AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Dielectric polymer grafted electrodes enhanced aqueous supercapacitors

Shian Dong1Kunming Shi1Jie Chen1Yingke Zhu1Hongfei Li1Weihang Gao2Zhenli Xu2Qinglei Liu3Xingyi Huang1( )
Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Department of Polymer Science and Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
School of Mathematical Sciences, Institute of Natural Sciences and MOE−LSC, Shanghai Jiao Tong University, Shanghai 200240, China
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
Show Author Information

Graphical Abstract

A nanoscale dielectric polymer layer grafted onto carbon electrode surface is designed to enhance performance of aqueous supercapacitors, producing a stable high operating voltage (2.5 V) and an enhanced specific capacitance in 1 M KCl.

Abstract

Supercapacitors (SCs) have become increasingly important in electrical energy storage and delivery owing to their high power densities and long lifetimes. Aqueous SCs are promising for large-scale engineering applications because of their low cost and safety. However, the low operating voltage and low energy density of aqueous SCs severely limit their practical applications. In this study, a nanoscale dielectric layer is grafted onto a graphene electrode to achieve both a high operating voltage and enhanced capacitance. Compared with an SC without dielectric grafting, a dielectric-enhanced SC (DESC) shows a higher capacitance by 2200%. The mechanism of the capacitance enhancement can be attributed to three factors: the dielectric polarization, the ions desolvation by the dielectric, and the enhanced quantum capacitance from charge transfer and ion adsorption in the polymer molecules. In addition, a 2.5 V pouch DESC with a 1 M KCl electrolyte is confirmed to cycle up to 50,000 times with a capacitance retention of 87.5%. The DESC presents the optimal electrochemical properties after it is grafted with a 5 nm dielectric layer. This study provides new insights into the design of high-voltage and high-energy-density aqueous SCs.

Electronic Supplementary Material

Download File(s)
12274_2023_5983_MOESM1_ESM.pdf (3.2 MB)

References

[1]

Ren, C. Y.; Qiu, S. Y.; Zhai, J. R.; Zhang, K. Q.; Lu, J. X.; Gao, J.; Wang, C.; Zhang, Y. C.; Zhu, X. D. Ionic liquid-wrapped MXene film with bowl-like structures for highly integrated micro-supercapacitor array with ultrahigh output voltage. Nano Res. 2023, 16, 4926–4932.

[2]

Gogotsi, Y.; Simon, P. True performance metrics in electrochemical energy storage. Science 2011, 334, 917–918.

[3]

Li, C.; Zhang, X.; Wang, K.; Sun, X. Z.; Liu, G. H.; Li, J. T.; Tian, H. F.; Li, J. Q.; Ma, Y. W. Scalable self-propagating high-temperature synthesis of graphene for supercapacitors with superior power density and cyclic stability. Adv. Mater. 2017, 29, 1604690.

[4]

Pomerantseva, E.; Bonaccorso, F.; Feng, X. L.; Cui, Y.; Gogotsi, Y. Energy storage: The future enabled by nanomaterials. Science 2019, 366, eaan8285.

[5]

Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

[6]

Wang, X. H.; Mathis, T. S.; Li, K.; Lin, Z. F.; Vlcek, L.; Torita, T.; Osti, N. C.; Hatter, C.; Urbankowski, P.; Sarycheva, A. et al. Influences from solvents on charge storage in titanium carbide MXenes. Nat. Energy 2019, 4, 241–248.

[7]

Lin, Z.; Goikolea, E.; Balducci, A.; Naoi, K.; Taberna, P. L.; Salanne, M.; Yushin, G.; Simon, P. Materials for supercapacitors: When Li-ion battery power is not enough. Mater. Today 2018, 21, 419–436.

[8]

Li, Z. N.; Gadipelli, S.; Li, H. C.; Howard, C. A.; Brett, D. J. L.; Shearing, P. R.; Guo, Z. X.; Parkin, I. P.; Li, F. Tuning the interlayer spacing of graphene laminate films for efficient pore utilization towards compact capacitive energy storage. Nat. Energy 2020, 5, 160–168.

[9]

Simon, P.; Gogotsi, Y. Perspectives for electrochemical capacitors and related devices. Nat. Mater. 2020, 19, 1151–1163.

[10]

Kang, Q.; Zhuang, Z. C.; Li, Y.; Zuo, Y. Z.; Wang, J.; Liu, Y. J.; Shi, C. Q.; Chen, J.; Li, H. F.; Jiang, P. K. et al. Manipulating dielectric property of polymer coatings toward high-retention-rate lithium metal full batteries under harsh critical conditions. Nano Res. 2023, 16, 9240–9249.

[11]

Zhuang, Z. C.; Kang, Q.; Wang, D. S.; Li, Y. D. Single-atom catalysis enables long-life, high-energy lithium-sulfur batteries. Nano Res. 2020, 13, 1856–1866.

[12]

Dong, W. J.; Lin, T. Q.; Huang, J.; Wang, Y.; Zhang, Z. C.; Wang, X.; Yuan, X. T.; Lin, J.; Chen, I. W.; Huang, F. Q. Electrodes with electrodeposited water-excluding polymer coating enable high-voltage aqueous supercapacitors. Research 2020, 2020, 4178179.

[13]

Gou, Q. Z.; Zhao, S.; Wang, J. C.; Li, M.; Xue, J. M. Recent advances on boosting the cell voltage of aqueous supercapacitors. Nano-Micro Lett. 2020, 12, 98.

[14]

Prehal, C.; Koczwara, C.; Jäckel, N.; Schreiber, A.; Burian, M.; Amenitsch, H.; Hartmann, M. A.; Presser, V.; Paris, O. Quantification of ion confinement and desolvation in nanoporous carbon supercapacitors with modelling and in situ X-ray scattering. Nat. Energy 2017, 2, 16215.

[15]

Zhang, L.; Yang, X.; Zhang, F.; Long, G. K.; Zhang, T. F.; Leng, K.; Zhang, Y. W.; Huang, Y.; Ma, Y. F.; Zhang, M. T. et al. Controlling the effective surface area and pore size distribution of sp2 carbon materials and their impact on the capacitance performance of these materials. J. Am. Chem. Soc. 2013, 135, 5921–5929.

[16]

Nomura, K.; Nishihara, H.; Kobayashi, N.; Asada, T.; Kyotani, T. 4.4 V supercapacitors based on super-stable mesoporous carbon sheet made of edge-free graphene walls. Energy Environ. Sci. 2019, 12, 1542–1549.

[17]

Zhou, Y.; Wang, X. X.; Acauan, L.; Kalfon-Cohen, E.; Ni, X. C.; Stein, Y.; Gleason, K. K.; Wardle, B. L. Ultrahigh-areal-capacitance flexible supercapacitor electrodes enabled by conformal P3MT on horizontally aligned carbon-nanotube arrays. Adv. Mater. 2019, 31, 1901916.

[18]

Wang, G.; Yu, M. H.; Feng, X. L. Carbon materials for ion-intercalation involved rechargeable battery technologies. Chem. Soc. Rev. 2021, 50, 2388–2443.

[19]

Naveen, T. B.; Durgalakshmi, D.; Kunhiraman, A. K.; Balakumar, S.; Rakkesh, R. A. Recent advances in graphene-based micro-supercapacitors: Processes and applications. J. Mater. Res. 2021, 36, 4102–4119.

[20]

Sheberla, D.; Bachman, J. C.; Elias, J. S.; Sun, C. J.; Shao-Horn, Y.; Dincă, M. Conductive MOF electrodes for stable supercapacitors with high areal capacitance. Nat. Mater. 2017, 16, 220–224.

[21]

Cao, Z. W.; Momen, R.; Tao, S. S.; Xiong, D. Y.; Song, Z. R.; Xiao, X. H.; Deng, W. T.; Hou, H. S.; Yasar, S.; Altin, S. et al. Metal-organic framework materials for electrochemical supercapacitors. Nano-Micro Lett. 2022, 14, 181.

[22]

Meng, J. S.; Liu, X.; Niu, C. J.; Pang, Q.; Li, J. T.; Liu, F.; Liu, Z. A.; Mai, L. Q. Advances in metal-organic framework coatings: Versatile synthesis and broad applications. Chem. Soc. Rev. 2020, 49, 3142–3186.

[23]

Niu, L.; Wu, T. Z.; Chen, M.; Yang, L.; Yang, J. J.; Wang, Z. X.; Kornyshev, A. A.; Jiang, H. L.; Bi, S.; Feng, G. Conductive metal-organic frameworks for supercapacitors. Adv. Mater. 2022, 34, 2200999.

[24]

Chen, Y. J.; Gao, R.; Ji, S. F.; Li, H. J.; Tang, K.; Jiang, P.; Hu, H. B.; Zhang, Z. D.; Hao, H. G.; Qu, Q. Y. et al. Atomic-level modulation of electronic density at cobalt single-atom sites derived from metal-organic frameworks: Enhanced oxygen reduction performance. Angew. Chem., Int. Ed. 2021, 60, 3212–3221.

[25]

Wang, H.; Zhao, P. F.; Zhang, X. M.; Zhang, S.; Lu, X. L.; Qiu, Z. P.; Ren, K.; Xu, Z.; Yao, R. X.; Wei, T. et al. Holey graphene oxide-templated construction of nano nickel-based metal-organic framework for highly efficient asymmetric supercapacitor. Nano Res. 2022, 15, 9047–9056.

[26]

VahidMohammadi, A.; Rosen, J.; Gogotsi, Y. The world of two-dimensional carbides and nitrides (MXenes). Science 2021, 372, eabf1581.

[27]

Li, X. L.; Huang, Z. D.; Shuck, C. E.; Liang, G. J.; Gogotsi, Y.; Zhi, C. Y. MXene chemistry, electrochemistry and energy storage applications. Nat. Rev. Chem. 2022, 6, 389–404.

[28]

Ghidiu, M.; Lukatskaya, M. R.; Zhao, M. Q.; Gogotsi, Y.; Barsoum, M. W. Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance. Nature 2014, 516, 78–81.

[29]

Zang, X. B.; Wang, J. L.; Qin, Y. J.; Wang, T.; He, C. P.; Shao, Q. G.; Zhu, H. W.; Cao, N. Enhancing capacitance performance of Ti3C2Tx MXene as electrode materials of supercapacitor: From controlled preparation to composite structure construction. Nano-Micro Lett. 2020, 12, 77.

[30]

Wang, H.; Cao, J. J.; Zhou, Y. J.; Wang, X.; Huang, H.; Liu, Y.; Shao, M. W.; Kang, Z. H. Carbon dots modified Ti3C2Tx-based fibrous supercapacitor with photo-enhanced capacitance. Nano Res. 2021, 14, 3886–3892.

[31]

Wang, L.; Zhang, X.; Xu, Y. N.; Li, C.; Liu, W. J.; Yi, S.; Wang, K.; Sun, X. Z.; Wu, Z. S.; Ma, Y. W. Tetrabutylammonium-intercalated 1T-MoS2 nanosheets with expanded interlayer spacing vertically coupled on 2D delaminated MXene for high-performance lithium-ion capacitors. Adv. Funct. Mater. 2021, 31, 2104286.

[32]

Qi, J. Q.; Zhang, C. C.; Liu, H.; Zhu, L.; Sui, Y. W.; Feng, X. J.; Wei, W. Q.; Zhang, H.; Cao, P. MXene-wrapped ZnCo2S4 core-shell nanospheres via electrostatic self-assembly as positive electrode materials for asymmetric supercapacitors. Rare Met. 2022, 41, 2633–2644.

[33]

Yi, S.; Wang, L.; Zhang, X.; Li, C.; Liu, W. J.; Wang, K.; Sun, X. Z.; Xu, Y. N.; Yang, Z. X.; Cao, Y. et al. Cationic intermediates assisted self-assembly two-dimensional Ti3C2Tx/rGO hybrid nanoflakes for advanced lithium-ion capacitors. Sci. Bull. 2021, 66, 914–924.

[34]

Zhou, J. S.; Lian, J.; Hou, L.; Zhang, J. C.; Gou, H. Y.; Xia, M. R.; Zhao, Y. F.; Strobel, T. A.; Tao, L.; Gao, F. M. Ultrahigh volumetric capacitance and cyclic stability of fluorine and nitrogen co-doped carbon microspheres. Nat. Commun. 2015, 6, 8503.

[35]

Kumar, R.; Sahoo, S.; Joanni, E.; Singh, R. K.; Maegawa, K.; Tan, W. K.; Kawamura, G.; Kar, K. K.; Matsuda, A. Heteroatom doped graphene engineering for energy storage and conversion. Mater. Today 2020, 39, 47–65.

[36]

Long, C. L.; Qi, D. P.; Wei, T.; Yan, J.; Jiang, L. L.; Fan, Z. J. Nitrogen-doped carbon networks for high energy density supercapacitors derived from polyaniline coated bacterial cellulose. Adv. Funct. Mater. 2014, 24, 3953–3961.

[37]

Ji, H. X.; Zhao, X.; Qiao, Z. H.; Jung, J.; Zhu, Y. W.; Lu, Y. L.; Zhang, L. L.; MacDonald, A. H.; Ruoff, R. S. Capacitance of carbon-based electrical double-layer capacitors. Nat. Commun. 2014, 5, 3317.

[38]

Jiang, L.; Fu, W. Y.; Birdja, Y. Y.; Koper, M. T. M.; Schneider, G. F. Quantum and electrochemical interplays in hydrogenated graphene. Nat. Commun. 2018, 9, 793.

[39]

Zhang, L. L.; Zhao, X.; Ji, H. X.; Stoller, M. D.; Lai, L. F.; Murali, S.; McDonnell, S.; Cleveger, B.; Wallace, R. M.; Ruoff, R. S. Nitrogen doping of graphene and its effect on quantum capacitance, and a new insight on the enhanced capacitance of N-doped carbon. Energy Environ. Sci. 2012, 5, 9618–9625.

[40]

Chmiola, J.; Yushin, G.; Gogotsi, Y.; Portet, C.; Simon, P.; Taberna, P. L. Anomalous increase in carbon capacitance at pore sizes less Than 1 nanometer. Science 2006, 313, 1760–1763.

[41]

Fleischmann, S.; Zhang, Y.; Wang, X. P.; Cummings, P. T.; Wu, J. Z.; Simon, P.; Gogotsi, Y.; Presser, V.; Augustyn, V. Continuous transition from double-layer to Faradaic charge storage in confined electrolytes. Nat. Energy 2022, 7, 222–228.

[42]

Luo, Z. X.; Xing, Y. Z.; Ling, Y. C.; Kleinhammes, A.; Wu, Y. Electroneutrality breakdown and specific ion effects in nanoconfined aqueous electrolytes observed by NMR. Nat. Commun. 2015, 6, 6358.

[43]

Chen, H.; Yang, Z. Z.; Guo, W.; Dunlap, J. R.; Liang, J. Y.; Sun, Y. F.; Jie, K. C.; Wang, S.; Fu, J.; Dai, S. From highly purified boron nitride to boron nitride-based heterostructures: An inorganic precursor-based strategy. Adv. Funct. Mater. 2019, 29, 1906284.

[44]

Dong, S. A.; Gao, W. H.; Shi, K. M.; Kang, Q.; Xu, Z. L.; Yuan, J. K.; Zhu, Y. K.; Li, H. F.; Chen, J.; Jiang, P. K. et al. Dielectric-electrolyte supercapacitors. Cell Rep. Phys. Sci. 2023, 4, 101284.

[45]

Gou, G. Z.; Fan, T.; Wang, M.; Li, L. C. Significant energy gap modulation of sulfone-substituted benzosiloles: Enhanced brightness and electron affinity for chemical vapor sensing, fingerprint detection and live-cell imaging. J. Mater. Chem. C 2022, 10, 12402–12412.

[46]

Stefanescu, E. A.; Tan, X. L.; Lin, Z. Q.; Bowler, N.; Kessler, M. R. Multifunctional PMMA-ceramic composites as structural dielectrics. Polymer 2010, 51, 5823–5832.

[47]

Zhang, G. H.; Hou, S. C.; Zhang, H.; Zeng, W.; Yan, F. L.; Li, C. C.; Duan, H. G. High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core-shell nanorod arrays on a carbon cloth anode. Adv. Mater. 2015, 27, 2400–2405.

[48]

Wei, F.; He, X. J.; Ma, L. B.; Zhang, H. F.; Xiao, N.; Qiu, J. S. 3D N, O-codoped egg-box-like carbons with tuned channels for high areal capacitance supercapacitors. Nano-Micro Lett. 2020, 12, 82.

[49]

Lee, T. G.; Shon, H. K.; Lee, K. B.; Kim, J.; Choi, I. S.; Moon, D. W. Time-of-flight secondary ion mass spectrometry chemical imaging analysis of micropatterns of streptavidin and cells without labeling. J. Vac. Sci. Technol. A 2006, 24, 1203–1207.

[50]

Guo, Y. Y.; Zhang, J.; Ding, F.; Pan, G. F.; Li, J.; Feng, J.; Zhu, X. Y.; Zhang, C. Stressing the role of DNA as a drug carrier: Synthesis of DNA-drug conjugates through grafting chemotherapeutics onto phosphorothioate oligonucleotides. Adv. Mater. 2019, 31, 1807533.

[51]

Dong, S. A.; He, X. J.; Zhang, H. F.; Xie, X. Y.; Yu, M. X.; Yu, C.; Xiao, N.; Qiu, J. S. Surface modification of biomass-derived hard carbon by grafting porous carbon nanosheets for high-performance supercapacitors. J. Mater. Chem. A 2018, 6, 15954–15960.

[52]

Tan, S. F.; Wu, L.; Yang, J. K. W.; Bai, P.; Bosman, M.; Nijhuis, C. A. Quantum plasmon resonances controlled by molecular tunnel junctions. Science 2014, 343, 1496–1499.

[53]

Xia, J. L.; Chen, F.; Li, J. H.; Tao, N. J. Measurement of the quantum capacitance of graphene. Nat. Nanotechnol. 2009, 4, 505–509.

[54]

Li, J. F.; Pham, P. H. Q.; Zhou, W. W.; Pham, T. D.; Burke, P. J. Carbon-nanotube-electrolyte interface: Quantum and electric double layer capacitance. ACS Nano 2018, 12, 9763–9774.

[55]

Du, W.; Wang, T.; Chu, H. S.; Wu, L.; Liu, R. R.; Sun, S.; Phua, W. K.; Wang, L. J.; Tomczak, N.; Nijhuis, C. A. On-chip molecular electronic plasmon sources based on self-assembled monolayer tunnel junctions. Nat. Photon. 2016, 10, 274–280.

[56]

Chen, X. P.; Roemer, M.; Yuan, L.; Du, W.; Thompson, D.; Del Barco, E.; Nijhuis, C. A. Molecular diodes with rectification ratios exceeding 105 driven by electrostatic interactions. Nat. Nanotechnol. 2017, 12, 797–803.

[57]

Han, Y. M.; Nickle, C.; Zhang, Z. Y.; Astier, H. P. A. G.; Duffin, T. J.; Qi, D. C.; Wang, Z.; Del Barco, E.; Thompson, D.; Nijhuis, C. A. Electric-field-driven dual-functional molecular switches in tunnel junctions. Nat. Mater. 2020, 19, 843–848.

[58]

Song, Z. Y.; Miao, L.; Duan, H.; Ruhlmann, L.; Lv, Y. K.; Zhu, D. Z.; Li, L. C.; Gan, L. H.; Liu, M. X. Anionic Co-insertion charge storage in dinitrobenzene cathodes for high-performance aqueous zinc-organic batteries. Angew. Chem., Int. Ed. 2022, 61, e202208821.

[59]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[60]

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[61]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p-n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

[62]

Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

[63]

Li, X. Y.; Zhuang, Z. C.; Chai, J.; Shao, R. W.; Wang, J. H.; Jiang, Z. L.; Zhu, S. W.; Gu, H. F.; Zhang, J.; Ma, Z. T. et al. Atomically strained metal sites for highly efficient and selective photooxidation. Nano Lett. 2023, 23, 2905–2914.

Nano Research
Pages 1525-1534
Cite this article:
Dong S, Shi K, Chen J, et al. Dielectric polymer grafted electrodes enhanced aqueous supercapacitors. Nano Research, 2024, 17(3): 1525-1534. https://doi.org/10.1007/s12274-023-5983-5
Topics:

611

Views

1

Crossref

2

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 05 June 2023
Revised: 03 July 2023
Accepted: 04 July 2023
Published: 09 August 2023
© Tsinghua University Press 2023
Return