Journal Home > Volume 17 , Issue 3

ZnCdS quantum dots (QDs) are highly coveted in photocatalysis research for their exceptional visible-light responses and high light-absorption coefficients. However, their practical application is hindered by their tendency to aggregate, due to having high surface energies. To address this issue, herein, a heterostructure is synthesized by growing ZnCdS QDs with a size of approximately 5 nm onto the surface of a two-dimensional (2D) covalent organic framework (COF), TpPa-1-COF. This approach suppresses the aggregation of the QDs and improves their stability. The ZnCdS/TpPa-1-COF composite exhibited a peak hydrogen evolution rate of 6244.16 μmol·g−1·h−1, which was 2.89 and 4.18 times greater than that of ZnCdS and TpPa-1-COF, respectively. The zero-dimensional/two-dimensional (0D/2D) heterojunction formed by ZnCdS and TpPa-1-COF generates a strong interfacial force, which is attributed to the intimate contact between the interfaces. Tight connections accelerate charge separation, improve the utilisation of reduced electrons, and reduce the extent of agglomeration of the ZnCdS QDs, thereby resulting in high hydrogen production activity of the composites. Meanwhile, the photocatalytic mechanism is studied using Kelvin probe force microscopy and theoretical calculations. This study offers a novel approach for creating sulfide photocatalysts and is crucial for investigating the potential practical applications of the related photocatalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Rational design of ZnCdS/TpPa-1-COF heterostructure photocatalyst by strengthening the interface connection in solar hydrogen production reactions

Show Author's information Di Yang1Zhi-Gang Li1Xinghao Zhang1Zenghuan Ren1Weihan Lu2Haining Liu2Xiaomeng Guo2( )Jijie Zhang1( )Xian-He Bu1,3
Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, School of Materials Science and Engineering, Nankai University, Tianjin 300350, China
College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China

Abstract

ZnCdS quantum dots (QDs) are highly coveted in photocatalysis research for their exceptional visible-light responses and high light-absorption coefficients. However, their practical application is hindered by their tendency to aggregate, due to having high surface energies. To address this issue, herein, a heterostructure is synthesized by growing ZnCdS QDs with a size of approximately 5 nm onto the surface of a two-dimensional (2D) covalent organic framework (COF), TpPa-1-COF. This approach suppresses the aggregation of the QDs and improves their stability. The ZnCdS/TpPa-1-COF composite exhibited a peak hydrogen evolution rate of 6244.16 μmol·g−1·h−1, which was 2.89 and 4.18 times greater than that of ZnCdS and TpPa-1-COF, respectively. The zero-dimensional/two-dimensional (0D/2D) heterojunction formed by ZnCdS and TpPa-1-COF generates a strong interfacial force, which is attributed to the intimate contact between the interfaces. Tight connections accelerate charge separation, improve the utilisation of reduced electrons, and reduce the extent of agglomeration of the ZnCdS QDs, thereby resulting in high hydrogen production activity of the composites. Meanwhile, the photocatalytic mechanism is studied using Kelvin probe force microscopy and theoretical calculations. This study offers a novel approach for creating sulfide photocatalysts and is crucial for investigating the potential practical applications of the related photocatalysts.

Keywords: quantum dots, photocatalysis, heterojunction, hydrogen generation, covalent organic frameworks

References(40)

[1]

Guo, J.; Wan, Y.; Zhu, Y. F.; Zhao, M. T.; Tang, Z. Y. Advanced photocatalysts based on metal nanoparticle/metal-organic framework composites. Nano Res. 2021, 14, 2037–2052.

[2]

Gong, Y. N.; Guan, X. Y.; Jiang, H. L. Covalent organic frameworks for photocatalysis: Synthesis, structural features, fundamentals and performance. Coord. Chem. Rev. 2023, 475, 214889.

[3]

Zhang, J. J.; Bai, T. Y.; Huang, H.; Yu, M. H.; Fan, X. B.; Chang, Z.; Bu, X. H. Metal-organic-framework-based photocatalysts optimized by spatially separated cocatalysts for overall water splitting. Adv. Mater. 2020, 32, 2004747.

[4]

Qian, Y. Y.; Han, Y. L.; Zhang, X. Y.; Yang, G.; Zhang, G. Z.; Jiang, H. L. Computation-based regulation of excitonic effects in donor-acceptor covalent organic frameworks for enhanced photocatalysis. Nat. Commun. 2023, 14, 3083.

[5]

Yang, D. R.; Yu, H. D.; He, T.; Zuo, S. W.; Liu, X. Z.; Yang, H. Z.; Ni, B.; Li, H. Y.; Gu, L.; Wang, D. et al. Visible-light-switched electron transfer over single porphyrin-metal atom center for highly selective electroreduction of carbon dioxide. Nat. Commun. 2019, 10, 3844.

[6]

Shi, X. F.; Lian, X.; Yang, D.; Hu, X. J.; Zhang, J. J.; Bu, X. H. Facet-engineering of NH2-UiO-66 with enhanced photocatalytic hydrogen production performance. Dalton Trans. 2021, 50, 17953–17959.

[7]

Liu, X. Y.; Zhang, G. Z.; Chen, H.; Li, H. W.; Jiang, J.; Long, Y. T.; Ning, Z. J. Efficient defect-controlled photocatalytic hydrogen generation based on near-infrared Cu-In-Zn-S quantum dots. Nano Res. 2018, 11, 1379–1388.

[8]

Huang, X. B.; Li, X. J.; Luan, Q. J.; Zhang, K. Y.; Wu, Z. Y.; Li, B. Z.; Xi, Z. S.; Dong, W. J.; Wang, G. Highly dispersed Pt clusters encapsulated in MIL-125-NH2 via in situ auto-reduction method for photocatalytic H2 production under visible light. Nano Res. 2021, 14, 4250–4257.

[9]

Gong, Y. N.; Zhong, W. H.; Li, Y.; Qiu, Y. Z.; Zheng, L. R.; Jiang, J.; Jiang, H. L. Regulating photocatalysis by spin-state manipulation of cobalt in covalent organic frameworks. J. Am. Chem. Soc. 2020, 142, 16723–16731.

[10]

Di, T. M.; Deng, Q. R.; Wang, G. M.; Wang, S. G.; Wang, L. X.; Ma, Y. H. Photodeposition of CoOx and MoS2 on CdS as dual cocatalysts for photocatalytic H2 production. J. Mater. Sci. Technol. 2022, 124, 209–216.

[11]

Ha, E. N.; Ruan, S. H.; Li, D. Y.; Zhu, Y. M.; Chen, Y. P.; Qiu, J. Y.; Chen, Z. H.; Xu, T. T.; Su, J. Y.; Wang, L. Y. et al. Surface disorder engineering in ZnCdS for cocatalyst free visible light driven hydrogen production. Nano Res. 2022, 15, 996–1002.

[12]

Si, S. H.; Shou, H. W.; Mao, Y. Y.; Bao, X. L.; Zhai, G. Y.; Song, K. P.; Wang, Z. Y.; Wang, P.; Liu, Y. Y.; Zheng, Z. K. et al. Low-coordination single Au atoms on ultrathin ZnIn2S4 nanosheets for selective photocatalytic CO2 reduction towards CH4. Angew Chem., Int. Ed. 2022, 134, e202209446.

[13]

Palanisamy, G.; Bhuvaneswari, K.; Pazhanivel, T.; Shankar, R.; Katubi, K. M.; Alsaiari, N. S.; Ouladsmane, M. ZnS quantum dots and Bi metals embedded with two dimensional β-Bi2O4 nanosheets for efficient UV-visible light driven photocatalysis. Mater. Res. Bull. 2021, 142, 111387.

[14]

Bie, C. B.; Zhu, B. C.; Wang, L. X.; Yu, H. G.; Jiang, C. H.; Chen, T.; Yu, J. G. A bifunctional CdS/MoO2/MoS2 catalyst enhances photocatalytic H2 evolution and pyruvic acid synthesis. Angew. Chem., Int. Ed. 2022, 61, e202212045.

[15]

Duan, C. H.; Luo, W. N.; Jiu, T.; Li, J. S.; Wang, Y.; Lu, F. S. Facile preparation and characterization of ZnCdS nanocrystals for interfacial applications in photovoltaic devices. J. Colloid Interface Sci. 2018, 512, 353–360.

[16]

Deng, C. H; Ye, F.; Wang, T.; Ling, X. H.; Peng, L. L.; Yu, H.; Ding, K. Z.; Hu, H. M.; Dong, Q.; Le, H. R.; et al. Developing hierarchical CdS/NiO hollow heterogeneous architectures for boosting photocatalytic hydrogen generation. Nano Res. 2022, 15, 2003–2012.

[17]

Lei, C.; Sun, N. B.; Wu, H. Z.; Zhao, Y. G.; Yu, C.; Janani, B. J.; Fakhri, A. Bio-photoelectrochemical degradation, and photocatalysis process by the fabrication of copper oxide/zinc cadmium sulfide heterojunction nanocomposites: Mechanism, microbial community and antifungal analysis. Chemosphere 2022, 308, 136375.

[18]

Gang, R.; Xu, L.; Xia, Y.; Cai, J.; Zhang, L. B.; Wang, S. X.; Li, R. Fabrication of MoS2 QDs/ZnO nanosheet 0D/2D heterojunction photocatalysts for organic dyes and gaseous heavy metal removal. J. Colloid Interface Sci. 2020, 579, 853–861.

[19]

Wang, H. M.; Zhao, R.; Hu, H. X.; Fan, X. W.; Zhang, D. J.; Wang, D. 0D/2D heterojunctions of Ti3C2 mXene QDs/SiC as an efficient and robust photocatalyst for boosting the visible photocatalytic NO pollutant removal ability. ACS Appl. Mater. Interfaces 2020, 12, 40176–40185.

[20]

Kandi, D.; Behera, A.; Martha, S.; Naik, B.; Parida, K. M. Quantum confinement chemistry of CdS QDs plus hot electron of Au over TiO2 nanowire protruding to be encouraging photocatalyst towards nitrophenol conversion and ciprofloxacin degradation. J. Environ. Chem. Eng. 2019, 7, 102821.

[21]

Yan, X.; Jin, Z. L.; Zhang, Y. P.; Liu, H.; Ma, X. L. Controllable design of double metal oxide (NiCo2O4)-modified CdS for efficient photocatalytic hydrogen production. Phys. Chem. Chem. Phys. 2019, 21, 4501–4512.

[22]

Zhang, C.; Zhou, Y. M.; Bao, J. H.; Fang, J. S.; Zhao, S.; Zhang, Y. W.; Sheng, X. L.; Chen, W. X. Structure regulation of ZnS@g-C3N4/TiO2 nanospheres for efficient photocatalytic H2 production under visible-light irradiation. Chem. Eng. J. 2018, 346, 226–237.

[23]

Xu, H. Q.; Yang, S. Z.; Ma, X.; Huang, J. E.; Jiang, H. L. Unveiling charge-separation dynamics in CdS/metal-organic framework composites for enhanced photocatalysis. ACS Catal. 2018, 8, 11615–11621.

[24]

Chen, J. M.; Lv, S. M.; Shen, Z. R.; Tian, P. L.; Chen, J. Y.; Li, Y. W. Novel ZnCdS quantum dots engineering for enhanced visible-light-driven hydrogen evolution. ACS Sustainable Chem. Eng. 2019, 7, 13805–13814.

[25]

Yang, Q. L.; Yu, L. Q.; Zhao, X. Y.; Wang, Y. K.; Zhu, H. F.; Zhang, Y. P. Highly stable γ-NiOOH/ZnCdS photocatalyst for efficient hydrogen evolution. Int. J. Hydrogen Energy 2022, 47, 27516–27526.

[26]

Hao, X. Q.; Xiang, D. Z.; Jin, Z. L. Zn-vacancy engineered S-Scheme ZnCdS/ZnS photocatalyst for highly efficient photocatalytic H2 evolution. ChemCatChem 2021, 13, 4738–4750.

[27]

Chen, Y. J.; Zhuo, H. Y.; Pan, Y.; Liang, J. X.; Liu, C. G.; Li, J. Triazine COF-supported single-atom catalyst (Pd1/trzn-COF) for CO oxidation. Sci. China Mater. 2021, 64, 1939–1951.

[28]

Qian, Y. Y.; Li, D. D.; Han, Y. L.; Jiang, H. L. Photocatalytic molecular oxygen activation by regulating excitonic effects in covalent organic frameworks. J. Am. Chem. Soc. 2020, 142, 20763–20771.

[29]

Niu, L.; Zhao, X. L.; Tang, Z.; Wu, F. C.; Lei, Q. T.; Wang, J. Y.; Wang, X. L.; Liang, W. G.; Wang, X. Solid-solid synthesis of covalent organic framework as a support for growth of controllable ultrafine Au nanoparticles. Sci. Total. Environ. 2022, 835, 155423.

[30]

Li, Y.; Karimi, M.; Gong, Y. N.; Dai, N.; Safarifard, V.; Jiang, H. L. Integration of metal-organic frameworks and covalent organic frameworks: Design, synthesis, and applications. Matter 2021, 4, 2230–2265.

[31]

Ding, S. Y.; Gao, J.; Wang, Q.; Zhang, Y.; Song, W. G.; Su, C. Y.; Wang, W. Construction of covalent organic framework for catalysis: Pd/COF-LZU1 in Suzuki–Miyaura coupling reaction. J. Am. Chem. Soc. 2011, 133, 19816–19822.

[32]

Thote, J.; Aiyappa, H. B.; Deshpande, A.; Díaz, D. D.; Kurungot, S.; Banerjee, R. A covalent organic framework-cadmium sulfide hybrid as a prototype photocatalyst for visible-light-driven hydrogen production. Chem.–Eur. J. 2014, 20, 15961–15965.

[33]

Yao, S. C.; Liu, Z. R.; Li, L. L. Recent progress in nanoscale covalent organic frameworks for cancer diagnosis and therapy. Nano-Micro Lett. 2021, 13, 176.

[34]

Wang, L.; Zhang, L. L.; Lin, B. Z.; Zheng, Y. Z.; Chen, J. L.; Zheng, Y.; Gao, B. F.; Long, J. L.; Chen, Y. L. Activation of carbonyl oxygen sites in β-ketoenamine-linked covalent organic frameworks via cyano conjugation for efficient photocatalytic hydrogen evolution. Small 2021, 17, 2101017.

[35]

Su, T.; Xiao, L. F.; Gao, Y.; Liu, T.; Peng, X. N.; Yuan, H.; Han, Y. B.; Ji, S. H.; Wang, X. N. Multifunctional MoS2 ultrathin nanoflakes loaded by Cd0.5Zn0.5S QDs for enhanced photocatalytic H2 production. Int. J. Energy. Res. 2019, 43, 5678–5686.

[36]

Shang, D. D.; Li, D.; Chen, B. Y.; Luo, B. F.; Huang, Y. Y.; Shi, W. D. 2D–2D SnS2/covalent organic framework heterojunction photocatalysts for highly enhanced solar–driven hydrogen evolution without cocatalysts. ACS Sustainable Chem. Eng. 2021, 9, 14238–14248.

[37]

Yang, R. G.; Fu, Y. M.; Wang, H. N.; Zhang, D. P.; Zhou, Z.; Cheng, Y. Z.; Meng, X.; He, Y. O.; Su, Z. M. ZIF-8/covalent organic framework for enhanced CO2 photocatalytic reduction in gas–solid system. Chem. Eng. J. 2022, 450, 138040.

[38]

Yao, Y. H.; Yang, Y.; Wang, Y.; Zhang, H.; Tang, H. L.; Zhang, H. Y.; Zhang, G. L.; Wang, Y.; Zhang, F. M.; Yan, H. Photo-induced synthesis of ternary Pt/rGO/COF photocatalyst with Pt nanoparticles precisely anchored on rGO for efficient visible-light-driven H2 evolution. J. Colloid. Interface Sci. 2022, 608, 2613–2622.

[39]

Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970–974.

[40]

Banerjee, S.; Mohapatra, S. K.; Das, P. P.; Misra, M. Synthesis of coupled semiconductor by filling 1D TiO2 nanotubes with CdS. Chem. Mater. 2008, 20, 6784–6791.

File
12274_2023_5991_MOESM1_ESM.pdf (2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 May 2023
Revised: 25 June 2023
Accepted: 08 July 2023
Published: 31 July 2023
Issue date: March 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21908113), the Tianjin Applied Basic Research Project (No. 21JCYBJC00140), and Science and Technology Project of Hebei Education Department (No. QN2023114).

Return