AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Antimony doped CsPbI2Br for high-stability all-inorganic perovskite solar cells

Mengfei Zhu1,§Lina Qin1,§Yuren Xia1,§Junchuan Liang1Yaoda Wang1Daocheng Hong1Yuxi Tian1Zuoxiu Tie1,2,3( )Zhong Jin1,2,3( )
State Key Laboratory of Coordination Chemistry, Ministry of Education (MOE) Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
Nanjing Tieming Energy Technology Co., Ltd., Nanjing 210093, China
Suzhou Tierui New Energy Technology Co., Ltd., Suzhou 215228, China

§ Mengfei Zhu, Lina Qin, and Yuren Xia contributed equally to this work.

Show Author Information

Graphical Abstract

We propose an efficient strategy to introduce antimony (Sb3+) into the crystalline lattices of CsPbI2Br perovskite, which can effectively regulate the growth of perovskite crystals to obtain a more stable perovskite phase.

Abstract

All-inorganic perovskites, adopting cesium (Cs+) cation to completely replace the organic component of A-sites of hybrid organic–inorganic halide perovskites, have attracted much attention owing to the excellent thermal stability. However, all-inorganic iodine-based perovskites generally exhibit poor phase stability in ambient conditions. Herein, we propose an efficient strategy to introduce antimony (Sb3+) into the crystalline lattices of CsPbI2Br perovskite, which can effectively regulate the growth of perovskite crystals to obtain a more stable perovskite phase. Due to the much smaller ionic radius and lower electronegativity of trivalent Sb3+ than those of Pb2+, the Sb3+ doping can decrease surface defects and suppress charge recombination, resulting in longer carrier lifetime and negligible hysteresis. As a result, the all-inorganic perovskite solar cells (PSCs) based on 0.25% Sb3+ doped CsPbI2Br light absorber and screen-printable nanocarbon counter electrode achieved a power conversion efficiency of 11.06%, which is 16% higher than that of the control devices without Sb3+ doping. Moreover, the Sb3+ doped all-inorganic PSCs also exhibited greatly improved endurance against heat and moisture. Due to the use of low-cost and easy-to-process nanocarbon counter electrodes, the manufacturing process of the all-inorganic PSCs is very convenient and highly repeatable, and the manufacturing cost can be greatly reduced. This work offers a promising approach to constructing high-stability all-inorganic PSCs by introducing appropriate lattice doping.

Electronic Supplementary Material

Download File(s)
12274_2023_5981_MOESM1_ESM.pdf (6 MB)
12274_2023_5981_MOESM2_ESM.pdf (471.2 KB)

References

[1]

Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319.

[2]

Kim, H. S.; Lee, C. R.; Im, J. H.; Lee, K. B.; Moehl, T.; Marchioro, A.; Moon, S. J.; Humphry-Baker, R.; Yum, J. H.; Moser, J. E. et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%. Sci. Rep. 2012, 2, 591.

[3]

Zhou, H. P.; Chen, Q.; Li, G.; Luo, S.; Song, T. B.; Duan, H. S.; Hong, Z. R.; You, J. B.; Liu, Y. S.; Yang, Y. Interface engineering of highly efficient perovskite solar cells. Science 2014, 345, 542–546.

[4]

Chen, W.; Wu, Y. Z.; Yue, Y. F.; Liu, J.; Zhang, W. J.; Yang, X. D.; Chen, H.; Bi, E. B.; Ashraful, I.; Grätzel, M. et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers. Science 2015, 350, 944–948.

[5]

Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

[6]

Park, J.; Kim, J.; Yun, H. S.; Paik, M. J.; Noh, E.; Mun, H. J.; Kim, M. G.; Shin, T. J.; Seok, S. I. Controlled growth of perovskite layers with volatile alkylammonium chlorides. Nature 2023, 616, 724–730.

[7]
NREL. Best Research-Cell Efficiency Chart [Online]. https://www.nrel.gov/pv/cell-efficiency.html (accessed Apr 25, 2023).
[8]

Kim, N. K.; Min, Y. H.; Noh, S.; Cho, E.; Jeong, G.; Joo, M.; Ahn, S. W.; Lee, J. S.; Kim, S.; Ihm, K. et al. Investigation of thermally induced degradation in CH3NH3PbI3 perovskite solar cells using in-situ synchrotron radiation analysis. Sci. Rep. 2017, 7, 4645.

[9]

Yang, W. S.; Park, B. W.; Jung, E. H.; Jeon, N. J.; Kim, Y. C.; Lee, D. U.; Shin, S. S.; Seo, J.; Kim, E. K.; Noh, J. H. et al. Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. Science 2017, 356, 1376–1379.

[10]

Wang, Z.; Shi, Z. J.; Li, T. T.; Chen, Y. H.; Huang, W. Stability of perovskite solar cells: A prospective on the substitution of the A cation and X anion. Angew. Chem., Int. Ed. 2017, 56, 1190–1212.

[11]

Jeon, N. J.; Na, H.; Jung, E. H.; Yang, T. Y.; Lee, Y. G.; Kim, G.; Shin, H. W.; Seok, S. I.; Lee, J.; Seo, J. A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells. Nat. Energy 2018, 3, 682–689.

[12]

Liang, J.; Wang, C. X.; Wang, Y. R.; Xu, Z. R.; Lu, Z. P.; Ma, Y.; Zhu, H. F.; Hu, Y.; Xiao, C. C.; Yi, X. et al. All-inorganic perovskite solar cells. J. Am. Chem. Soc. 2016, 138, 15829–15832.

[13]

Zhou, G.; Wu, J. H.; Zhao, Y. H.; Li, Y. M.; Shi, J. J.; Li, Y. S.; Wu, H. J.; Li, D. M.; Luo, Y. H.; Meng, Q. B. Application of cesium on the restriction of precursor crystallization for highly reproducible perovskite solar cells exceeding 20% efficiency. ACS Appl. Mater. Interfaces 2018, 10, 9503–9513.

[14]

Ding, L. M.; Cheng, Y. B.; Tang, J. CsPb0.9Sn0.1IBr2 based all-inorganic perovskite solar cells exhibit improved efficiency and stability. Acta Phys. Chim. Sin. 2018, 34, 449–450.

[15]

Lin, J.; Lai, M. L.; Dou, L. T.; Kley, C. S.; Chen, H.; Peng, F.; Sun, J. L.; Lu, D.; Hawks, S. A.; Xie, C. L. et al. Thermochromic halide perovskite solar cells. Nat. Mater. 2018, 17, 261–267.

[16]

Nam, J. K.; Chun, D. H.; Rhee, R. J. K.; Lee, J. H.; Park, J. H. Methodologies toward efficient and stable cesium lead halide perovskite-based solar cells. Adv. Sci. 2018, 5, 1800509.

[17]

Kulbak, M.; Gupta, S.; Kedem, N.; Levine, I.; Bendikov, T.; Hodes, G.; Cahen, D. Cesium enhances long-term stability of lead bromide perovskite-based solar cells. J. Phys. Chem. Lett. 2016, 7, 167–172.

[18]

Zhang, Y. L.; Luo, L.; Hua, J. C.; Wang, C.; Huang, F. Z.; Zhong, J.; Peng, Y.; Ku, Z. L.; Cheng, Y. B. Moisture assisted CsPbBr3 film growth for high-efficiency, all-inorganic solar cells prepared by a multiple sequential vacuum deposition method. Mater. Sci. Semicond. Process. 2019, 98, 39–43.

[19]

Frolova, L. A.; Anokhin, D. V.; Piryazev, A. A.; Luchkin, S. Y.; Dremova, N. N.; Stevenson, K. J.; Troshin, P. A. Highly efficient all-inorganic planar heterojunction perovskite solar cells produced by thermal coevaporation of CsI and PbI2. J. Phys. Chem. Lett. 2017, 8, 67–72.

[20]

Liang, J.; Han, X.; Yang, J. H.; Zhang, B. Y.; Fang, Q. Y.; Zhang, J.; Ai, Q.; Ogle, M. M.; Terlier, T.; Martí, A. A. et al. Defect-engineering-enabled high-efficiency all-inorganic perovskite solar cells. Adv. Mater. 2019, 31, 1903448.

[21]

Sutton, R. J.; Eperon, G. E.; Miranda, L.; Parrott, E. S.; Kamino, B. A.; Patel, J. B.; Hörantner, M. T.; Johnston, M. B.; Haghighirad, A. A.; Moore, D. T. et al. Bandgap-tunable cesium lead halide perovskites with high thermal stability for efficient solar cells. Adv. Energy Mater. 2016, 6, 1502458.

[22]

Liang, J.; Liu, J.; Jin, Z. All-inorganic halide perovskites for optoelectronics: Progress and prospects. Sol. RRL 2017, 1, 1700086.

[23]

Liu, C.; Li, W. Z.; Zhang, C. L.; Ma, Y. P.; Fan, J. D.; Mai, Y. H. All-inorganic CsPbI2Br perovskite solar cells with high efficiency exceeding 13%. J. Am. Chem. Soc. 2018, 140, 3825–3828.

[24]

Sun, H. R.; Zhang, J.; Gan, X. L.; Yu, L. T.; Yuan, H. B.; Shang, M. H.; Lu, C. J.; Hou, D. G.; Hu, Z. Y.; Zhu, Y. J. et al. Pb-reduced CsPb0.9Zn0.1I2Br thin films for efficient perovskite solar cells. Adv. Energy Mater. 2019, 9, 1900896.

[25]

Lau, C. F. J.; Zhang, M.; Deng, X. F.; Zheng, J. H.; Bing, J. M.; Ma, Q. S.; Kim, J.; Hu, L.; Green, M. A.; Huang, S. J. et al. Strontium-doped low-temperature-processed CsPbI2Br perovskite solar cells. ACS Energy Lett. 2017, 2, 2319–2325.

[26]

Liang, J.; Liu, Z. H.; Qiu, L. B.; Hawash, Z.; Meng, L. Q.; Wu, Z. F.; Jiang, Y.; Ono, L. K.; Qi, Y. B. Enhancing optical, electronic, crystalline, and morphological properties of cesium lead halide by Mn substitution for high-stability all-inorganic perovskite solar cells with carbon electrodes. Adv. Energy Mater. 2018, 8, 1800504.

[27]

Liu, C.; Li, W. Z.; Li, H. Y.; Wang, H. M.; Zhang, C. L.; Yang, Y. G.; Gao, X. Y.; Xue, Q. F.; Yip, H. L.; Fan, J. D. et al. Structurally reconstructed CsPbI2Br perovskite for highly stable and square-centimeter all-inorganic perovskite solar cells. Adv. Energy Mater. 2019, 9, 1803572.

[28]

Yuan, H. W.; Zhao, Y. Y.; Duan, J. L.; Wang, Y. D.; Yang, X. Y.; Tang, Q. W. All-inorganic CsPbBr3 perovskite solar cell with 10.26% efficiency by spectra engineering. J. Mater. Chem. A 2018, 6, 24324–24329.

[29]

Etgar, L.; Gao, P.; Xue, Z. S.; Peng, Q.; Chandiran, A. K.; Liu, B.; Nazeeruddin, M. K.; Grätzel, M. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells. J. Am. Chem. Soc. 2012, 134, 17396–17399.

[30]

Mei, A. Y.; Li, X.; Liu, L. F.; Ku, Z. L.; Liu, T. F.; Rong, Y. G.; Xu, M.; Hu, M.; Chen, J. Z.; Yang, Y. et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability. Science 2014, 345, 295–298.

[31]

Christodoulou, S.; Di Stasio, F.; Pradhan, S.; Stavrinadis, A.; Konstantatos, G. High-open-circuit-voltage solar cells based on bright mixed-halide CsPbBrI2 perovskite nanocrystals synthesized under ambient air conditions. J. Phys. Chem. C 2018, 122, 7621–7626.

[32]

Kim, M.; Kim, G. H.; Oh, K. S.; Jo, Y.; Yoon, H.; Kim, K. H.; Lee, H.; Kim, J. Y.; Kim, D. S. High-temperature-short-time annealing process for high-performance large-area perovskite solar cells. ACS Nano 2017, 11, 6057–6064.

[33]

Chai, W. M.; Zhu, W. D.; Zhang, Z. Y.; Liu, D. W.; Ni, Y. F.; Song, Z. C.; Dong, P.; Chen, D. Z.; Zhang, J. C.; Zhang, C. F. et al. CsPbBr3 seeds improve crystallization and energy level alignment for highly efficient CsPbI3 perovskite solar cells. Chem. Eng. J. 2023, 452, 139292.

[34]

Lau, C. F. J.; Deng, X. F.; Zheng, J. H.; Kim, J.; Zhang, Z. L.; Zhang, M.; Bing, J. M.; Wilkinson, B.; Hu, L.; Patterson, R. et al. Enhanced performance via partial lead replacement with calcium for a CsPbI3 perovskite solar cell exceeding 13% power conversion efficiency. J. Mater. Chem. A 2018, 6, 5580–5586.

[35]

Chung, I.; Lee, B.; He, J. Q.; Chang, R. P. H.; Kanatzidis, M. G. All-solid-state dye-sensitized solar cells with high efficiency. Nature 2012, 485, 486–489.

[36]
Zhang, J.; Shang, M. H.; Wang, P.; Huang, X. K.; Xu, J.; Hu, Z. Y.; Zhu, Y. J.; Han, L. Y. n-Type doping and energy states tuning in CH3NH3Pb1−xSb2x/3I3 perovskite solar cells. ACS Energy Lett. 2016, 1, 535–541.
[37]

Xiang, S. S.; Li, W. P.; Wei, Y.; Liu, J. M.; Liu, H. C.; Zhu, L. Q.; Chen, H. N. The synergistic effect of non-stoichiometry and Sb-doping on air-stable alpha-CsPbI3 for efficient carbon-based perovskite solar cells. Nanoscale 2018, 10, 9996–10004.

[38]

Brandt, R. E.; Stevanović, V.; Ginley, D. S.; Buonassisi, T. Identifying defect-tolerant semiconductors with high minority-carrier lifetimes: Beyond hybrid lead halide perovskites. MRS Commun. 2015, 5, 265–275.

[39]

Xia, Y. R.; Zhao, C.; Zhao, P. Y.; Mao, L. Y.; Ding, Y. C.; Hong, D. C.; Tian, Y. X.; Yan, W. S.; Jin, Z. Pseudohalide substitution and potassium doping in FA0.98K0.02Pb(SCN)2I for high-stability hole-conductor-free perovskite solar cells. J. Power Sources 2021, 494, 229781.

[40]

Zhu, M. F.; Xia, Y. R.; Qin, L. N.; Zhang, K. Q.; Liang, J. C.; Zhao, C.; Hong, D. C.; Jiang, M. H.; Song, X. M.; Wei, J. et al. Reducing surficial and interfacial defects by thiocyanate ionic liquid additive and ammonium formate passivator for efficient and stable perovskite solar cells. Nano Res. 2023, 16, 6849–6858.

[41]

Li, Z.; Yang, M. J.; Park, J. S.; Wei, S. H.; Berry, J. J.; Zhu, K. Stabilizing perovskite structures by tuning tolerance factor: Formation of formamidinium and cesium lead iodide solid-state alloys. Chem. Mater. 2016, 28, 284–292.

[42]

Xia, Y. R.; Zhu, M. F.; Qin, L. N.; Zhao, C.; Hong, D. C.; Tian, Y. X.; Yan, W. S.; Jin, Z. Organic–inorganic hybrid quasi-2D perovskites incorporated with fluorinated additives for efficient and stable four-terminal tandem solar cells. Energy Mater. 2023, 3, 300004.

[43]

Lee, J. W.; Kim, S. G.; Bae, S. H.; Lee, D. K.; Lin, O.; Yang, Y.; Park, N. G. The interplay between trap density and hysteresis in planar heterojunction perovskite solar cells. Nano. Lett. 2017, 17, 4270–4276.

[44]

Ma, J. J.; Yang, G.; Qin, M. C.; Zheng, X. L.; Lei, H. W.; Chen, C.; Chen, Z. L.; Guo, Y. X.; Han, H. W.; Zhao, X. Z. et al. MgO nanoparticle modified anode for highly efficient SnO2-based planar perovskite solar cells. Adv. Sci. 2017, 4, 1700031.

[45]

Yang, F.; Hirotani, D.; Kapil, G.; Kamarudin, M. A.; Ng, C. H.; Zhang, Y. H.; Shen, Q.; Hayase, S. All-inorganic CsPb1−xGexI2Br perovskite with enhanced phase stability and photovoltaic performance. Angew. Chem., Int. Ed. 2018, 57, 12745–12749.

[46]

Guo, Z. L.; Zhao, S.; Liu, A. M.; Kamata, Y.; Teo, S.; Yang, S. Z.; Xu, Z. H.; Hayase, S.; Ma, T. L. Niobium incorporation into CsPbI2Br for stable and efficient all-inorganic perovskite solar cells. ACS Appl. Mater. Interfaces 2019, 11, 19994–20003.

Nano Research
Pages 1508-1515
Cite this article:
Zhu M, Qin L, Xia Y, et al. Antimony doped CsPbI2Br for high-stability all-inorganic perovskite solar cells. Nano Research, 2024, 17(3): 1508-1515. https://doi.org/10.1007/s12274-023-5981-7
Topics:

1215

Views

9

Crossref

6

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 05 May 2023
Revised: 27 June 2023
Accepted: 04 July 2023
Published: 27 July 2023
© Tsinghua University Press 2023
Return