AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Kinetics and mechanism of propylene hydro-oxidation to acrolein on Au catalysts

Wei Du,§Zhihua Zhang,§Nan SongXuezhi Duan( )Xinggui Zhou( )
State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China

§ Wei Du and Zhihua Zhang contributed equally to this work.

Show Author Information

Graphical Abstract

The reaction between *C3H5 intermediates and *OOH species on Au catalysts is the rate-determining step in the propylene hydro-oxidation to acrolein.

Abstract

Propylene epoxidation by H2 and O2 to propylene oxide (PO) over the Au-Ti bifunctional catalysts, as an ideal reaction for PO production, has attracted great interest. Revealing the mechanism of acrolein formation is of great importance for understanding the mechanism of molecular oxygen activation and the formation of hydroperoxo species on the Au sites. Here, we investigate the reaction mechanism of propylene oxidation to acrolein on the Au/uncalcined TS-1 (Au/TS-1-B) catalyst through a combination of multiple characterization, H2/D2 exchange, kinetics experiment, and modeling. The Ti sites are found to be non-essential to acrolein formation. Moreover, the acrolein formation on the Au/TS-1-B catalyst is confirmed to be promoted by H2 through hydroperoxo species formation, which includes two main steps: propylene dehydrogenation to *C3H5 with the aid of *OOH species, and *C3H5 oxidation by *OOH to acrolein. The latter step is determined to be the rate-determining step because the corresponding kinetics model gives the best description for experimental results. This work not only provides kinetics insights for the propylene hydro-oxidation to acrolein on the Au-Ti bifunctional catalysts, but also facilitates the rational design of Au catalysts with high activity and selectivity in the direct propylene epoxidation with H2 and O2.

Electronic Supplementary Material

Download File(s)
12274_2023_5980_MOESM1_ESM.pdf (1.9 MB)

References

[1]

Russo, V.; Tesser, R.; Santacesaria, E.; Di Serio, M. Chemical and technical aspects of propene oxide production via hydrogen peroxide (HPPO process). Ind. Eng. Chem. Res. 2013, 52, 1168–1178.

[2]

Hayashi, T.; Tanaka, K.; Haruta, M. Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. J. Catal. 1998, 178, 566–575.

[3]

Nijhuis, T. A.; Makkee, M.; Moulijn, J. A.; Weckhuysen, B. M. The production of propene oxide: Catalytic processes and recent developments. Ind. Eng. Chem. Res. 2006, 45, 3447–3459.

[4]

Qi, C. X. The production of propylene oxide over nanometer Au catalysts in the presence of H2 and O2. Gold Bull. 2008, 41, 224–234.

[5]

Lee, W. S.; Akatay, M. C.; Stach, E. A.; Ribeiro, F. H.; Delgass, W. N. Reproducible preparation of Au/TS-1 with high reaction rate for gas phase epoxidation of propylene. J. Catal. 2012, 287, 178–189.

[6]

Feng, X.; Duan, X. Z.; Qian, G.; Zhou, X. G.; Chen, D.; Yuan, W. K. Au nanoparticles deposited on the external surfaces of TS-1: Enhanced stability and activity for direct propylene epoxidation with H2 and O2. Appl. Catal. B: Environ. 2014, 150–151, 396–401.

[7]

Lin, D.; Xu, Y.; Zheng, X. H.; Sheng, W.; Liu, Z. Y.; Yan, Y. L.; Cao, Y.; Liu, Y. B.; Feng, X.; Chen, D. et al. Engineering sodium-decorated bifunctional Au-Ti sites to boost molecular transfer for propene epoxidation with H2 and O2. AIChE J. 2023, 69, e17999.

[8]

Yuan, J. C.; Song, Z. N.; Lin, D.; Feng, X.; Tuo, Y. X.; Zhou, X.; Yan, H.; Jin, X.; Liu, Y. B.; Chen, X. B. et al. Mesoporogen-free strategy to construct hierarchical TS-1 in a highly concentrated system for gas-phase propene epoxidation with H2 and O2. ACS Appl. Mater. Interfaces 2021, 13, 26134–26142.

[9]

Sheng, N.; Song, Z. N.; Yuan, J. C.; Liang, W.; Zhao, J. C.; Zhang, J.; Xu, W.; Sun, B.; Feng, X.; Yang, Z. et al. Effective regulation of the Au spatial position in a hierarchically structured Au/HTS-1 catalyst: To boost the catalytic performance of propene epoxidation with H2 and O2. ACS Sustainable Chem. Eng. 2022, 10, 9515–9524.

[10]

Bravo-Suárez, J. J.; Bando, K. K.; Lu, J. Q.; Haruta, M.; Fujitani, T.; Oyama, T. Transient technique for identification of true reaction intermediates: Hydroperoxide species in propylene epoxidation on gold/titanosilicate catalysts by X-ray absorption fine structure spectroscopy. J. Phys. Chem. C 2008, 112, 1115–1123.

[11]

Du, W.; Zhang, Z. H.; Tang, Y. Q.; Wang, Q. H.; Song, N.; Duan, X. Z.; Zhou, X. G. Kinetic insights into the tandem and simultaneous mechanisms of propylene epoxidation by H2 and O2 on Au-Ti catalysts. ACS Catal. 2023, 13, 2069–2085.

[12]

Taylor, B.; Lauterbach, J.; Blau, G. E.; Delgass, W. N. Reaction kinetic analysis of the gas-phase epoxidation of propylene over Au/TS-1. J. Catal. 2006, 242, 142–152.

[13]

Arvay, J. W.; Hong, W.; Li, C.; Delgass, W. N.; Ribeiro, F. H.; Harris, J. W. Kinetics of propylene epoxidation over extracrystalline gold active sites on Au/TS-1 catalysts. ACS Catal. 2022, 12, 10147–10160.

[14]

Kanungo, S.; Ferrandez, D. M. P.; d’Angelo, F. N.; Schouten, J. C.; Nijhuis, T. A. Kinetic study of propene oxide and water formation in hydro-epoxidation of propene on Au/Ti-SiO2 catalyst. J. Catal. 2016, 338, 284–294.

[15]

Stangland, E. E.; Stavens, K. B.; Andres, R. P.; Delgass, W. N. Characterization of gold-titania catalysts via oxidation of propylene to propylene oxide. J. Catal. 2000, 191, 332–347.

[16]

Harris, J. W.; Arvay, J.; Mitchell, G.; Delgass, W. N.; Ribeiro, F. H. Propylene oxide inhibits propylene epoxidation over Au/TS-1. J. Catal. 2018, 365, 105–114.

[17]

Deng, X. Y.; Min, B. K.; Liu, X. Y.; Friend, C. M. Partial oxidation of propene on oxygen-covered Au (111). J. Phys. Chem. B 2006, 110, 15982–15987.

[18]

Lin, B.; Chen, W. Y.; Song, N.; Zhang, Z. H.; Wang, Q. H.; Du, W.; Zhou, X. G.; Duan, X. Z. Mechanistic insights into propylene oxidation to acrolein over gold catalysts. Chin. J. Chem. Eng. 2023, 57, 39–49.

[19]

Zhang, Z. H.; Tang, Y. Q.; Du, W.; Xu, J. L.; Wang, Q. H.; Song, N.; Qian, G.; Duan, X. Z.; Zhou, X. G. Engineering gold impregnated uncalcined TS-1 to boost catalytic formation of propylene oxide. Appl. Catal. B: Environ. 2022, 319, 121837.

[20]

Xu, J. L.; Zhang, Z. H.; Wang, G.; Duan, X. Z.; Qian, G.; Zhou, X. G. Zeolite crystal size effects of Au/uncalcined TS-1 bifunctional catalysts on direct propylene epoxidation with H2 and O2. Chem. Eng. Sci. 2020, 227, 115907.

[21]

Wang, G.; Cao, Y. Q.; Zhang, Z. H.; Xu, J. L.; Lu, M. K.; Qian, G.; Duan, X. Z.; Yuan, W. K.; Zhou, X. G. Surface engineering and kinetics behaviors of Au/uncalcined TS-1 catalysts for propylene epoxidation with H2 and O2. Ind. Eng. Chem. Res. 2019, 58, 17300–17307.

[22]

Marquardt, D. W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441.

[23]

Harel, O. The estimation of R2 and adjusted R2 in incomplete data sets using multiple imputation. J. Appl. Stat. 2009, 36, 1109–1118.

[24]

Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Contr. 1974, 19, 716–723.

[25]

Anderson, D. R.; Burnham, K. P.; White, G. C. Comparison of Akaike information criterion and consistent Akaike information criterion for model selection and statistical inference from capture-recapture studies. J. Appl. Stat. 1998, 25, 263–282.

[26]

Feng, X.; Chen, D.; Zhou, X. G. Thermal stability of TPA template and size-dependent selectivity of uncalcined TS-1 supported Au catalyst for propene epoxidation with H2 and O2. RSC Adv. 2016, 6, 44050–44056.

[27]

Khomane, R. B.; Kulkarni, B. D.; Paraskar, A.; Sainkar, S. R. Synthesis, characterization and catalytic performance of titanium silicalite-1 prepared in micellar media. Mater. Chem. Phys. 2002, 76, 99–103.

[28]

Lee, W. S.; Lai, L. C.; Akatay, M. C.; Stach, E. A.; Ribeiro, F. H.; Delgass, W. N. Probing the gold active sites in Au/TS-1 for gas-phase epoxidation of propylene in the presence of hydrogen and oxygen. J. Catal. 2012, 296, 31–42.

[29]

Lamberti, C.; Bordiga, S.; Arduino, D.; Zecchina, A.; Geobaldo, F.; Spanó, G.; Genoni, F.; Petrini, G.; Carati, A.; Villain, F. et al. Evidence of the presence of two different framework Ti(IV) species in Ti-silicalite-1 in vacuo conditions: An EXAFS and a photoluminescence study. J. Phys. Chem. B 1998, 102, 6382–6390.

[30]

Li, G.; Wang, X. S.; Guo, X. W.; Liu, S.; Zhao, Q.; Bao, X. H.; Lin, L. W. Titanium species in titanium silicalite TS-1 prepared by hydrothermal method. Mater. Chem. Phys. 2001, 71, 195–201.

[31]

Bordiga, S.; Damin, A.; Bonino, F.; Ricchiardi, G.; Zecchina, A.; Tagliapietra, R.; Lamberti, C. Resonance Raman effects in TS-1: The structure of Ti(IV) species and reactivity towards H2O, NH3 and H2O2: An in situ study. Phys. Chem. Chem. Phys. 2003, 5, 4390–4393.

[32]

Xu, J. L.; Zhang, Z. H.; Yu, D. Y.; Du, W.; Song, N.; Duan, X. Z.; Zhou, X. G. Au/TS-1 catalyst for propylene epoxidation with H2 and O2: Effect of surface property and morphology of TS-1 zeolite. Nano Res. 2023, 16, 6278–6289.

[33]

Zhang, Z. H.; Zhao, X.; Wang, G.; Xu, J. L.; Lu, M. K.; Tang, Y. Q.; Fu, W. Z.; Duan, X. Z.; Qian, G.; Chen, D. et al. Uncalcined TS-2 immobilized Au nanoparticles as a bifunctional catalyst to boost direct propylene epoxidation with H2 and O2. AIChE J. 2020, 66, e16815.

[34]

Ferrandez, D. M. P.; Fernandez, I. H.; Teley, M. P. G.; de Croon, M. H. J. M.; Schouten, J. C.; Nijhuis, T. A. Kinetic study of the selective oxidation of propene with O2 over Au-Ti catalysts in the presence of water. J. Catal. 2015, 330, 396–405.

[35]

Wang, G.; Du, W.; Duan, X. Z.; Cao, Y. Q.; Zhang, Z. H.; Xu, J. L.; Chen, W. Y.; Qian, G.; Yuan, W. K.; Zhou, X. G. et al. Mechanism-guided elaboration of ternary Au-Ti-Si sites to boost propylene oxide formation. Chem Catal. 2021, 1, 885–895.

[36]

Xu, C. H.; Jin, T. H.; Jhung, S. H.; Chang, J. S.; Hwang, J. S.; Park, S. E. Hydrophobicity and catalytic properties of Ti-MFI zeolites synthesized by microwave and conventional heating. Catal. Today 2006, 111, 366–372.

[37]

Mul, G.; Zwijnenburg, A.; van der Linden, B.; Makkee, M.; Moulijn, J. A. Stability and selectivity of Au/TiO2 and Au/TiO2/SiO2 catalysts in propene epoxidation: An in situ FT-IR study. J. Catal. 2001, 201, 128–137.

[38]

Qin, Q. Y.; Guo, Y. K.; Liu, H. X.; Ma, J.; Zhu, J.; Wang, B. H. Effect of the bipodal Ti species on activity and selectivity of propylene epoxidation with H2O2 over TS-1: A theoretical study. Mol. Catal. 2023, 543, 113147.

[39]

Ji, J. J.; Lu, Z.; Lei, Y.; Turner, C. H. Mechanistic insights into the direct propylene epoxidation using Au nanoparticles dispersed on TiO2/SiO2. Chem. Eng. Sci. 2018, 191, 169–182.

[40]

Wells, D. H. Jr; Delgass, W. N.; Thomson, K. T. Formation of hydrogen peroxide from H2 and O2 over a neutral gold trimer: A DFT study. J. Catal. 2004, 225, 69–77.

[41]

Ishihara, T.; Ohura, Y.; Yoshida, S.; Hata, Y.; Nishiguchi, H.; Takita, Y. Synthesis of hydrogen peroxide by direct oxidation of H2 with O2 on Au/SiO2 catalyst. Appl. Catal. A:Gen. 2005, 291, 215–221.

[42]

Barrio, L.; Liu, P.; Rodriguez, J. A.; Campos-Martin, J. M.; Fierro, J. L. G. Effects of hydrogen on the reactivity of O2 toward gold nanoparticles and surfaces. J. Phys. Chem. C 2007, 111, 19001–19008.

[43]

Tang, Y. Q.; Zhang, Z. H.; Lu, M. K.; Chen, B. X.; Fu, W. Z.; Gan, J.; Qian, G.; Duan, X. Z.; Zhou, X. G. Site-dependent activity and selectivity of H2O2 formation from H2 and O2 over Au-based catalysts. Ind. Eng. Chem. Res. 2019, 58, 15119–15126.

[44]

Grabow, L. C.; Hvolbæk, B.; Falsig, H.; Nørskov, J. K. Search directions for direct H2O2 synthesis catalysts starting from Au12 nanoclusters. Top. Catal. 2012, 55, 336–344.

[45]

Song, W. Y.; Ferrandez, D. M. P.; van Haandel, L.; Liu, P.; Nijhuis, T. A.; Hensen, E. J. M. Selective propylene oxidation to acrolein by gold dispersed on MgCuCr2O4 spinel. ACS Catal. 2015, 5, 1100–1111.

[46]

Wang, Q. H.; Zhang, Z. H.; Sang, K.; Chen, W. Y.; Qian, G.; Zhang, J.; Zhou, X. G.; Duan, X. Z. Kinetics and mechanistic insights into the active sites of Au catalysts for selective propylene oxidation. Nano Res. 2023, 16, 6220–6227.

[47]

Gao, X.; Yu, X. Y.; Chang, C. R. Perceptions on the treatment of apparent isotope effects during the analyses of reaction rate and mechanism. Phys. Chem. Chem. Phys. 2022, 24, 15182–15194.

[48]

Nijhuis, T. A.; Sacaliuc, E.; Beale, A. M.; van der Eerden, A. M. J.; Schouten, J. C.; Weckhuysen, B. M. Spectroscopic evidence for the adsorption of propene on gold nanoparticles during the hydro-epoxidation of propene. J. Catal. 2008, 258, 256–264.

Nano Research
Pages 354-363
Cite this article:
Du W, Zhang Z, Song N, et al. Kinetics and mechanism of propylene hydro-oxidation to acrolein on Au catalysts. Nano Research, 2024, 17(1): 354-363. https://doi.org/10.1007/s12274-023-5980-8
Topics:

660

Views

0

Crossref

1

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 30 April 2023
Revised: 01 July 2023
Accepted: 04 July 2023
Published: 05 August 2023
© Tsinghua University Press 2023
Return