Journal Home > Volume 17 , Issue 3

Artificial photosynthesis in carbon dioxide (CO2) conversion into value-added chemicals attracts considerable attention but suffers from the low activity induced by sluggish separation of photogenerated carriers and the kinetic bottleneck-induced unsatisfied selectivity. Herein, we prepare a new-style Bi/TiO2 catalyst formed by pinning bismuth clusters on TiO2 nanowires through being confined by pores, which exhibits high activity and selectivity towards photocatalytic production of CH4 from CO2. Boosted charge transfer from TiO2 through Bi to the reactants is revealed via in situ X-ray photon spectroscopy and time-resolved photoluminescence (PL). Further, in situ Fourier transform infrared results confirm that Bi/TiO2 not only overcomes the multi-electron kinetics challenge of CO2 to CH4 via boosting charge transfer, but also facilitates proton production and transfer as well as the intermediates *CHO and *CH3O generation, ultimately achieving the tandem catalysis towards methanation. Theoretical calculation also underlies that the more favorable reaction step from *CO to *CHO on Bi/TiO2 results in CH4 production with higher selectivity. Our work brings new insights into rational design of photocatalysts with high performance and the formation mechanism of CO2 to CH4 for solar energy storage in future.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Bismuth clusters pinned on TiO2 porous nanowires boosting charge transfer for CO2 photoreduction to CH4

Show Author's information Jiazhi Meng1Kaiwen Wang4Yang Wang1Jiangping Ma1Chaogang Ban1Yajie Feng1Bin Zhang5Kai Zhou5Liyong Gan1Guang Han3( )Danmei Yu2( )Xiaoyuan Zhou1,5( )
College of Physics and Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing 401331, China
School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
College of Materials Science and Engineering, Chongqing University, Chongqing 400044, China
Beijing Key Lab of Microstructure and Properties of Advanced Materials, Beijing University of Technology, Beijing 100124, China
Analytical and Testing Center, Chongqing University, Chongqing 401331, China

Abstract

Artificial photosynthesis in carbon dioxide (CO2) conversion into value-added chemicals attracts considerable attention but suffers from the low activity induced by sluggish separation of photogenerated carriers and the kinetic bottleneck-induced unsatisfied selectivity. Herein, we prepare a new-style Bi/TiO2 catalyst formed by pinning bismuth clusters on TiO2 nanowires through being confined by pores, which exhibits high activity and selectivity towards photocatalytic production of CH4 from CO2. Boosted charge transfer from TiO2 through Bi to the reactants is revealed via in situ X-ray photon spectroscopy and time-resolved photoluminescence (PL). Further, in situ Fourier transform infrared results confirm that Bi/TiO2 not only overcomes the multi-electron kinetics challenge of CO2 to CH4 via boosting charge transfer, but also facilitates proton production and transfer as well as the intermediates *CHO and *CH3O generation, ultimately achieving the tandem catalysis towards methanation. Theoretical calculation also underlies that the more favorable reaction step from *CO to *CHO on Bi/TiO2 results in CH4 production with higher selectivity. Our work brings new insights into rational design of photocatalysts with high performance and the formation mechanism of CO2 to CH4 for solar energy storage in future.

Keywords: charge transfer, tandem catalysis, methanation, carbon dioxide (CO2) photoreduction

References(59)

[1]

Dogutan, D. K.; Nocera, D. G. Artificial photosynthesis at efficiencies greatly exceeding that of natural photosynthesis. Acc. Chem. Res. 2019, 52, 3143–3148.

[2]

Zhong, M.; Tran, K.; Min, Y. M.; Wang, C. H.; Wang, Z. Y.; Dinh, C. T.; De Luna, P.; Yu, Z. Q.; Rasouli, A. S.; Brodersen, P. et al. Accelerated discovery of CO2 electrocatalysts using active machine learning. Nature 2020, 581, 178–183.

[3]

Chen, R.; Wan, L. L.; Luo, J. S. Extraterrestrial artificial photosynthesis. Joule 2022, 6, 944–946.

[4]

Yu, J. G.; Low, J.; Xiao, W.; Zhou, P.; Jaroniec, M. Enhanced photocatalytic CO2-reduction activity of anatase TiO2 by coexposed {001} and {101} facets. J. Am. Chem. Soc. 2014, 136, 8839–8842.

[5]

Guo, Z. J.; Hu, Y. H.; Dong, S.; Chen, L.; Ma, L.; Zhou, Y.; Wang, L.; Wang, J. “Spring-loaded” mechanism for chemical fixation of carbon dioxide with epoxides. Chem Catal. 2022, 2, 519–530.

[6]

Wang, Y.; Wang, K. W.; Meng, J. Z.; Ban, C. G.; Duan, Y. Y.; Feng, Y. J.; Jing, S. J.; Ma, J. P.; Yu, D. M.; Gan, L. Y. et al. Constructing atomic surface concaves on Bi5O7Br nanotube for efficient photocatalytic CO2 reduction. Nano Energy 2023, 109, 108305.

[7]

Li, J.; Huang, H. L.; Xue, W. J.; Sun, K.; Song, X. H.; Wu, C. R.; Nie, L.; Li, Y.; Liu, C. Y.; Pan, Y. et al. Self-adaptive dual-metal-site pairs in metal-organic frameworks for selective CO2 photoreduction to CH4. Nat. Catal. 2021, 4, 719–729.

[8]

Liu, P. G.; Huang, Z. X.; Gao, X. P.; Hong, X.; Zhu, J. F.; Wang, G. M.; Wu, Y. E.; Zeng, J.; Zheng, X. S. Synergy between palladium single atoms and nanoparticles via hydrogen spillover for enhancing CO2 photoreduction to CH4. Adv. Mater. 2022, 34, 2200057.

[9]

Ma, J. P.; Ren, J.; Jia, Y. M.; Wu, Z.; Chen, L.; Haugen, N. O.; Huang, H. T.; Liu, Y. S. High efficiency bi-harvesting light/vibration energy using piezoelectric zinc oxide nanorods for dye decomposition. Nano Energy 2019, 62, 376–383.

[10]

Ma, J. P.; Jing, S. J.; Wang, Y.; Liu, X.; Gan, L. Y.; Wang, C.; Dai, J. Y.; Han, X. D.; Zhou, X. Y. Piezo-electrocatalysis for CO2 reduction driven by vibration. Adv. Energy Mater. 2022, 12, 2200253.

[11]
Wang, Y.; Meng, J. Z.; Jing, S. J.; Wang, K. W.; Ban, C. G.; Feng, Y. J.; Duan, Y. Y.; Ma, J. P.; Gan, L. Y.; Zhou, X. Y. Origin of bismuth-rich strategy in bismuth oxyhalide photocatalysts. Energy Environ. Mater., in press, DOI: 10.1002/eem2.12432.
DOI
[12]

Ban, C. G.; Duan, Y. Y.; Wang, Y.; Ma, J. P.; Wang, K. W.; Meng, J. Z.; Liu, X.; Wang, C.; Han, X. D.; Cao, G. Z. et al. Isotype heterojunction-boosted CO2 photoreduction to CO. Nano-Micro Lett. 2022, 14, 74.

[13]

Di, J.; Chen, C.; Zhu, C.; Long, R.; Chen, H. L.; Cao, X. Z.; Xiong, J.; Weng, Y. X.; Song, L.; Li, S. Z. et al. Surface local polarization induced by bismuth-oxygen vacancy pairs tuning non-covalent interaction for CO2 photoreduction. Adv. Energy Mater. 2021, 11, 2102389.

[14]

Guo, Q.; Zhou, C. Y.; Ma, Z. B.; Yang, X. M. Fundamentals of TiO2 photocatalysis: Concepts, mechanisms, and challenges. Adv. Mater. 2019, 31, 1901997.

[15]

Li, X.; Yu, J. G.; Jaroniec, M.; Chen, X. B. Cocatalysts for selective photoreduction of CO2 into solar fuels. Chem. Rev. 2019, 119, 3962–4179.

[16]

He, Y. Q.; Lei, Q.; Li, C. G.; Han, Y.; Shi, Z.; Feng, S. H. Defect engineering of photocatalysts for solar-driven conversion of CO2 into valuable fuels. Mater. Today 2021, 50, 358–384.

[17]

Wan, L. L.; Zhou , Q. X.; Wang , X.; Wood, T. E.; Wang , L.; Duchesne, P. N.; Guo, J. L.; Yan, X. L.; Xia, M. K.; Li, Y. F. et al. Cu2O nanocubes with mixed oxidation-state facets for (photo)catalytic hydrogenation of carbon dioxide. Nat. Catal. 2019, 2, 889–898.

[18]

Li, X. D.; Sun , Y. F.; Xu, J. Q.; Shao, Y. J.; Wu, J.; Xu, X. L.; Pan, Y.; Ju, H. X.; Zhu, J. F.; Xie, Y. Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat. Energy 2019, 4, 690–699.

[19]

Feng, Y. J.; Wang, Y.; Wang, K. W.; Ma, J. P.; Duan, Y. Y.; Liu, J.; Lu, X.; Zhang, B.; Wang, G. Y.; Zhou, X. Y. Ultra-fine Cu clusters decorated hydrangea-like titanium dioxide for photocatalytic hydrogen production. Rare Metals 2022, 41, 385–395.

[20]

Meng, A. Y.; Zhang, L. Y.; Cheng, B.; Yu, J. G. Dual cocatalysts in TiO2 photocatalysis. Adv. Mater. 2019, 31, 1807660.

[21]

Zhang, F.; Li, Y. H.; Qi, M. Y.; Tang, Z. R.; Xu, Y. J. Boosting the activity and stability of Ag-Cu2O/ZnO nanorods for photocatalytic CO2 reduction. Appl. Catal. B Environ. 2020, 268, 118380.

[22]

Li, X.; Jiang, H. P.; Ma, C. C.; Zhu, Z.; Song, X. H.; Wang, H. Q.; Huo, P. W.; Li, X. Y. Local surface plasma resonance effect enhanced Z-scheme ZnO/Au/g-C3N4 film photocatalyst for reduction of CO2 to CO. Appl. Catal. B Environ. 2021, 283, 119638.

[23]

Ye, L.; Chai, G. L.; Wen, Z. H. Zn-MOF-74 derived n-doped mesoporous carbon as pH-universal electrocatalyst for oxygen reduction reaction. Adv. Funct. Mater. 2017, 27, 1606190.

[24]

Wu, X. H.; Zhou, S.; Wang, Z. Y.; Liu, J. S.; Pei, W.; Yang, P. J.; Zhao, J. J.; Qiu, J. S. Engineering multifunctional collaborative catalytic interface enabling efficient hydrogen evolution in all pH range and seawater. Adv. Energy Mater. 2019, 9, 1901333.

[25]

Wang, Z. Y.; Jiang, S. D.; Duan, C. Q.; Wang, D.; Luo, S. H.; Liu, Y. G. In situ synthesis of Co3O4 nanoparticles confined in 3D nitrogen-doped porous carbon as an efficient bifunctional oxygen electrocatalyst. Rare Matals 2020, 39, 1383–1394.

[26]

Spencer, M. S. Models of strong metal-support interaction (SMSI) in Pt on TiO2 catalysts. J. Catal. 1985, 93, 216–223.

[27]

Bernal, S.; Calvino, J. J.; Cauqui, M. A.; Gatica, J. M.; Larese, C.; Pérez Omil, J. A.; Pintado, J. M. Some recent results on metal/support interaction effects in NM/CeO2 (NM: noble metal) catalysts. Catal. Today 1999, 50, 175–206.

[28]

Du, X. R.; Huang, Y. K.; Pan, X. L.; Han, B.; Su, Y.; Jiang, Q. K.; Li, M. R.; Tang, H. L.; Li, G.; Qiao, B. T. Size-dependent strong metal-support interaction in TiO2 supported Au nanocatalysts. Nat. Commun. 2020, 11, 5811.

[29]

Rodriguez, J. A.; Ma, S.; Liu, P.; Hrbek, J.; Evans, J.; Pérez, M. Activity of CeOx and TiOx nanoparticles grown on Au(111) in the water-gas shift reaction. Science 2007, 318, 1757–1760.

[30]

Yan, H.; He, K.; Samek, I. A.; Jing, D.; Nanda, M. G.; Stair, P. C.; Notestein, J. M. Tandem In2O3-Pt/Al2O3 catalyst for coupling of propane dehydrogenation to selective H2 combustion. Science 2021, 371, 1257–1260.

[31]

Rae, B. D.; Long, B. M.; Badger, M. R.; Price, G. D. Functions, compositions, and evolution of the two types of carboxysomes: Polyhedral microcompartments that facilitate CO2 fixation in cyanobacteria and some proteobacteria. Microbiol. Mol. Biol. Rev. 2013, 77, 357–379.

[32]

Staunton, J.; Weissman, K. J. Polyketide biosynthesis: A millennium review. Nat. Prod. Rep. 2001, 18, 380–416.

[33]

Lin, F. X.; Lv, F.; Zhang, Q. H.; Luo, H.; Wang, K.; Zhou, J. H.; Zhang, W. Y.; Zhang, W. S.; Wang, D. W.; Gu, L. et al. Local coordination regulation through tuning atomic-scale cavities of Pd metallene toward efficient oxygen reduction electrocatalysis. Adv. Mater. 2022, 34, 2202084.

[34]

Yang, X. C.; Sun, J. K.; Kitta, M.; Pang, H.; Xu, Q. Encapsulating highly catalytically active metal nanoclusters inside porous organic cages. Nat. Catal. 2018, 1, 214–220.

[35]

Yuan, Y.; Yang, Y. J.; Faheem, M.; Zou, X. Q.; Ma, X. J.; Wang, Z. Y.; Meng, Q. H.; Wang, L. L.; Zhao, S.; Zhu, G. S. Molecularly imprinted porous aromatic frameworks serving as porous artificial enzymes. Adv. Mater. 2018, 30, 1800069.

[36]

Li, Y. X.; Hui, D. P.; Sun, Y. Q.; Wang, Y.; Wu, Z. J.; Wang, C. Y.; Zhao, J. C. Boosting thermo-photocatalytic CO2 conversion activity by using photosynthesis-inspired electron-proton-transfer mediators. Nat. Commun. 2021, 12, 123.

[37]

Zhang, X. L.; Sun, X. H.; Guo, S. X.; Bond, A. M.; Zhang, J. Formation of lattice-dislocated bismuth nanowires on copper foam for enhanced electrocatalytic CO2 reduction at low overpotential. Energy Environ. Sci. 2019, 12, 1334–1340.

[38]

Dou, H. L.; Long, D.; Rao, X.; Zhang, Y. P.; Qin, Y. M.; Pan, F.; Wu, K. Photocatalytic degradation kinetics of gaseous formaldehyde flow using TiO2 nanowires. ACS Sustainable Chem. Eng. 2019, 7, 4456–4465.

[39]

Jiao, Z. B.; Shang, M. D.; Liu, J. M.; Lu, G. X.; Wang, X. S.; Bi, Y. P. The charge transfer mechanism of Bi modified TiO2 nanotube arrays: TiO2 serving as a “charge-transfer-bridge”. Nano Energy 2017, 31, 96–104.

[40]

Chen, Y. J.; Ji, S. F.; Sun, W. M.; Lei, Y. P.; Wang, Q. C.; Li, A.; Chen, W. X.; Zhou, G.; Zhang, Z. D.; Wang, Y. et al. Engineering the atomic interface with single platinum atoms for enhanced photocatalytic hydrogen production. Angew. Chem., Int. Ed. 2020, 59, 1295–1301.

[41]

Yang, G. H.; Miao, W. K.; Yuan, Z. M.; Jiang, Z. Y.; Huang, B. B.; Wang, P.; Chen, J. C. Bi quantum dots obtained via in situ photodeposition method as a new photocatalytic CO2 reduction cocatalyst instead of noble metals: Borrowing redox conversion between Bi2O3 and Bi. Appl. Catal. B Environ. 2018, 237, 302–308.

[42]
Jiang, X. L.; Lin, L.; Rong, Y. W.; Li, R. T.; Jiang, Q. K.; Yang, Y. Y.; Gao, D. F. Boosting CO2 electroreduction to formate via bismuth oxide clusters. Nano Res., in press, DOI: 10.1007/s12274-022-5073-0.
DOI
[43]

Wang, C.; Wang, K. W.; Feng, Y. B.; Li, C.; Zhou, X. Y.; Gan, L. Y.; Feng, Y. J.; Zhou, H. J.; Zhang, B.; Qu, X. L. et al. Co and Pt dual-single-atoms with oxygen-coordinated Co-O-Pt dimer sites for ultrahigh photocatalytic hydrogen evolution efficiency. Adv. Mater. 2021, 33, 2003327.

[44]

Wang, B.; Feng, W. H.; Zhang, L. L.; Zhang, Y.; Huang, X. Y.; Fang, Z. B.; Liu, P. In situ construction of a novel Bi/CdS nanocomposite with enhanced visible light photocatalytic performance. Appl. Catal. B Environ. 2017, 206, 510–519.

[45]

Zhu, J. Y.; Li, Y. P.; Wang, X. J.; Zhao, J.; Wu, Y. S.; Li, F. T. Simultaneous phosphorylation and Bi modification of BiOBr for promoting photocatalytic CO2 reduction. ACS Sustainable Chem. Eng. 2019, 7, 14953–14961.

[46]

Wang, H. W.; Gu, X. K.; Zheng, X. S.; Pan, H. B.; Zhu, J. F.; Chen, S.; Cao, L. N.; Li, W. X.; Lu, J. L. Disentangling the size-dependent geometric and electronic effects of palladium nanocatalysts beyond selectivity. Sci. Adv. 2019, 5, eaat6413.

[47]

Wang, Y. J.; Zhuang, G. L.; Zhang, J. W.; Luo, F.; Cheng, X.; Sun, F. L.; Fu, S. S.; Lu, T. B.; Zhang, Z. M. Co-dissolved isostructural polyoxovanadates to construct single-atom-site catalysts for efficient CO2 photoreduction. Angew. Chem., Int. Ed. 2023, 62, e202216592.

[48]

Hülsey, M. J.; Zhang, B.; Ma, Z. R.; Asakura, H.; Do, D. A.; Chen, W.; Tanaka, T.; Zhang, P.; Wu, Z. L.; Yan, N. In situ spectroscopy-guided engineering of rhodium single-atom catalysts for CO oxidation. Nat. Commun. 2019, 10, 1330.

[49]

Zhu, Q. B.; Xuan, Y. M.; Zhang, K.; Chang, K. Enhancing photocatalytic CO2 reduction performance of g-C3N4-based catalysts with non-noble plasmonic nanoparticles. Appl. Catal. B Environ. 2021, 297, 120440.

[50]

Yang, J. J.; Zhang, Y.; Xie, X. Y.; Fang, W. H.; Cui, G. L. Photocatalytic reduction of carbon dioxide to methane at the Pd-supported TiO2 interface: Mechanistic insights from theoretical studies. ACS Catal. 2022, 12, 8558–8571.

[51]

Liu, L. J.; Zhao, C. Y.; Li, Y. Spontaneous dissociation of CO2 to CO on defective surface of Cu(I)/TiO2−x nanoparticles at room temperature. J. Phys. Chem. C 2012, 116, 7904–7912.

[52]

Wang, W.; Deng, C. Y.; Xie, S. J.; Li, Y. F.; Zhang, W. Y.; Sheng, H.; Chen, C. C.; Zhao, J. C. Photocatalytic C−C coupling from carbon dioxide reduction on copper oxide with mixed-valence copper(I)/copper(II). J. Am. Chem. Soc. 2021, 143, 2984–2993.

[53]

Vasileff, A.; Zhi, X.; Xu, C. C.; Ge, L.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Selectivity control for electrochemical CO2 reduction by charge redistribution on the surface of copper alloys. ACS Catal. 2019, 9, 9411–9417.

[54]

Yi, J. D.; Xie, R. K.; Xie, Z. L.; Chai, G. L.; Liu, T. F.; Chen, R. P.; Huang, Y. B.; Cao, R. Highly selective CO2 electroreduction to CH4 by in situ generated Cu2O single-type sites on a conductive MOF: Stabilizing key intermediates with hydrogen bonding. Angew. Chem., Int. Ed. 2020, 59, 23641–23648.

[55]

Firet, N. J.; Smith, W. A. Probing the reaction mechanism of CO2 electroreduction over Ag films via operando infrared spectroscopy. ACS Catal. 2017, 7, 606–612.

[56]

Wu, W. C.; Chuang, C. C.; Lin, J. L. Bonding geometry and reactivity of methoxy and ethoxy groups adsorbed on powdered TiO2. J. Phys. Chem. B. 2000, 104, 8719–8724.

[57]

Ji, Y. F.; Luo, Y. New mechanism for photocatalytic reduction of CO2 on the anatase TiO2(101) surface: The essential role of oxygen vacancy. J. Am. Chem. Soc. 2016, 138, 15896–15902.

[58]

Ji, Y. F.; Luo, Y. Theoretical study on the mechanism of photoreduction of CO2 to CH4 on the anatase TiO2(101) surface. ACS Catal. 2016, 6, 2018–2025.

[59]

Di, J.; Chen, C.; Yang, S. Z.; Chen, S. M.; Duan, M. L.; Xiong, J.; Zhu, C.; Long, R.; Hao, W.; Chi, Z. et al. Isolated single atom cobalt in Bi3O4Br atomic layers to trigger efficient CO2 photoreduction. Nat. Commun. 2019, 10, 2840.

File
12274_2023_5990_MOESM1_ESM.pdf (3.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 May 2023
Revised: 28 June 2023
Accepted: 08 July 2023
Published: 29 August 2023
Issue date: March 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported in part by the National Natural Science Foundation of China (Nos. 52125103, 52071041 and 12074048), the Project for Fundamental and Frontier Research in Chongqing (Nos. cstc2020jcyj-msxmX0777 and cstc2020jcyj-msxmX0796). We would like to thank Ms. C. Y. Y. from the Analytical and Testing Center at Chongqing University for her helpful TRPL measurement and Ms. H. J. Z. for XRD characterization.

Return