Journal Home > Volume 16 , Issue 12

Herein, a new strategy is proposed for achieving dynamic chiral controls in self-assembly systems of plasmonic nanorods based on temperature-modulation. Via enlarging Au{100} side facets of Au nanorod (AuNR) building block and changing surface ligand from often-used cetyltrimethylammonium bromide (CTAB) to cetylpyridinium chloride (CPC), inversion of chiroptical signal in side-by-side (SS) oligomers is realized. Under the guide of chiral cysteine (Cys), Au{100} side facet-linked SS rods twist in the opposite direction compared with Au{110} side facet-linked counterparts. At high CPC concentration, by controlling the incubation temperature of chiral Cys, the dominant twist mode can be regulated. Finite-difference time-domain (FDTD) simulations indicate the key role of the twisting dihedral angle of the oligomers in driving chiral signal inversion. At low CPC concentration, a temperature-sensitive chiral switching is observed owing to the conformation change of the CPC ligand layer. The temperature-modulated chiral responses are based on the interactions of chiral molecules, achiral surface ligands, and exposed facets of the building block. The rich dynamic tunability of chiroptical responses of plasmonic assemblies may find applications in stimulus-responsive nanodevices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Temperature-modulated inversion and switching of chiroptical responses in dynamic side-by-side oligomers of gold nanorods

Show Author's information Hanbo Li1,2,§Dejing Meng1,,§Chenqi Zhang1,2Yinglu Ji1Xinshuang Gao1,2Zhijian Hu1( )Xiaochun Wu1,2( )
CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
Present address: Institute of Microstructure Technology, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen 76344, Germany

§ Hanbo Li and Dejing Meng contributed equally to this work.

Abstract

Herein, a new strategy is proposed for achieving dynamic chiral controls in self-assembly systems of plasmonic nanorods based on temperature-modulation. Via enlarging Au{100} side facets of Au nanorod (AuNR) building block and changing surface ligand from often-used cetyltrimethylammonium bromide (CTAB) to cetylpyridinium chloride (CPC), inversion of chiroptical signal in side-by-side (SS) oligomers is realized. Under the guide of chiral cysteine (Cys), Au{100} side facet-linked SS rods twist in the opposite direction compared with Au{110} side facet-linked counterparts. At high CPC concentration, by controlling the incubation temperature of chiral Cys, the dominant twist mode can be regulated. Finite-difference time-domain (FDTD) simulations indicate the key role of the twisting dihedral angle of the oligomers in driving chiral signal inversion. At low CPC concentration, a temperature-sensitive chiral switching is observed owing to the conformation change of the CPC ligand layer. The temperature-modulated chiral responses are based on the interactions of chiral molecules, achiral surface ligands, and exposed facets of the building block. The rich dynamic tunability of chiroptical responses of plasmonic assemblies may find applications in stimulus-responsive nanodevices.

Keywords: gold nanorods, plasmonic circular dichroism, chiral oligomers, cetylpyridinium chloride, temperature stimulus

References(49)

[1]

Hentschel, M.; Schäferling, M.; Duan, X. Y.; Giessen, H.; Liu, N. Chiral plasmonics. Sci. Adv. 2017, 3, e1602735.

[2]

Yang, L.; Liu, J. J.; Sun, P.; Ni, Z. Y.; Ma, Y. C.; Huang, Z. F. Chiral ligand-free, optically active nanoparticles inherently composed of chiral lattices at the atomic scale. Small 2020, 16, 2001473.

[3]

Zheng, J. P.; Cheng, X. Z.; Zhang, H.; Bai, X. P.; Ai, R. Q.; Shao, L.; Wang, J. F. Gold nanorods: The most versatile plasmonic nanoparticles. Chem. Rev. 2021, 121, 13342–13453.

[4]

Zheng, G. C.; Jiao, S. L.; Zhang, W.; Wang, S. L.; Zhang, Q. H.; Gu, L.; Ye, W. X.; Li, J. J.; Ren, X. C.; Zhang, Z. C. et al. Fine-tune chiroptical activity in discrete chiral Au nanorods. Nano Res. 2022, 15, 6574–6581.

[5]

Ni, B.; Mychinko, M.; Gómez-Graña, S.; Morales-Vidal, J.; Obelleiro-Liz, M.; Heyvaert, W.; Vila-Liarte, D.; Zhuo, X. L.; Albrecht, W.; Zheng, G. C. et al. Chiral seeded growth of gold nanorods into fourfold twisted nanoparticles with plasmonic optical activity. Adv. Mater. 2023, 35, 2208299.

[6]

Ni, B.; Zhou, J.; Stolz, L.; Cölfen, H. A facile and rational method to tailor the symmetry of Au@Ag nanoparticles. Adv. Mater. 2023, 35, 2209810.

[7]

Kumar, J.; López-Martínez, E.; Cortajarena, A. L.; Solís, D. M.; Taboada, J. M.; Díez-Buitrago, B.; Pavlov, V.; Liz-Marzán, L. M. Charge-induced shifts in chiral surface plasmon modes in gold nanorod assemblies. Part. Part. Syst. Charact. 2019, 36, 1800368.

[8]

Hu, Z. J.; Meng, D. J.; Lin, F.; Zhu, X.; Fang, Z. Y.; Wu, X. C. Plasmonic circular dichroism of gold nanoparticle based nanostructures. Adv. Opt. Mater. 2019, 7, 1801590.

[9]

Li, H. B.; Gao, X. S.; Zhang, C. Q.; Ji, Y. L.; Hu, Z. J.; Wu, X. C. Gold-nanoparticle-based chiral plasmonic nanostructures and their biomedical applications. Biosensors 2022, 12, 957.

[10]

Yan, J.; Hou, S.; Ji, Y. L.; Wu, X. C. Heat-enhanced symmetry breaking in dynamic gold nanorod oligomers: The importance of interface control. Nanoscale 2016, 8, 10030–10034.

[11]

Lv, J. W.; Gao, X. Q.; Han, B.; Zhu, Y. F.; Hou, K.; Tang, Z. Y. Self-assembled inorganic chiral superstructures. Nat. Rev. Chem. 2022, 6, 125–145.

[12]

Vila-Liarte, D.; Kotov, N. A.; Liz-Marzán, L. M. Template-assisted self-assembly of achiral plasmonic nanoparticles into chiral structures. Chem. Sci. 2022, 13, 595–610.

[13]

Lermusiaux, L.; Nisar, A.; Funston, A. M. Flexible synthesis of high-purity plasmonic assemblies. Nano Res. 2021, 14, 635–645.

[14]

Merg, A. D.; Boatz, J. C.; Mandal, A.; Zhao, G. P.; Mokashi-Punekar, S.; Liu, C.; Wang, X. T.; Zhang, P. J.; Van Der Wel, P. C. A.; Rosi, N. L. Peptide-directed assembly of single-helical gold nanoparticle superstructures exhibiting intense chiroptical activity. J. Am. Chem. Soc. 2016, 138, 13655–13663.

[15]

Liu, S. L.; Ma, X. Y.; Song, M.; Ji, C. Y.; Song, J.; Ji, Y. L.; Ma, S. J.; Jiang, J.; Wu, X. C.; Li, J. F. et al. Plasmonic nanosensors with extraordinary sensitivity to molecularly enantioselective recognition at nanoscale interfaces. ACS Nano 2021, 15, 19535–19545.

[16]

Thomas, A. R.; Swetha, K.; C, K. A.; Ashraf, R.; Kumar, J.; Kumar, S.; Mandal, S. S. Protein fibril assisted chiral assembly of gold nanorods. J. Mater. Chem. B 2022, 10, 6360–6371.

[17]

Cheng, Z.; Ma, Y.; Yang, L.; Cheng, F.; Huang, Z. J.; Natan, A.; Li, H. Y.; Chen, Y.; Cao, D. X.; Huang, Z. F. et al. Plasmonic-enhanced cholesteric films: Coassembling anisotropic gold nanorods with cellulose nanocrystals. Adv. Opt. Mater. 2019, 7, 1801816.

[18]

Nemati, A.; Shadpour, S.; Querciagrossa, L.; Mori, T.; Zannoni, C.; Hegmann, T. Highly sensitive, tunable chirality amplification through space visualized for gold nanorods capped with axially chiral binaphthyl derivatives. ACS Nano 2019, 13, 10312–10326.

[19]

Grzelak, D.; Tupikowska, M.; Vila-Liarte, D.; Beutel, D.; Bagiński, M.; Parzyszek, S.; Góra, M.; Rockstuhl, C.; Liz-Marzán, L. M.; Lewandowski, W. Liquid crystal templated chiral plasmonic films with dynamic tunability and moldability. Adv. Funct. Mater. 2022, 32, 2111280.

[20]

Martens, K.; Binkowski, F.; Nguyen, L.; Hu, L.; Govorov, A. O.; Burger, S.; Liedl, T. Long- and short-ranged chiral interactions in DNA-assembled plasmonic chains. Nat. Commun. 2021, 12, 2025.

[21]

Pan, J. H.; Wang, X. Y.; Zhang, J. J.; Zhang, Q.; Wang, Q. B.; Zhou, C. Chirally assembled plasmonic metamolecules from intrinsically chiral nanoparticles. Nano Res. 2022, 15, 9447–9453.

[22]

Zhai, D. W.; Wang, P.; Wang, R. Y.; Tian, X. R.; Ji, Y. L.; Zhao, W. J.; Wang, L. M.; Wei, H.; Wu, X. C.; Zhang, X. D. Plasmonic polymers with strong chiroptical response for sensing molecular chirality. Nanoscale 2015, 7, 10690–10698.

[23]

Bao, Z. Y.; Dai, J. Y.; Zhang, Q.; Ho, K. H.; Li, S. Q.; Chan, C. H.; Zhang, W.; Lei, D. Y. Geometric modulation of induced plasmonic circular dichroism in nanoparticle assemblies based on backaction and field enhancement. Nanoscale 2018, 10, 19684–19691.

[24]

Cheng, G. Q.; Xu, D.; Lu, Z. Y.; Liu, K. Chiral self-assembly of nanoparticles induced by polymers synthesized via reversible addition-fragmentation chain transfer polymerization. ACS Nano 2019, 13, 1479–1489.

[25]

Yan, W. J.; Wang, Y. L.; Zhuang, H.; Zhang, J. H. DNA-engineered chiroplasmonic heteropyramids for ultrasensitive detection of mercury ion. Biosens. Bioelectron. 2015, 68, 516–520.

[26]

Wu, X. L.; Xu, L. G.; Ma, W.; Liu, L. Q.; Kuang, H.; Kotov, N. A.; Xu, C. L. Propeller-like nanorod-upconversion nanoparticle assemblies with intense chiroptical activity and luminescence enhancement in aqueous phase. Adv. Mater. 2016, 28, 5907–5915.

[27]

Xu, L. G.; Gao, Y. F.; Kuang, H.; Liz-Marzan, L. M.; Xu, C. L. MicroRNA-directed intracellular self-assembly of chiral nanorod dimers. Angew. Chem., Int. Ed. 2018, 57, 10544–10548.

[28]

Zhang, Q. F.; Hernandez, T.; Smith, K. W.; Jebeli, S. A. H.; Dai, A. X.; Warning, L.; Baiyasi, R.; McCarthy, L. A.; Guo, H.; Chen, D. H. et al. Unraveling the origin of chirality from plasmonic nanoparticle-protein complexes. Science 2019, 365, 1475–1478.

[29]

Wang, Z. Y.; Zhang, N. N.; Li, J. C.; Lu, J.; Zhao, L.; Fang, X. D.; Liu, K. Serum albumin guided plasmonic nanoassemblies with opposite chiralities. Soft Matter 2021, 17, 6298–6304.

[30]

Severoni, E.; Maniappan, S.; Liz-Marzán, L. M.; Kumar, J.; García De Abajo, F. J.; Galantini, L. Plasmon-enhanced optical chirality through hotspot formation in surfactant-directed self-assembly of gold nanorods. ACS Nano 2020, 14, 16712–16722.

[31]

Song, M.; Tong, L. M.; Liu, S. L.; Zhang, Y. W.; Dong, J. Y.; Ji, Y. L.; Guo, Y.; Wu, X. C.; Zhang, X. D.; Wang, R. Y. Nonlinear amplification of chirality in self-assembled plasmonic nanostructures. ACS Nano 2021, 15, 5715–5724.

[32]

Fan, Y.; Ouyang, S. B.; Zhou, D.; Wei, J. C.; Liao, L. Biological applications of chiral inorganic nanomaterials. Chirality 2022, 34, 760–781.

[33]

Kumar, J.; Eraña, H.; López-Martínez, E.; Claes, N.; Martín, V. F.; Solís, D. M.; Bals, S.; Cortajarena, A. L.; Castilla, J.; Liz-Marzán, L. M. Detection of amyloid fibrils in Parkinson’s disease using plasmonic chirality. Proc. Natl. Acad. Sci. USA 2018, 115, 3225–3230.

[34]

Qu, A. H.; Sun, M. Z.; Kim, J. Y.; Xu, L. G.; Hao, C. L.; Ma, W.; Wu, X. L.; Liu, X. G.; Kuang, H.; Kotov, N. A. et al. Stimulation of neural stem cell differentiation by circularly polarized light transduced by chiral nanoassemblies. Nat. Biomed. Eng. 2021, 5, 103–113.

[35]

Li, Z. T.; Zhu, Z. N.; Liu, W. J.; Zhou, Y. L.; Han, B.; Gao, Y.; Tang, Z. Y. Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies. J. Am. Chem. Soc. 2012, 134, 3322–3325.

[36]

Jin, X.; Jiang, J.; Liu, M. H. Reversible plasmonic circular dichroism via hybrid supramolecular gelation of achiral gold nanorods. ACS Nano 2016, 10, 11179–11186.

[37]

Wang, S.; Zhang, Y. N.; Qin, X. J.; Zhang, L.; Zhang, Z.; Lu, W. S.; Liu, M. H. Guanosine assembly enabled gold nanorods with dual thermo- and photoswitchable plasmonic chiroptical activity. ACS Nano 2020, 14, 6087–6096.

[38]

Zhao, W. J.; Zhang, W. X.; Wang, R. Y.; Ji, Y. L.; Wu, X. C.; Zhang, X. D. Photocontrollable chiral switching and selection in self-assembled plasmonic nanostructure. Adv. Funct. Mater. 2019, 29, 1900587.

[39]

Meng, D. J.; Chen, Y. D.; Ji, Y. L.; Shi, X. H.; Wang, H.; Wu, X. C. Temperature effect of plasmonic circular dichroism in dynamic oligomers of AuNR@Ag nanorods driven by cysteine: The role of surface atom migration. Adv. Opt. Mater. 2021, 9, 2001274.

[40]

Ma, L.; Liu, Y.; Han, C.; Movsesyan, A.; Li, P. H.; Li, H. C.; Tang, P.; Yuan, Y. Q.; Jiang, S. X.; Ni, W. H. et al. DNA-assembled chiral satellite-core nanoparticle superstructures: Two-state chiral interactions from dynamic and static conformations. Nano Lett. 2022, 22, 4784–4791.

[41]

Liu, F. S.; Li, N.; Shang, Y. X.; Wang, Y. M.; Liu, Q.; Ma, Z. T.; Jiang, Q.; Ding, B. Q. A DNA-based plasmonic nanodevice for cascade signal amplification. Angew. Chem., Int. Ed. 2022, 61, e202114706.

[42]

Huang, Y. K.; Nguyen, M. K.; Natarajan, A. K.; Nguyen, V. H.; Kuzyk, A. A DNA origami-based chiral plasmonic sensing device. ACS Appl. Mater. Interfaces 2018, 10, 44221–44225.

[43]

Funck, T.; Nicoli, F.; Kuzyk, A.; Liedl, T. Sensing picomolar concentrations of RNA using switchable plasmonic chirality. Angew. Chem., Int. Ed. 2018, 57, 13495–13498.

[44]

Hou, S.; Wen, T.; Zhang, H.; Liu, W. Q.; Hu, X. N.; Wang, R. Y.; Hu, Z. J.; Wu, X. C. Fabrication of chiral plasmonic oligomers using cysteine-modified gold nanorods as monomers. Nano Res. 2014, 7, 1699–1705.

[45]

Zhang, C. Q.; Gao, X. S.; Li, H. B.; Ji, Y. L.; Cai, R.; Hu, Z. J.; Wu, X. C. Regulation of chirality transfer and amplification from chiral cysteine to gold nanorod assemblies using nonchiral surface ligands. Adv. Opt. Mater. 2023, 2202804.

[46]

Smith, K. W.; Zhao, H. Q.; Zhang, H.; Sánchez-Iglesias, A.; Grzelczak, M.; Wang, Y. M.; Chang, W. S.; Nordlander, P.; Liz-Marzán, L. M.; Link, S. Chiral and achiral nanodumbbell dimers: The effect of geometry on plasmonic properties. ACS Nano 2016, 10, 6180–6188.

[47]

Lee, K. S.; El-Sayed, M. A. Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index. J. Phys. Chem. B 2005, 109, 20331–20338.

[48]

Funston, A. M.; Novo, C.; Davis, T. J.; Mulvaney, P. Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett. 2009, 9, 1651–1658.

[49]

Jain, P. K.; Eustis, S.; El-Sayed, M. A. Plasmon coupling in nanorod assemblies: Optical absorption, discrete dipole approximation simulation, and exciton-coupling model. J. Phys. Chem. B 2006, 110, 18243–18253.

File
12274_2023_5985_MOESM1_ESM.pdf (8.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 April 2023
Revised: 25 June 2023
Accepted: 05 July 2023
Published: 25 August 2023
Issue date: December 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22072032), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000), and the National Key Basic Research Program of China (No. 2021YFA1202803).

Return