Journal Home > Volume 17 , Issue 3

To meet the growing demand for wearable smart electronic devices, the development of flexible lithium-ion batteries (LIBs) is essential. Silicon is an ideal candidate for the anode material of flexible lithium-ion batteries due to its high specific capacity, low working potential, and earth abundance. The largest challenge in developing a flexible silicon anode is how to maintain structural integrity and ensure stable electrochemical reactions during external deformation. In this work, we propose a novel design for fabricating core–shell electrodes based on a copper nanowire (CuNW) array core and magnetron sputtered Si/C shell. The nanowire array structure has characteristics of bending under longitudinal stress and twisting under transverse stress, which helps to maintain the mechanical stability of the structure during electrode bending and cycling. The low-temperature annealing generates a small amount of Cu3Si alloy, which enhances the connection strength between Si and the conductive network and solves the poor conductivity problem of Si, which is known as a semiconductor material. This unique configuration design of CuNW@Si@C-400 °C leads to stable long cycle performance of 1109 mAh∙g−1 after 1000 cycles and excellent rate performance of 500 mAh∙g−1 at a current density of 10 A∙g−1. Furthermore, the CuNW@Si@C-400 °C||LiFePO4 (LFP) full battery demonstrates excellent flexibility, with a capacity retention of more than 96% after 100 bends. This study provides a promising strategy for the development of flexible lithium-ion batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Cu nanowire array with designed interphases enabling high performance Si anode toward flexible lithium-ion battery

Show Author's information Pengfei Su1Ziqi Zhang3Linshan Luo1Zhiyong Zhang1Chaofei Lan1Yahui Li1Shaowen Xu1Shanpeng Pei4Guangyang Lin1Cheng Li1Xiang Han2( )Wei Huang1( )Songyan Chen1( )
Fujian Provincial Key Laboratory of Semiconductors and Applications, Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Department of Physics, Xiamen University, Xiamen 361005, China
College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
Science and Technology on Analog Integrated Circuit Laboratory, Chongqing 400060, China
Shandong Electric Power Engineering Consulting Institute Co., Ltd., Jinan 250013, China

Abstract

To meet the growing demand for wearable smart electronic devices, the development of flexible lithium-ion batteries (LIBs) is essential. Silicon is an ideal candidate for the anode material of flexible lithium-ion batteries due to its high specific capacity, low working potential, and earth abundance. The largest challenge in developing a flexible silicon anode is how to maintain structural integrity and ensure stable electrochemical reactions during external deformation. In this work, we propose a novel design for fabricating core–shell electrodes based on a copper nanowire (CuNW) array core and magnetron sputtered Si/C shell. The nanowire array structure has characteristics of bending under longitudinal stress and twisting under transverse stress, which helps to maintain the mechanical stability of the structure during electrode bending and cycling. The low-temperature annealing generates a small amount of Cu3Si alloy, which enhances the connection strength between Si and the conductive network and solves the poor conductivity problem of Si, which is known as a semiconductor material. This unique configuration design of CuNW@Si@C-400 °C leads to stable long cycle performance of 1109 mAh∙g−1 after 1000 cycles and excellent rate performance of 500 mAh∙g−1 at a current density of 10 A∙g−1. Furthermore, the CuNW@Si@C-400 °C||LiFePO4 (LFP) full battery demonstrates excellent flexibility, with a capacity retention of more than 96% after 100 bends. This study provides a promising strategy for the development of flexible lithium-ion batteries.

Keywords: magnetron sputtering, silicon anode, flexible lithium-ion battery, Cu nanowire array, core–shell electrode

References(48)

[1]

Zuo, X. X.; Zhu, J.; Müller-Buschbaum, P.; Cheng, Y. J. Silicon based lithium-ion battery anodes: A chronicle perspective review. Nano Energy 2017, 31, 113–143.

[2]

Liu, J.; Bao, Z. N.; Cui, Y.; Dufek, E. J.; Goodenough, J. B.; Khalifah, P.; Li, Q. Y.; Liaw, B. Y.; Liu, P.; Manthiram, A. et al. Pathways for practical high-energy long-cycling lithium metal batteries. Nat. Energy 2019, 4, 180–186.

[3]

Liu, Q.; Hu, Y. H.; Yu, X. R.; Qin, Y. F.; Meng, T.; Hu, X. L. The pursuit of commercial silicon-based microparticle anodes for advanced lithium-ion batteries: A review. Nano Res. Energy 2022, 1, e9120037.

[4]

Choi, S.; Kwon, T. W.; Coskun, A.; Choi, J. W. Highly elastic binders integrating polyrotaxanes for silicon microparticle anodes in lithium ion batteries. Science 2017, 357, 279–283.

[5]

Chang, J.; Huang, Q. Y.; Gao, Y.; Zheng, Z. J. Pathways of developing high-energy-density flexible lithium batteries. Adv. Mater. 2021, 33, e2004419.

[6]

Xiang, F. W.; Cheng, F.; Sun, Y. J.; Yang, X. P.; Lu, W.; Amal, R.; Dai, L. M. Recent advances in flexible batteries: From materials to applications. Nano Res. 2023, 16, 4821–4854.

[7]

Xu, T.; Du, H. S.; Liu, H. Y.; Liu, W.; Zhang, X. Y.; Si, C. L.; Liu, P. W.; Zhang, K. Advanced nanocellulose-based composites for flexible functional energy storage devices. Adv. Mater. 2021, 33, e2101368.

[8]

Sun, L.; Liu, Y. X.; Shao, R.; Wu, J.; Jiang, R. Y.; Jin, Z. Recent progress and future perspective on practical silicon anode-based lithium ion batteries. Energy Storage Mater. 2022, 46, 482–502.

[9]

Sun, L.; Xie, J.; Huang, S. C.; Liu, Y. X.; Zhang, L.; Wu, J.; Jin, Z. Rapid CO2 exfoliation of Zintl phase CaSi2-derived ultrathin free-standing Si/SiOx/C nanosheets for high-performance lithium storage. Sci. China Mater. 2022, 65, 51–58.

[10]

Xie, J.; Sun, L.; Liu, Y. X.; Xi, X. G.; Chen, R. Y.; Jin, Z. SiOx/C-Ag nanosheets derived from zintl phase CaSi2 via a facile redox reaction for high performance lithium storage. Nano Res. 2022, 15, 395–400.

[11]

Chen, M.; Zhou, Q. N.; Zai, J. T.; Iqbal, A.; Tsega, T.; Dong, B. X.; Liu, X. J.; Zhang, Y. C.; Yan, C. Y.; Zhao, L. et al. High power and stable P-doped yolk–shell structured Si@C anode simultaneously enhancing conductivity and Li+ diffusion kinetics. Nano Res. 2021, 14, 1004–1011.

[12]

Zhang, Q. L.; Xi, B. J.; Chen, W. H.; Feng, J. K.; Qian, Y. T.; Xiong, S. L. Synthesis of carbon nanotubes-supported porous silicon microparticles in low-temperature molten salt for high-performance Li-ion battery anodes. Nano Res. 2022, 15, 6184–6191.

[13]

Ge, M. Z.; Cao, C. Y.; Biesold, G. M.; Sewell, C. D.; Hao, S. M.; Huang, J. Y.; Zhang, W.; Lai, Y. K.; Lin, Z. Q. Recent advances in silicon-based electrodes: From fundamental research toward practical applications. Adv. Mater. 2021, 33, e2004577.

[14]

Li, P.; Kim, H.; Myung, S. T.; Sun, Y. K. Diverting exploration of silicon anode into practical way: A review focused on silicon-graphite composite for lithium ion batteries. Energy Storage Mater. 2021, 35, 550–576.

[15]

Vijayakumar, V.; Anothumakkool, B.; Kurungot, S.; Winter, M.; Nair, J. R. In situ polymerization process: An essential design tool for lithium polymer batteries. Energy Environ. Sci. 2021, 14, 2708–2788.

[16]

Wang, F.; Wang, B.; Li, J. X.; Wang, B.; Zhou, Y.; Wang, D. L.; Liu, H. K.; Dou, S. X. Prelithiation: A crucial strategy for boosting the practical application of next-generation lithium ion battery. ACS Nano 2021, 15, 2197–2218.

[17]

Zhao, X. Y.; Lehto, V. P. Challenges and prospects of nanosized silicon anodes in lithium-ion batteries. Nanotechnology 2021, 32, 042002.

[18]

Liu, Z. H.; Yu, Q.; Zhao, Y. L.; He, R. H.; Xu, M.; Feng, S. H.; Li, S. D.; Zhou, L.; Mai, L. Silicon oxides: A promising family of anode materials for lithium-ion batteries. Chem. Soc. Rev. 2019, 48, 285–309.

[19]

Chae, S.; Choi, S. H.; Kim, N.; Sung, J.; Cho, J. Integration of graphite and silicon anodes for the commercialization of high-energy lithium-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 110–135.

[20]

He, S. G.; Huang, S. M.; Wang, S. F.; Mizota, I.; Liu, X.; Hou, X. H. Considering critical factors of silicon/graphite anode materials for practical high-energy lithium-ion battery applications. Energy Fuels 2021, 35, 944–964.

[21]

Li, X.; Sun, X. H.; Hu, X. D.; Fan, F. R.; Cai, S.; Zheng, C. M.; Stucky, G. D. Review on comprehending and enhancing the initial Coulombic efficiency of anode materials in lithium-ion/sodium-ion batteries. Nano Energy 2020, 77, 105143.

[22]

Li, C.; Liu, B. W.; Jiang, N. Y.; Ding, Y. Elucidating the charge-transfer and Li-ion-migration mechanisms in commercial lithium-ion batteries with advanced electron microscopy. Nano Res. Energy 2022, 1, e9120031.

[23]

Wang, C. Y.; Liu, T.; Yang, X. G.; Ge, S. H.; Stanley, N. V.; Rountree, E. S.; Leng, Y. J.; McCarthy, B. D. Fast charging of energy-dense lithium-ion batteries. Nature 2022, 611, 485–490.

[24]

Lu, G. L.; Liu, F. H.; Chen, X.; Yang, J. F. Cu nanowire wrapped and Cu3Si anchored Si@Cu quasi core–shell composite microsized particles as anode materials for Li-ion batteries. J. Alloys Compd. 2019, 809, 151750.

[25]

Sun, L.; Liu, Y. X.; Wu, J.; Shao, R.; Jiang, R. Y.; Tie, Z.; Jin, Z. A review on recent advances for boosting initial Coulombic efficiency of silicon anodic lithium ion batteries. Small 2022, 18, e2102894.

[26]

Wu, F.; He, Z. C.; Wang, M. Q.; Huang, Y. D.; Wang, F. Construction of three-dimensional carbon framework-loaded silicon nanoparticles anchored by carbon film for high-performance lithium-ion battery anode materials. Nano Res. 2022, 15, 6168–6175.

[27]

Cao, Z. Y.; Wei, B. Q. A perspective: Carbon nanotube macro-films for energy storage. Energy Environ. Sci. 2013, 6, 3183–3201.

[28]

Yu, Y.; Luo, Y. F.; Wu, H. C.; Jiang, K. L.; Li, Q. Q.; Fan, S. S.; Li, J.; Wang, J. P. Ultrastretchable carbon nanotube composite electrodes for flexible lithium-ion batteries. Nanoscale 2018, 10, 19972–19978.

[29]

Guo, W. L.; Yan, X.; Hou, F.; Wen, L.; Dai, Y. J.; Yang, D. M.; Jiang, X. T.; Liu, J.; Liang, J.; Dou, S. X. Flexible and free-standing SiOx/CNT composite films for high capacity and durable lithium ion batteries. Carbon 2019, 152, 888–897.

[30]

Yi, Z.; Lin, N.; Zhao, Y. Y.; Wang, W. W.; Qian, Y.; Zhu, Y. C.; Qian, Y. T. A flexible micro/nanostructured Si microsphere cross-linked by highly-elastic carbon nanotubes toward enhanced lithium ion battery anodes. Energy Storage Mater. 2019, 17, 93–100.

[31]

Jiang, H.; Zhou, X.; Liu, G. G.; Zhou, Y. H.; Ye, H. Q.; Liu, Y.; Han, K. Free-standing Si/graphene paper using Si nanoparticles synthesized by acid-etching Al-Si alloy powder for high-stability Li-ion battery anodes. Electrochim. Acta 2016, 188, 777–784.

[32]

Toçoğlu, U.; Hatipoğlu, G.; Alaf, M.; Kayış, F.; Akbulut, H. Electrochemical characterization of silicon/graphene/MWCNT hybrid lithium-ion battery anodes produced via RF magnetron sputtering. Appl. Surf. Sci. 2016, 389, 507–513.

[33]

Chen, C.; Wu, M. Q.; Wang, S. Z.; Yang, J.; Qin, J. G.; Peng, Z.; Feng, T. T.; Gong, F. An in situ iodine-doped graphene/silicon composite paper as a highly conductive and self-supporting electrode for lithium-ion batteries. RSC Adv. 2017, 7, 38639–38646.

[34]

Tian, Y.; An, Y. L.; Feng, J. K. Flexible and freestanding silicon/MXene composite papers for high-performance lithium-ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 10004–10011.

[35]

An, Y. L.; Tian, Y.; Zhang, Y. C.; Wei, C. L.; Tan, L. W.; Zhang, C. H.; Cui, N. X.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Two-dimensional silicon/carbon from commercial alloy and CO2 for lithium storage and flexible Ti3C2Tx MXene-based lithium-metal batteries. ACS Nano 2020, 14, 17574–17588.

[36]

Cao, D.; Ren, M. X.; Xiong, J.; Pan, L. M.; Wang, Y.; Ji, X. Z.; Qiu, T.; Yang, J.; Zhang, C. F. Self-assembly of hierarchical Ti3C2Tx-CNT/SiNPs resilient films for high performance lithium ion battery electrodes. Electrochim. Acta 2020, 348, 136211.

[37]

Zhang, P.; Zhu, Q. Z.; Guan, Z.; Zhao, Q. R. X.; Sun, N.; Xu, B. A flexible Si@C electrode with excellent stability employing an MXene as a multifunctional binder for lithium-ion batteries. ChemSusChem 2020, 13, 1621–1628.

[38]

An, Y. L.; Tian, Y.; Liu, C. K.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. One-step, vacuum-assisted construction of micrometer-sized nanoporous silicon confined by uniform two-dimensional N-doped carbon toward advanced Li ion and MXene-based Li metal batteries. ACS Nano 2022, 16, 4560–4577.

[39]

Zhang, Z. H.; Ying, H. J.; Huang, P. F.; Zhang, S. L.; Zhang, Z.; Yang, T. T.; Han, W. Q. Porous Si decorated on MXene as free-standing anodes for lithium-ion batteries with enhanced diffusion properties and mechanical stability. Chem. Eng. J. 2023, 451, 138785.

[40]

Guo, X.; Wang, C. D.; Wang, W. J.; Zhou, Q.; Xu, W. J.; Zhang, P. J.; Wei, S. Q.; Cao, Y. Y.; Zhu, K. F.; Liu, Z. F. et al. Vacancy manipulating of molybdenum carbide MXenes to enhance Faraday reaction for high performance lithium-ion batteries. Nano Res. Energy 2022, 1, e9120026.

[41]

Zheng, T. Y.; Jia, Z.; Lin, N.; Langer, T.; Lux, S.; Lund, I.; Gentschev, A. C.; Qiao, J.; Liu, G. Molecular spring enabled high-performance anode for lithium ion batteries. Polymers 2017, 9, 657.

[42]

Yao, D. H.; Yang, Y.; Deng, Y. H.; Wang, C. Y. Flexible polyimides through one-pot synthesis as water-soluble binders for silicon anodes in lithium ion batteries. J. Power Sources 2018, 379, 26–32.

[43]

Tang, R. X.; Ma, L.; Zhang, Y.; Zheng, X.; Shi, Y. J.; Zeng, X. Y.; Wang, X. Y.; Wei, L. M. A flexible and conductive binder with strong adhesion for high performance silicon-based lithium-ion battery anode. ChemElectroChem 2020, 7, 1992–2000.

[44]

Liu, N.; He, W. J.; Liao, H. J.; Li, Z. W.; Jiang, J. M.; Zhang, X. G.; Dou, H. Polydopamine grafted cross-linked polyacrylamide as robust binder for SiO/C anode toward high-stability lithium-ion battery. J. Mater. Sci. 2021, 56, 6337–6348.

[45]

Li, J. W.; Wang, Y.; Xie, X.; Kong, Z.; Tong, Y. H.; Xu, H. Y.; Xu, H.; Jin, H. A novel multi-functional binder based on double dynamic bonds for silicon anode of lithium-ion batteries. Electrochim. Acta 2022, 425, 140620.

[46]

Jin, Y. T.; Kneusels, N. J. H.; Marbella, L. E.; Castillo-Martínez, E.; Magusin, P. C. M. M.; Weatherup, R. S.; Jónsson, E.; Liu, T.; Paul, S.; Grey, C. P. Understanding fluoroethylene carbonate and vinylene carbonate based electrolytes for Si anodes in lithium ion batteries with NMR spectroscopy. J. Am. Chem. Soc. 2018, 140, 9854–9867.

[47]

Tan, L. W.; Sun, Y.; Wei, C. L.; Tao, Y.; Tian, Y.; An, Y. L.; Zhang, Y. C.; Xiong, S. L.; Feng, J. K. Design of robust, lithiophilic, and flexible inorganic-polymer protective layer by separator engineering enables dendrite-free lithium metal batteries with LiNi0.8Mn0.1Co0.1O2 cathode. Small 2021, 17, e2007717.

[48]

Yang, Y. J.; Wu, S. X.; Zhang, Y. P.; Liu, C. B.; Wei, X. J.; Luo, D.; Lin, Z. Towards efficient binders for silicon based lithium-ion battery anodes. Chem. Eng. J. 2021, 406, 126807.

File
12274_2023_5982_MOESM1_ESM.pdf (835.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 May 2023
Revised: 26 June 2023
Accepted: 03 July 2023
Published: 05 August 2023
Issue date: March 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

Financial supports from the National Natural Science Foundation of China (No. 22209075), the Natural Science Foundation of Chongqing (No. 2022NSCQ-MSX4268), the Postdoctoral Innovation Talents Support Plan of Chongqing (No. CQBX2021012), and the Scientific Research Project of Fujian Provincial Department of Education (No. JAT220530) are acknowledged.

Return