and uncontrollable Na dendrite growth as well as safety issues caused by the use of organic liquid electrolytes in Na-S cells, have severely hindered their commercialization. Solid-state electrolytes instead of liquid electrolytes are considered to be the most direct and effective solution to solve the above problems. However, its practical application is still greatly challenged due to the poor interfacial compatibility between the all-solid-state electrolytes and the anode/cathode, ionic conductivity, and the shuttle effect caused by the presence of liquid phase in the quasi-solid-state electrolytes. This paper presents a comprehensive review of solid-state Na-S batteries from the perspective of regulating interfacial compatibility and improving ionic conductivity as well as suppressing polysulfide shuttle. According to different components, solid-state electrolytes were divided into five categories: solid inorganic electrolytes, solid polymer electrolytes, polymer/inorganic solid hybrid electrolytes, gel polymer electrolytes, and liquid–solid inorganic hybrid electrolytes. Finally, the prospect of developing high performance solid-state electrolytes to improve the cycling stability of room temperature Na-S cells is envisaged.


menu
Abstract
Full text
Outline
About this article

Challenges and prospects for room temperature solid-state sodium-sulfur batteries

Show Author's information Yashuang QiuJing Xu( )
Research Center of Grid Energy Storage and Battery Application, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, China

Abstract

Room temperature sodium-sulfur (Na-S) batteries, known for their high energy density and low cost, are one of the most promising next-generation energy storage systems. However, the polysulfide shuttling and uncontrollable Na dendrite growth as well as safety issues caused by the use of organic liquid electrolytes in Na-S cells, have severely hindered their commercialization. Solid-state electrolytes instead of liquid electrolytes are considered to be the most direct and effective solution to solve the above problems. However, its practical application is still greatly challenged due to the poor interfacial compatibility between the all-solid-state electrolytes and the anode/cathode, ionic conductivity, and the shuttle effect caused by the presence of liquid phase in the quasi-solid-state electrolytes. This paper presents a comprehensive review of solid-state Na-S batteries from the perspective of regulating interfacial compatibility and improving ionic conductivity as well as suppressing polysulfide shuttle. According to different components, solid-state electrolytes were divided into five categories: solid inorganic electrolytes, solid polymer electrolytes, polymer/inorganic solid hybrid electrolytes, gel polymer electrolytes, and liquid–solid inorganic hybrid electrolytes. Finally, the prospect of developing high performance solid-state electrolytes to improve the cycling stability of room temperature Na-S cells is envisaged.

Keywords: ionic conductivity, solid-state electrolytes, polysulfide shuttling, interfacial compatibility, sodium-sulfur batteries

References(149)

[1]

Ma, J. K.; Wang, M. L.; Zhang, H.; Shang, Z. T.; Fu, L.; Zhang, W. L.; Song, B.; Lu, K. Toward the advanced next-generation solid-state Na-S batteries: Progress and prospects. Adv. Funct. Mater. 2023, 33, 2214430.

[2]

Xian, C. X.; Wang, Q. Y.; Xia, Y.; Cao, F.; Shen, S. H.; Zhang, Y. Q.; Chen, M. H.; Zhong, Y.; Zhang, J.; He, X. P. et al. Solid-state electrolytes in lithium-sulfur batteries: Latest progresses and prospects. Small 2023, 19, 2208164.

[3]

Pan, H. L.; Hu, Y. S.; Chen, L. Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy Environ. Sci. 2013, 6, 2338–2360.

[4]

Peng, J.; Zhang, W.; Hu, Z.; Zhao, L. F.; Wu, C.; Peleckis, G.; Gu, Q. F.; Wang, J. Z.; Liu, H. K.; Dou, S. X. et al. Ice-assisted synthesis of highly crystallized Prussian blue analogues for all-climate and long-calendar-life sodium ion batteries. Nano Lett. 2022, 22, 1302–1310.

[5]

Ren, Y. X.; Hortance, N.; McBride, J. R.; Hatzell, K. B. Sodium-sulfur batteries enabled by a protected inorganic/organic hybrid solid electrolyte. ACS Energy Lett. 2021, 6, 345–353.

[6]

Wang, Y. Z.; Zhou, D.; Palomares, V.; Shanmukaraj, D.; Sun, B.; Tang, X.; Wang, C. S.; Armand, M.; Rojo, T.; Wang, G. X. Revitalising sodium-sulfur batteries for non-high-temperature operation: A crucial review. Energy Environ. Sci. 2020, 13, 3848–3879.

[7]

Liu, H. W.; Lai, W. H.; Yang, Q. R.; Lei, Y. J.; Wu, C.; Wang, N. N.; Wang, Y. X.; Chou, S. L.; Liu, H. K.; Dou, S. X. Understanding sulfur redox mechanisms in different electrolytes for room-temperature Na-S batteries. Nano-Micro Lett. 2021, 13, 121.

[8]

Wang, L. L.; Ye, Y. S.; Chen, N.; Huang, Y. X.; Li, L.; Wu, F.; Chen, R. J. Development and challenges of functional electrolytes for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1800919.

[9]

Wu, J. R.; Wang, X. S.; Liu, Q.; Wang, S. W.; Zhou, D.; Kang, F. Y.; Shanmukaraj, D.; Armand, M.; Rojo, T.; Li, B. H. et al. A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries. Nat. Commun. 2021, 12, 5746.

[10]

Xu, X. Y.; Li, Y. Y.; Cheng, J.; Hou, G. M.; Nie, X. K.; Ai, Q.; Dai, L. N.; Feng, J. K.; Ci, L. J. Composite solid electrolyte of Na3PS4-PEO for all-solid-state SnS2/Na batteries with excellent interfacial compatibility between electrolyte and Na metal. J. Energy Chem. 2020, 41, 73–78.

[11]

Chi, X. W.; Zhang, Y.; Hao, F.; Kmiec, S.; Dong, H.; Xu, R.; Zhao, K. J.; Ai, Q.; Terlier, T.; Wang, L. et al. An electrochemically stable homogeneous glassy electrolyte formed at room temperature for all-solid-state sodium batteries. Nat. Commun. 2022, 13, 2854.

[12]

Ge, Z.; Li, J.; Liu, J. High sodium ion mobility of PEO-NaTFSI-Na3Zr2Si2PO12 composite solid electrolyte for all-solid-state Na-S battery. ChemistrySelect 2022, 7, e202200620.

[13]

Hegde, G. S.; Sundara, R. A flexible, ceramic-rich solid electrolyte for room-temperature sodium-sulfur batteries. Chem. Commun. 2022, 58, 8794–8797.

[14]

Lou, S. F.; Zhang, F.; Fu, C. K.; Chen, M.; Ma, Y. L.; Yin, G. P.; Wang, J. J. Interface issues and challenges in all-solid-state batteries: Lithium, sodium, and beyond. Adv. Mater. 2021, 33, 2000721.

[15]

Qian, J.; Jin, B. Y.; Li, Y. Y.; Zhan, X. L.; Hou, Y.; Zhang, Q. H. Research progress on gel polymer electrolytes for lithium-sulfur batteries. J. Energy Chem. 2021, 56, 420–437.

[16]

Yue, J.; Han, F. D.; Fan, X. L.; Zhu, X. Y.; Ma, Z. H.; Yang, J.; Wang, C. S. High-performance all-inorganic solid-state sodium-sulfur battery. ACS Nano 2017, 11, 4885–4891.

[17]

Song, S. F.; Duong, H. M.; Korsunsky, A. M.; Hu, N.; Lu, L. A Na+ superionic conductor for room-temperature sodium batteries. Sci. Rep. 2016, 6, 32330.

[18]

Yu, X. W.; Grundish, N. S.; Goodenough, J. B.; Manthiram, A. Ionic liquid (IL) laden metal-organic framework (IL-MOF) electrolyte for quasi-solid-state sodium batteries. ACS Appl. Mater. Interfaces 2021, 13, 24662–24669.

[19]

Jhang, L. J.; Wang, D. W.; Silver, A.; Li, X. L.; Reed, D.; Wang, D. H. Stable all-solid-state sodium-sulfur batteries for low-temperature operation enabled by sodium alloy anode and confined sulfur cathode. Nano Energy 2023, 105, 107995.

[20]

Feng, X. Y.; Fang, H.; Liu, P. C.; Wu, N.; Self, E. C.; Yin, L.; Wang, P. B.; Li, X.; Jena, P.; Nanda, J. et al. Heavily tungsten-doped sodium thioantimonate solid-state electrolytes with exceptionally low activation energy for ionic diffusion. Angew. Chem., Int. Ed. 2021, 133, 26362–26370.

[21]

Zhou, D.; Chen, Y.; Li, B. H.; Fan, H. B.; Cheng, F. L.; Shanmukaraj, D.; Rojo, T.; Armand, M.; Wang, G. X. A stable quasi-solid-state sodium-sulfur battery. Angew. Chem. 2018, 130, 10325–10329.

[22]

Oh, J. A. S.; He, L. C.; Chua, B.; Zeng, K. Y.; Lu, L. Inorganic sodium solid-state electrolyte and interface with sodium metal for room-temperature metal solid-state batteries. Energy Storage Mater. 2021, 34, 28–44.

[23]

Wang, Y.; Huang, X. L.; Liu, H. W.; Qiu, W. L.; Feng, C.; Li, C.; Zhang, S. H.; Liu, H. K.; Dou, S. X.; Wang, Z. M. Nanostructure engineering strategies of cathode materials for room-temperature Na-S batteries. ACS Nano 2022, 16, 5103–5130.

[24]

Yao, Y. F. Y.; Kummer, J. T. Ion exchange properties of and rates of ionic diffusion in beta-alumina. J. Inorg. Nucl. Chem. 1967, 29, 2453–2475.

[25]

Goodenough, J. B.; Hong, H. Y. P.; Kafalas, J. A. Fast Na+-ion transport in skeleton structures. Mater. Res. Bull. 1976, 11, 203–220.

[26]

Zhou, W. D.; Li, Y. T.; Xin, S.; Goodenough, J. B. Rechargeable sodium all-solid-state battery. ACS Cent. Sci. 2017, 3, 52–57.

[27]

Zhao, C. L.; Liu, L. L.; Qi, X. G.; Lu, Y. X.; Wu, F. X.; Zhao, J. M.; Yu, Y.; Hu, Y. S.; Chen, L. Q. Solid-state sodium batteries. Adv. Energy Mater. 2018, 8, 1703012.

[28]

Chi, C.; Katsui, H.; Goto, T. Effect of Li addition on the formation of Na-β/β''-alumina film by laser chemical vapor deposition. Ceram. Int. 2017, 43, 1278–1283.

[29]

Wan, H. L.; Weng, W.; Han, F. D.; Cai, L. T.; Wang, C. S.; Yao, X. Y. Bio-inspired nanoscaled electronic/ionic conduction networks for room-temperature all-solid-state sodium-sulfur battery. Nano Today 2020, 33, 100860.

[30]

Kandagal, V. S.; Bharadwaj, M. D.; Waghmare, U. V. Theoretical prediction of a highly conducting solid electrolyte for sodium batteries: Na10GeP2S12. J. Mater. Chem. A 2015, 3, 12992–12999.

[31]

Wen, Z. Y.; Gu, Z. H.; Xu, X. H.; Cao, J. D.; Zhang, F. L.; Lin, Z. X. Research activities in Shanghai Institute of Ceramics, Chinese Academy of Sciences on the solid electrolytes for sodium sulfur batteries. J. Power Sources 2008, 184, 641–645.

[32]

Hiraoka, K.; Kato, M.; Kobayashi, T.; Seki, S. Polyether/Na3Zr2Si2PO12 composite solid electrolytes for all-solid-state sodium batteries. J. Phys. Chem. C 2020, 124, 21948–21956.

[33]

Hou, W. R.; Guo, X. W.; Shen, X. Y.; Amine, K.; Yu, H. J.; Lu, J. Solid electrolytes and interfaces in all-solid-state sodium batteries: Progress and perspective. Nano Energy 2018, 52, 279–291.

[34]

Lu, K.; Li, B. M.; Zhan, X. W.; Xia, F.; Dahunsi, O. J.; Gao, S. Y.; Reed, D. M.; Sprenkle, V. L.; Li, G. S.; Cheng, Y. W. Elastic NaxMoS2-carbon-BASE triple interface direct robust solid–solid interface for all-solid-state Na-S batteries. Nano Lett. 2020, 20, 6837–6844.

[35]

Hong, H. Y. P. Crystal structures and crystal chemistry in the system Na1+xZr2SixP3−xO12. Mater. Res. Bull. 1976, 11, 173–182.

[36]

Lu, L.; Lu, Y.; Alonso, J. A.; López, C. A.; Fernández-Díaz, M. T.; Zou, B. S.; Sun, C. W. A monolithic solid-state sodium-sulfur battery with Al-doped Na3.4Zr2(Si0.8P0.2O4)3 electrolyte. ACS Appl. Mater. Interfaces 2021, 13, 42927–42934.

[37]

Yu, X. W.; Manthiram, A. Sodium-sulfur batteries with a polymer-coated NASICON-type sodium-ion solid electrolyte. Matter 2019, 1, 439–451.

[38]

Li, M.; Sun, C.; Ni, Q.; Sun, Z.; Liu, Y.; Li, Y.; Li, L.; Jin, H. B.; Zhao, Y. J. High entropy enabling the reversible redox reaction of V4+/V5+ couple in NASICON-type sodium ion cathode. Adv. Energy Mater. 2023, 13, 2203971.

[39]

Tang, H. M.; Deng, Z.; Lin, Z. N.; Wang, Z. B.; Chu, I. H.; Chen, C.; Zhu, Z. Y.; Zheng, C.; Ong, S. P. Probing solid–solid interfacial reactions in all-solid-state sodium-ion batteries with first-principles calculations. Chem. Mater. 2018, 30, 163–173.

[40]

Samiee, M.; Radhakrishnan, B.; Rice, Z.; Deng, Z.; Meng, Y. S.; Ong, S. P.; Luo, J. Divalent-doped Na3Zr2Si2PO12 natrium superionic conductor: Improving the ionic conductivity via simultaneously optimizing the phase and chemistry of the primary and secondary phases. J. Power Sources 2017, 347, 229–237.

[41]

Li, R.; Jiang, D. C.; Du, P.; Yuan, C. B.; Cui, X. Y.; Tang, Q. C.; Zheng, J.; Li, Y. C.; Lu, K.; Ren, X. D. et al. Negating Na||Na3Zr2Si2PO12 interfacial resistance for dendrite-free and “Na-less” solid-state batteries. Chem. Sci. 2022, 13, 14132–14140.

[42]

Okura, T.; Nojima, Y.; Kawada, K.; Kojima, Y.; Yamashita, K. Photoluminescence properties of rare-earth ion-doped Na5YSi4O12-based glass ceramics. Ceram. Int. 2021, 47, 1940–1948.

[43]

Shannon, R. D.; Taylor, B. E.; Gier, T. E.; Chen, H. Y.; Berzins, T. Ionic conductivity in sodium yttrium silicon oxide (Na5YSi4O12)-type silicates. Inorg. Chem. 1978, 17, 958–964.

[44]

Kusnezoff, M.; Wagner, D.; Schilm, J.; Heubner, C.; Matthey, B.; Lee, C. W. Influence of microstructure and crystalline phases on impedance spectra of sodium conducting glass ceramics produced from glass powder. J. Solid State Electrochem. 2022, 26, 375–388.

[45]

Okura, T.; Matsuoka, N.; Takahashi, Y.; Yoshida, N.; Yamashita, K. Chemically driven ion exchanging synthesis of Na5YSi4O12-based glass-ceramic proton conductors. Materials 2023, 16, 2155.

[46]

Sun, G.; Yang, X.; Chen, N.; Yao, S. Y.; Wang, X. Q.; Jin, X.; Chen, G.; Xie, Y.; Du, F. Na5YSi4O12: A sodium superionic conductor for ultrastable quasi-solid-state sodium-ion batteries. Energy Storage Mater. 2021, 41, 196–202.

[47]
Yang, A. K.; Ye, R. J.; Song, H. M.; Lu, Q. Q.; Wang, X. C.; Dashjav, E.; Yao, K.; Grüner, D.; Ma, Q. L.; Tietz, F. et al. Pressureless all-solid-state Na/S batteries with self-supporting Na5YSi4O12 scaffolds. Carbon Energy, in press, https://doi.org/10.1002/cey2.371.
DOI
[48]

Moon, C. K.; Lee, H. J.; Park, K. H.; Kwak, H.; Heo, J. W.; Choi, K.; Yang, H.; Kim, M. S.; Hong, S. T.; Lee, J. H. et al. Vacancy-driven Na+ superionic conduction in new Ca-doped Na3PS4 for all-solid-state Na-ion batteries. ACS Energy Lett. 2018, 3, 2504–2512.

[49]

Zhang, Z.; Ramos, E.; Lalère, F.; Assoud, A.; Kaup, K.; Hartman, P.; Nazar, L. F. Na11Sn2PS12: A new solid state sodium superionic conductor. Energy Environ. Sci. 2018, 11, 87–93.

[50]

Lee, J. E.; Park, K. H.; Kim, J. C.; Wi, T. U.; Ha, A. R.; Song, Y. B.; Oh, D. Y.; Woo, J.; Kweon, S. H.; Yeom, S. J. et al. Universal solution synthesis of sulfide solid electrolytes using alkahest for all-solid-state batteries. Adv. Mater. 2022, 34, 2200083.

[51]

Jansen, M.; Henseler, U. Synthesis, structure determination, and ionic conductivity of sodium tetrathiophosphate. J. Solid State Chem. 1992, 99, 110–119.

[52]

Hayashi, A.; Noi, K.; Sakuda, A.; Tatsumisago, M. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat. Commun. 2012, 3, 856.

[53]

Nagata, H.; Chikusa, Y. An all-solid-state sodium-sulfur battery operating at room temperature using a high-sulfur-content positive composite electrode. Chem. Lett. 2014, 43, 1333–1334.

[54]

Tanibata, N.; Deguchi, M.; Hayashi, A.; Tatsumisago, M. All-solid-state Na/S batteries with a Na3PS4 electrolyte operating at room temperature. Chem. Mater. 2017, 29, 5232–5238.

[55]

Tanibata, N.; Tsukasaki, H.; Deguchi, M.; Mori, S.; Hayashi, A.; Tatsumisago, M. Characterization of sulfur nanocomposite electrodes containing phosphorus sulfide for high-capacity all-solid-state Na/S batteries. Solid State Ion. 2017, 311, 6–13.

[56]

Che, H. Y.; Chen, S. L.; Xie, Y. Y.; Wang, H.; Amine, K.; Liao, X. Z.; Ma, Z. F. Electrolyte design strategies and research progress for room-temperature sodium-ion batteries. Energy Environ. Sci. 2017, 10, 1075–1101.

[57]

Fan, X. L.; Yue, J.; Han, F. D.; Chen, J.; Deng, T.; Zhou, X. Q.; Hou, S.; Wang, C. S. High-performance all-solid-state Na-S battery enabled by casting–annealing technology. ACS Nano 2018, 12, 3360–3368.

[58]

Wan, H. L.; Cai, L. T.; Yao, Y.; Weng, W.; Feng, Y. Z.; Mwizerwa, J. P.; Liu, G. Z.; Yu, Y.; Yao, X. Y. Self-formed electronic/ionic conductive Fe3S4@S@0.9Na3SbS4·0.1NaI composite for high-performance room-temperature all-solid-state sodium-sulfur battery. Small 2020, 16, 2001574.

[59]

Ando, T.; Sakuda, A.; Tatsumisago, M.; Hayashi, A. All-solid-state sodium-sulfur battery showing full capacity with activated carbon MSP20-sulfur-Na3SbS4 composite. Electrochem. Commun. 2020, 116, 106741.

[60]

Zhang, Z. Q.; Wang, Z. F.; Zhang, L.; Liu, D.; Yu, C.; Yan, X. L.; Xie, J.; Huang, J. Y. Unraveling the conversion evolution on solid-state Na-SeS2 battery via in situ TEM. Adv. Sci. 2022, 9, 2200744.

[61]

Zhang, B. K.; Weng, M. Y.; Lin, Z.; Feng, Y. C.; Yang, L. Y.; Wang, L. W.; Pan, F. Li-ion cooperative migration and oxy-sulfide synergistic effect in Li14P2Ge2S16−6xOx solid-state-electrolyte enables extraordinary conductivity and high stability. Small 2020, 16, 1906374.

[62]

Wu, J.; Ye, T.; Wang, Y. C.; Yang, P. Y.; Wang, Q. C.; Kuang, W. Y.; Chen, X. L.; Duan, G. H.; Yu, L. M.; Jin, Z. Q. et al. Understanding the catalytic kinetics of polysulfide redox reactions on transition metal compounds in Li-S batteries. ACS Nano 2022, 16, 15734–15759.

[63]

Li, L.; Xu, R. N.; Zhang, L.; Zhang, Z. Q.; Yang, M.; Liu, D.; Yan, X. L.; Zhou, A. J. O-tailored microstructure-engineered interface toward advanced room temperature all-solid-state Na batteries. Adv. Funct. Mater. 2022, 32, 2203095.

[64]

Miao, X. G.; Di, H. X.; Ge, X. L.; Zhao, D. Y.; Wang, P.; Wang, R. T.; Wang, C. X.; Yin, L. W. AlF3-modified anode–electrolyte interface for effective Na dendrites restriction in NASICON-based solid-state electrolyte. Energy Storage Mater. 2020, 30, 170–178.

[65]

Tang, B.; Jaschin, P. W.; Li, X.; Bo, S. H.; Zhou, Z. Critical interface between inorganic solid-state electrolyte and sodium metal. Mater. Today 2020, 41, 200–218.

[66]

Cao, K. S.; Zhao, X. T.; Chen, J.; Xu, B. B.; Shahzad, M. W.; Sun, W. P.; Pan, H. G.; Yan, M.; Jiang, Y. Z. Hybrid design of bulk-Na metal anode to minimize cycle-induced interface deterioration of solid Na metal battery. Adv. Energy Mater. 2022, 12, 2102579.

[67]

Wang, C. W.; Fu, K.; Kammampata, S. P.; McOwen, D. W.; Samson, A. J.; Zhang, L.; Hitz, G. T.; Nolan, A. M.; Wachsman, E. D.; Mo, Y. F. et al. Garnet-type solid-state electrolytes: Materials, interfaces, and batteries. Chem. Rev. 2020, 120, 4257–4300.

[68]

Kim, D. W.; Zettsu, N.; Shiiba, H.; Sánchez-Santolino, G.; Ishikawa, R.; Ikuhara, Y.; Teshima, K. Metastable oxysulfide surface formation on LiNi0.5Mn1.5O4 single crystal particles by carbothermal reaction with sulfur-doped heterocarbon nanoparticles: New insight into their structural and electrochemical characteristics, and their potential applications. J. Mater. Chem. A 2020, 8, 22302–22314.

[69]

Banerjee, S.; Zhang, X. W.; Wang, L. W. Motif-based design of an oxysulfide class of lithium superionic conductors: Toward improved stability and record-high Li-ion conductivity. Chem. Mater. 2019, 31, 7265–7276.

[70]

Zhao, B. S.; Wang, L.; Chen, P.; Liu, S.; Li, G. R.; Xu, N.; Wu, M. T.; Gao, X. P. Congener substitution reinforced Li7P2.9Sb0.1S10.75O0.25 glass-ceramic electrolytes for all-solid-state lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2021, 13, 34477–34485.

[71]

Yen, Y. J.; Chung, S. H. Lithium-sulfur cells with a sulfide solid electrolyte/polysulfide cathode interface. J. Mater. Chem. A 2023, 11, 4519–4526.

[72]

Su, S. M.; Ma, J. B.; Zhao, L.; Lin, K.; Li, Q. D.; Lv, S. S.; Kang, F. Y.; He, Y. B. Progress and perspective of the cathode/electrolyte interface construction in all-solid-state lithium batteries. Carbon Energy 2021, 3, 866–894.

[73]

Shi, C. M.; Alexander, G. V.; O’Neill, J.; Duncan, K.; Godbey, G.; Wachsman, E. D. All-solid-state garnet type sulfurized polyacrylonitrile/lithium-metal battery enabled by an inorganic lithium conductive salt and a bilayer electrolyte architecture. ACS Energy Lett. 2023, 8, 1803–1810.

[74]

Liu, H. W.; Lai, W. H.; Lei, Y. J.; Yang, H. L.; Wang, N. N.; Chou, S. L.; Liu, H. K.; Dou, S. X.; Wang, Y. X. Electrolytes/interphases: Enabling distinguishable sulfur redox processes in room-temperature sodium-sulfur batteries. Adv. Energy Mater. 2022, 12, 2103304.

[75]

Wang, X. E.; Zhang, C.; Sawczyk, M.; Sun., J.; Yuan, Q. H.; Chen, F. F.; Mendes, T. C.; Howlett, P. C.; Fu, C. K.; Wang, Y. Q.; Tan, X. et al. Ultra-stable all-solid-state sodium metal batteries enabled by perfluoropolyether-based electrolytes. Nat. Mater. 2022, 21, 1057–1065.

[76]

Liang, X.; Wang, L. L.; Wang, Y.; Liu, Y. C.; Sun, Y.; Xiang, H. F. Constructing multi-functional composite separator of PVDF-HFP/h-BN supported Co-CNF membrane for lithium-sulfur batteries. Sustainable Energy Fuels 2022, 6, 440–448.

[77]

Ge, Z.; Li, J.; Liu, J. Enhanced electrochemical performance of all-solid-state sodium-sulfur batteries by PEO-NaCF3SO3-MIL-53(Al) solid electrolyte. Ionics 2020, 26, 1787–1795.

[78]

Sheng, J. Z.; Zhang, Q.; Sun, C. B.; Wang, J. X.; Zhong, X. W.; Chen, B.; Li, C.; Gao, R. H.; Han, Z. Y.; Zhou, G. M. Crosslinked nanofiber-reinforced solid-state electrolytes with polysulfide fixation effect towards high safety flexible lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2203272.

[79]

Zhu, T. C.; Dong, X. L.; Liu, Y.; Wang, Y. G.; Wang, C. X.; Xia, Y. Y. An all-solid-state sodium-sulfur battery using a sulfur/carbonized polyacrylonitrile composite cathode. ACS Appl. Energy Mater. 2019, 2, 5263–5271.

[80]

Zhu, Q. C.; Ye, C.; Mao, D. Y. Solid-state electrolytes for lithium-sulfur batteries: Challenges, progress, and strategies. Nanomaterials 2022, 12, 3612.

[81]

Li, S. L.; Zhang, W. F.; Zheng, J. F.; Lv, M. Y.; Song, H. Y.; Du, L. Inhibition of polysulfide shuttles in Li-S batteries: Modified separators and solid-state electrolytes. Adv. Energy Mater. 2020, 11, 2000779.

[82]

Murugan, S.; Klostermann, S. V.; Schützendübe, P.; Richter, G.; Kästner, J.; Buchmeiser, M. R. Stable cycling of room-temperature sodium-sulfur batteries based on an in situ crosslinked gel polymer electrolyte. Adv. Funct. Mater. 2022, 32, 2201191.

[83]

Freitag, K. M.; Walke, P.; Nilges, T.; Kirchhain, H.; Spranger, R. J.; van Wüllen, L. Electrospun-sodiumtetrafluoroborate-polyethylene oxide membranes for solvent-free sodium ion transport in solid state sodium ion batteries. J. Power Sources 2018, 378, 610–617.

[84]

Park, C. W.; Ryu, H. S.; Kim, K. W.; Ahn, J. H.; Lee, J. Y.; Ahn, H. J. Discharge properties of all-solid sodium-sulfur battery using poly(ethylene oxide) electrolyte. J. Power Sources 2007, 165, 450–454.

[85]

Bhide, A.; Hariharan, K. Composite polymer electrolyte based on (PEO)6: NaPO3 dispersed with BaTiO3. Polym. Int. 2008, 57, 523–529.

[86]

Park, S. S.; Tulchinsky, Y.; Dincă, M. Single-ion Li+, Na+, and Mg2+ solid electrolytes supported by a mesoporous anionic Cu-azolate metal-organic framework. J. Am. Chem. Soc. 2017, 139, 13260–13263.

[87]

Xi, G.; Xiao, M.; Wang, S. J.; Han, D. M.; Li, Y. N.; Meng, Y. Z. Polymer-based solid electrolytes: Material selection, design, and application. Adv. Funct. Mater. 2020, 31, 2007598.

[88]

Goodenough, J. B.; Kim, Y. Challenges for rechargeable Li batteries. Chem. Mater. 2010, 22, 587–603.

[89]

Matios, E.; Wang, H.; Luo, J. M.; Zhang, Y. W.; Wang, C. L.; Lu, X.; Hu, X. F.; Xu, Y.; Li, W. Y. Reactivity-guided formulation of composite solid polymer electrolytes for superior sodium metal batteries. J. Mater. Chem. A 2021, 9, 18632–18643.

[90]

Tao, X. Y.; Liu, Y. Y.; Liu, W.; Zhou, G. M.; Zhao, J.; Lin, D. C.; Zu, C. X.; Sheng, O. W.; Zhang, W. K.; Lee, H. W. et al. Solid-state lithium-sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer. Nano Lett. 2017, 17, 2967–2972.

[91]

Liu, M.; Zhang, S. N.; van Eck, E. R. H.; Wang, C.; Ganapathy, S.; Wagemaker, M. Improving Li-ion interfacial transport in hybrid solid electrolytes. Nat. Nanotechnol. 2022, 17, 959–967.

[92]

Li, Y.; Arnold, W.; Halacoglu, S.; Jasinski, J. B.; Druffel, T.; Wang, H. Phase-transition interlayer enables high-performance solid-state sodium batteries with sulfide solid electrolyte. Adv. Funct. Mater. 2021, 31, 2101636.

[93]

Manthiram, A.; Yu, X. W.; Wang, S. F. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2017, 2, 16103.

[94]

Wang, C. H.; Kim, J. T.; Wang, C. S.; Sun, X. L. Progress and prospects of inorganic solid-state electrolyte-based all-solid-state pouch cells. Adv. Mater. 2023, 35, 2209074.

[95]

Mittal, N.; Tien, S.; Lizundia, E.; Niederberger, M. Hierarchical nanocellulose-based gel polymer electrolytes for stable Na electrodeposition in sodium ion batteries. Small 2022, 18, 2107183.

[96]

Gabryelczyk, A.; Swiderska-Mocek, A.; Czarnecka-Komorowska, D. Muscovite as an inert filler for highly conductive and durable gel polymer electrolyte in sodium-ion batteries. J. Power Sources 2022, 552, 232259.

[97]

Park, C. W.; Ahn, J. H.; Ryu, H. S.; Kim, K. W.; Ahn, H. J. Room-temperature solid-state sodium/sulfur battery. Electrochem. Solid-State Lett. 2006, 9, A123.

[98]

Croce, F.; Appetecchi, G. B.; Persi, L.; Scrosati, B. Nanocomposite polymer electrolytes for lithium batteries. Nature 1998, 394, 456–458.

[99]

Ma, Y. X.; Wan, J. Y.; Yang, Y. F.; Ye, Y. S.; Xiao, X.; Boyle, D. T.; Burke, W.; Huang, Z. J.; Chen, H.; Cui, Y. et al. Scalable, ultrathin, and high-temperature-resistant solid polymer electrolytes for energy-dense lithium metal batteries. Adv. Energy Mater. 2022, 12, 2103720.

[100]

Yang, H. X.; Liu, Z. K.; Wang, Y.; Li, N. W.; Yu, L. Multiscale structural gel polymer electrolytes with fast Li+ transport for long-life Li metal batteries. Adv. Funct. Mater. 2023, 33, 2209837.

[101]

Zhou, D.; Liu, R. L.; Zhang, J.; Qi, X. G.; He, Y. B.; Li, B. H.; Yang, Q. H.; Hu, Y. S.; Kang, F. Y. In situ synthesis of hierarchical poly(ionic liquid)-based solid electrolytes for high-safety lithium-ion and sodium-ion batteries. Nano Energy 2017, 33, 45–54.

[102]

Choudhury, S.; Mangal, R.; Agrawal, A.; Archer, L. A. A highly reversible room-temperature lithium metal battery based on crosslinked hairy nanoparticles. Nat. Commun. 2015, 6, 10101.

[103]

Fan, X. Y.; Liu, J.; Song, Z. S.; Han, X. P.; Deng, Y. D.; Zhong, C.; Hu, W. B. Porous nanocomposite gel polymer electrolyte with high ionic conductivity and superior electrolyte retention capability for long-cycle-life flexible zinc-air batteries. Nano Energy 2019, 56, 454–462.

[104]

Yang, P.; Gao, X. W.; Tian, X. L.; Shu, C. Y.; Yi, Y. K.; Liu, P.; Wang, T.; Qu, L.; Tian, B. B.; Li, M. T. et al. Upgrading traditional organic electrolytes toward future lithium metal batteries: A hierarchical nano-SiO2-supported gel polymer electrolyte. ACS Energy Lett. 2020, 5, 1681–1688.

[105]

Kumar, D.; Suleman, M.; Hashmi, S. A. Studies on poly(vinylidene fluoride-co-hexafluoropropylene) based gel electrolyte nanocomposite for sodium-sulfur batteries. Solid State Ion. 2011, 202, 45–53.

[106]

Verma, H.; Mishra, K.; Rai, D. K. TiO2 nanoparticle dispersed porous gel polymer electrolyte membrane for room temperature Na-S battery. Mater. Today: Proc. 2020, 28, 346–349.

[107]

Sun, L.; Zhuo, K. L.; Chen, Y. J.; Du, Q. Z.; Zhang, S. J.; Wang, J. J. Ionic liquid-based redox active electrolytes for supercapacitors. Adv. Funct. Mater. 2022, 32, 2203611.

[108]

Xia, R.; Zhao, K. N.; Kuo, L. Y.; Zhang, L.; Cunha, D. M.; Wang, Y.; Huang, S. Z.; Zheng, J.; Boukamp, B.; Kaghazchi, P. et al. Nickel niobate anodes for high rate lithium-ion batteries. Adv. Energy Mater. 2022, 12, 2102972.

[109]

Zhang, W. C.; Zhang, J.; Liu, X. C.; Li, H.; Guo, Y.; Geng, C. N.; Tao, Y.; Yang, Q. H. In-situ polymerized gel polymer electrolytes with high room-temperature ionic conductivity and regulated Na+ solvation structure for sodium metal batteries. Adv. Funct. Mater. 2022, 32, 2201205.

[110]

Brutti, S.; Simonetti, E.; De Francesco, M.; Sarra, A.; Paolone, A.; Palumbo, O.; Fantini, S.; Lin, R.; Falgayrat, A.; Choi, H. et al. Ionic liquid electrolytes for high-voltage, lithium-ion batteries. J. Power Sources 2020, 479, 228791.

[111]

Sun, H.; Zhu, G. Z.; Xu, X. T.; Liao, M.; Li, Y. Y.; Angell, M.; Gu, M.; Zhu, Y. M.; Hung, W. H.; Li, J. C. et al. A safe and non-flammable sodium metal battery based on an ionic liquid electrolyte. Nat. Commun. 2019, 10, 3302.

[112]

Kumar, D. Effect of organic solvent addition on electrochemical properties of ionic liquid based Na+ conducting gel electrolytes. Solid State Ion. 2018, 318, 65–70.

[113]

Kumar, D.; Kanchan, D. K. Dielectric and electrochemical studies on carbonate free Na-ion conducting electrolytes for sodium-sulfur batteries. J. Energy Storage 2019, 22, 44–49.

[114]

Hu, X. F.; Ni, Y. X.; Wang, C. L.; Wang, H.; Matios, E.; Chen, J.; Li, W. Y. Facile-processed nanocarbon-promoted sulfur cathode for highly stable sodium-sulfur batteries. Cell Rep. Phys. Sci. 2020, 1, 100015.

[115]

Patel, M.; Chandrappa, K. G.; Bhattacharyya, A. J. Increasing ionic conductivity of polymer-sodium salt complex by addition of a non-ionic plastic crystal. Solid State Ion. 2010, 181, 844–848.

[116]

Lin, S. S.; Hua, H. M.; Lai, P. B.; Zhao, J. B. A multifunctional dual-salt localized high-concentration electrolyte for fast dynamic high-voltage lithium battery in wide temperature range. Adv. Energy Mater. 2021, 11, 2101775.

[117]

Yokomaku, Y.; Hiraoka, K.; Inaba, K.; Seki, S. Solid gel electrolytes with highly concentrated liquid electrolyte in polymer networks and their physical and electrochemical properties and application to sodium secondary batteries. J. Electrochem. Soc. 2022, 169, 040535.

[118]

Chiu, L. L.; Chung, S. H. Composite gel-polymer electrolyte for high-loading polysulfide cathodes. J. Mater. Chem. A 2022, 10, 13719–13726.

[119]

Singh, R.; Maheshwaran, C.; Kanchan, D. K.; Mishra, K.; Singh, P. K.; Kumar, D. Ion-transport behavior in tetraethylene glycol dimethyl ether incorporated sodium ion conducting polymer gel electrolyte membranes intended for sodium battery application. J. Mol. Liq. 2021, 336, 116594.

[120]

Ren, Z. H.; Li, J. X.; Gong, Y. Y.; Shi, C.; Liang, J. N.; Li, Y. L.; He, C. X.; Zhang, Q. L.; Ren, X. Z. Insight into the integration way of ceramic solid-state electrolyte fillers in the composite electrolyte for high performance solid-state lithium metal battery. Energy Storage Mater. 2022, 51, 130–138.

[121]

Lim, D. H.; Agostini, M.; Ahn, J. H.; Matic, A. An electrospun nanofiber membrane as gel-based electrolyte for room-temperature sodium-sulfur batteries. Energy Technol. 2018, 6, 1214–1219.

[122]

Xu, X. F.; Lin, K.; Zhou, D.; Liu, Q.; Qin, X. Y.; Wang, S. W.; He, S.; Kang, F. Y.; Li, B. H.; Wang, G. X. Quasi-solid-state dual-ion sodium metal batteries for low-cost energy storage. Chem 2020, 6, 902–918.

[123]
Zheng, J. Y.; Li, W. J.; Liu, X. X.; Zhang, J. W.; Feng, X. M.; Chen, W. H. Progress in gel polymer electrolytes for sodium-ion batteries. Energy Environ. Mater., in press, https://doi.org/10.1002/eem2.12422.
DOI
[124]

Saroja, A. P. V. K.; Rajamani, A.; Muthusamy, K.; Sundara, R. Repelling polysulfides using white graphite introduced polymer membrane as a shielding layer in ambient temperature sodium sulfur battery. Adv. Mater. Interfaces 2019, 6, 1901497.

[125]

Zhou, D.; Tang, X.; Guo, X.; Li, P.; Shanmukaraj, D.; Liu, H.; Gao, X. C.; Wang, Y. Z.; Rojo, T.; Armand, M. et al. Polyolefin-based Janus separator for rechargeable sodium batteries. Angew. Chem., Int. Ed. 2020, 59, 16725–16734.

[126]

Zheng, J. Y.; Sun, Y. K.; Li, W. J.; Feng, X. M.; Chen, W. H.; Zhao, Y. F. Effects of comonomers on the performance of stable phosphonate-based gel terpolymer electrolytes for sodium-ion batteries with ultralong cycling stability. ACS Appl. Mater. Interfaces 2021, 13, 25024–25035.

[127]

Sirengo, K.; Babu, A.; Brennan, B.; Pillai, S. C. Ionic liquid electrolytes for sodium-ion batteries to control thermal runaway. J. Energy Chem. 2023, 81, 321–338.

[128]

Wenzel, S.; Metelmann, H.; Raiß, C.; Dürr, A. K.; Janek, J.; Adelhelm, P. Thermodynamics and cell chemistry of room temperature sodium/sulfur cells with liquid and liquid/solid electrolyte. J. Power Sources 2013, 243, 758–765.

[129]

Kim, I.; Park, J. Y.; Kim, C. H.; Park, J. W.; Ahn, J. P.; Ahn, J. H.; Kim, K. W.; Ahn, H. J. A room temperature Na/S battery using a β'' alumina solid electrolyte separator, tetraethylene glycol dimethyl ether electrolyte, and a S/C composite cathode. J. Power Sources 2016, 301, 332–337.

[130]

Kim, I.; Park, J. Y.; Kim, C. H.; Park, J. W.; Ahn, J. P.; Ahn, J. H.; Kim, K. W.; Ahn, H. J. Sodium polysulfides during charge/discharge of the room-temperature Na/S battery using TEGDME electrolyte. J. Electrochem. Soc. 2016, 163, A611–A616.

[131]

Gross, M. M.; Manthiram, A. Development of low-cost sodium-aqueous polysulfide hybrid batteries. Energy Storage Mater. 2019, 19, 346–351.

[132]

Tian, Y. S.; Shi, T.; Richards, W. D.; Li, J. C.; Kim, J. C.; Bo, S. H.; Ceder, G. Compatibility issues between electrodes and electrolytes in solid-state batteries. Energy Environ. Sci. 2017, 10, 1150–1166.

[133]

Chi, X. W.; Liang, Y. L.; Hao, F.; Zhang, Y.; Whiteley, J.; Dong, H.; Hu, P.; Lee, S.; Yao, Y. Tailored organic electrode material compatible with sulfide electrolyte for stable all-solid-state sodium batteries. Angew. Chem., Int. Ed. 2018, 57, 2630–2634.

[134]

Wenzel, S.; Leichtweiss, T.; Weber, D. A.; Sann, J.; Zeier, W. G.; Janek, J. Interfacial reactivity benchmarking of the sodium ion conductors Na3PS4 and sodium β-alumina for protected sodium metal anodes and sodium all-solid-state batteries. ACS Appl. Mater. Interfaces 2016, 8, 28216–28224.

[135]

An, T.; Jia, H. H.; Peng, L. F.; Xie, J. Material and interfacial modification toward a stable room-temperature solid-state Na-S battery. ACS Appl. Mater. Interfaces 2020, 12, 20563–20569.

[136]

Li, Y.; Halacoglu, S.; Shreyas, V.; Arnold, W.; Guo, X. L.; Dou, Q. Q.; Jasinski, J. B.; Narayanan, B.; Wang, H. Highly efficient interface stabilization for ambient-temperature quasi-solid-state sodium metal batteries. Chem. Eng. J. 2022, 434, 134679.

[137]

Lim, K.; Fenk, B.; Küster, K.; Acartürk, T.; Weiss, J.; Starke, U.; Popovic, J.; Maier, J. Influence of porosity of sulfide-based artificial solid electrolyte interphases on their performance with liquid and solid electrolytes in Li and Na metal batteries. ACS Appl. Mater. Interfaces 2022, 14, 16147–16156.

[138]

Wu, E. A.; Banerjee, S.; Tang, H. M.; Richardson, P. M.; Doux, J. M.; Qi, J.; Zhu, Z. Y.; Grenier, A.; Li, Y. X.; Zhao, E. Y. et al. A stable cathode-solid electrolyte composite for high-voltage, long-cycle-life solid-state sodium-ion batteries. Nat. Commun. 2021, 12, 1256.

[139]

Kumar, V.; Wang, Y.; Eng, A. Y. S.; Ng, M. F.; Seh, Z. W. A biphasic interphase design enabling high performance in room temperature sodium-sulfur batteries. Cell Rep. Phys. Sci. 2020, 1, 100044.

[140]

Kamath, G.; Cutler, R. W.; Deshmukh, S. A.; Shakourian-Fard, M.; Parrish, R.; Huether, J.; Butt, D. P.; Xiong, H.; Sankaranarayanan, S. K. R. S. In silico based rank-order determination and experiments on nonaqueous electrolytes for sodium ion battery applications. J. Phys. Chem. C 2014, 118, 13406–13416.

[141]

Shin, H.; Baek, M.; Gupta, A.; Char, K.; Manthiram, A.; Choi, J. W. Recent progress in high donor electrolytes for lithium-sulfur batteries. Adv. Energy Mater. 2020, 10, 2001456.

[142]

Xing, C.; Chen, H.; Qian, S. S.; Wu, Z. Z.; Nizami, A.; Li, X.; Zhang, S. Q.; Lai, C. Regulating liquid and solid-state electrolytes for solid-phase conversion in Li-S batteries. Chem 2022, 8, 1201–1230.

[143]

Ponrouch, A.; Monti, D.; Boschin, A.; Steen, B.; Johansson, P.; Palacín, M. R. Non-aqueous electrolytes for sodium-ion batteries. J. Mater. Chem. A 2015, 3, 22–42.

[144]

Yang, Q.; Deng, N. P.; Chen, J. Y.; Cheng, B. W.; Kang, W. M. The recent research progress and prospect of gel polymer electrolytes in lithium-sulfur batteries. Chem. Eng. J. 2021, 413, 127427.

[145]

Wu, J. H.; Liu, S. F.; Han, F. D.; Yao, X. Y.; Wang, C. S. Lithium/sulfide all-solid-state batteries using sulfide electrolytes. Adv. Mater. 2021, 33, 2000751.

[146]

Yan, W.; Wei, J.; Chen, T.; Duan, L.; Wang, L.; Xue, X. L.; Chen, R. P.; Kong, W. H.; Lin, H. N.; Li, C. H. et al. Superstretchable, thermostable and ultrahigh-loading lithium-sulfur batteries based on nanostructural gel cathodes and gel electrolytes. Nano Energy 2021, 80, 105510.

[147]

Xu, X. F.; Zhou, D.; Qin, X. Y.; Lin, K.; Kang, F. Y.; Li, B. H.; Shanmukaraj, D.; Rojo, T.; Armand, M.; Wang, G. X. A room-temperature sodium-sulfur battery with high capacity and stable cycling performance. Nat. Commun. 2018, 9, 3870.

[148]

Vineeth, S. K.; Tebyetekerwa, M.; Liu, H. W.; Soni, C. B.; Sungjemmenla; Zhao, X. S.; Kumar, V. Progress in the development of solid-state electrolytes for reversible room-temperature sodium-sulfur batteries. Mater. Adv. 2022, 3, 6415–6440.

[149]

Medenbach, L.; Hartmann, P.; Janek, J.; Stettner, T.; Balducci, A.; Dirksen, C.; Schulz, M.; Stelter, M.; Adelhelm, P. A sodium polysulfide battery with liquid/solid electrolyte: Improving sulfur utilization using P2S5 as additive and tetramethylurea as catholyte solvent. Energy Technol. 2020, 8, 1901200.

Publication history
Copyright
Acknowledgements

Publication history

Received: 22 May 2023
Revised: 04 July 2023
Accepted: 08 July 2023
Published: 14 August 2023
Issue date: March 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

J. X. acknowledges financial support from the National Natural Science Foundations of China (No. 52002358), high-level talent internationalization training project of Henan province, and scientific and technological activities of Henan province for scholars with overseas study experience (No. 002004025).

Return