Journal Home > Volume 17 , Issue 3

Intracellular protein delivery is critical to the development of protein-based biopharmaceuticals and therapies. However, current delivery vectors often suffer from complicated syntheses, low generality among various proteins, and insufficient serum stability. Herein, we developed an enlightened cytosolic protein delivery strategy by dynamically crosslinking epigallocatechin gallate (EGCG), low-molecular-weight polyethylenimine (PEI 1.8k), and 2-acetylphenylboric acid (2-APBA) on the protein surface, hence forming the EPP-protein nanocapsules (NCs). EGCG enhanced protein encapsulation via hydrogen bonding, and reduced the positive charge density of PEI to endow the NCs with high serum tolerance, thereby enabling effective cellular internalization in serum. The formation of reversible imine and boronate ester among 2-APBA, EGCG, and PEI 1.8k allowed acid-triggered dissociation of EPP-protein NCs in the endolysosomes, which triggered efficient intracellular release of the native proteins. Such strategy therefore showed high efficiency and universality for diversities of proteins with different molecular weights and isoelectric points, including enzyme, toxin, antibody, and CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 ribonucleoprotein (RNP), outperforming the commercial protein transduction reagent PULSin and RNP transfection reagent lipofectamine CMAX. Moreover, intravenously (i.v.) injected EPP-saporin NCs efficiently delivered saporin into 4T1 tumor cells to provoke robust antitumor effect. This simple, versatile, and robust cytosolic protein delivery system holds translational potentials for the development of protein-based therapeutics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Dynamically crosslinked nanocapsules for the efficient and serum-resistant cytosolic protein delivery

Show Author's information Qiang Yang1,§Ningyu Liu1,§Ziyin Zhao1Xun Liu2( )Lichen Yin1( )
Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, China
Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China

§ Qiang Yang and Ningyu Liu contributed equally to this work.

Abstract

Intracellular protein delivery is critical to the development of protein-based biopharmaceuticals and therapies. However, current delivery vectors often suffer from complicated syntheses, low generality among various proteins, and insufficient serum stability. Herein, we developed an enlightened cytosolic protein delivery strategy by dynamically crosslinking epigallocatechin gallate (EGCG), low-molecular-weight polyethylenimine (PEI 1.8k), and 2-acetylphenylboric acid (2-APBA) on the protein surface, hence forming the EPP-protein nanocapsules (NCs). EGCG enhanced protein encapsulation via hydrogen bonding, and reduced the positive charge density of PEI to endow the NCs with high serum tolerance, thereby enabling effective cellular internalization in serum. The formation of reversible imine and boronate ester among 2-APBA, EGCG, and PEI 1.8k allowed acid-triggered dissociation of EPP-protein NCs in the endolysosomes, which triggered efficient intracellular release of the native proteins. Such strategy therefore showed high efficiency and universality for diversities of proteins with different molecular weights and isoelectric points, including enzyme, toxin, antibody, and CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 ribonucleoprotein (RNP), outperforming the commercial protein transduction reagent PULSin and RNP transfection reagent lipofectamine CMAX. Moreover, intravenously (i.v.) injected EPP-saporin NCs efficiently delivered saporin into 4T1 tumor cells to provoke robust antitumor effect. This simple, versatile, and robust cytosolic protein delivery system holds translational potentials for the development of protein-based therapeutics.

Keywords: nanocapsules, genome editing, dynamic crosslinking, cytosolic protein delivery, serum resistance, antitumor therapy

References(61)

[1]

Leader, B.; Baca, Q. J.; Golan, D. E. Protein therapeutics: A summary and pharmacological classification. Nat. Rev. Drug Discov. 2008, 7, 21–39.

[2]

Pakulska, M. M.; Miersch, S.; Shoichet, M. S. Designer protein delivery: From natural to engineered affinity-controlled release systems. Science 2016, 351, eaac4750.

[3]

Hashimoto, Y.; Mukai, S. A.; Sasaki, Y.; Akiyoshi, K. Nanogel tectonics for tissue engineering: Protein delivery systems with nanogel chaperones. Adv. Healthc. Mater. 2018, 7, 1800729.

[4]

Carter, P. J.; Rajpal, A. Designing antibodies as therapeutics. Cell 2022, 185, 2789–2805.

[5]

He, H.; Chen, Y. B.; Li, Y. J.; Song, Z. Y.; Zhong, Y. N.; Zhu, R. Y.; Cheng, J. J.; Yin, L. C. Effective and selective anti-cancer protein delivery via all-functions-in-one nanocarriers coupled with visible light-responsive, reversible protein engineering. Adv. Funct. Mater. 2018, 28, 1706710.

[6]

Jing, X. D.; Hu, H.; Sun, Y. Z.; Yu, B.; Cong, H. L.; Shen, Y. Q. The intracellular and extracellular microenvironment of tumor site: The trigger of stimuli-responsive drug delivery systems. Small Methods 2022, 6, 2101437.

[7]

Luo, T. L.; Zheng, Q. Z.; Shao, L. H.; Ma, T. Y.; Mao, L. Q.; Wang, M. Intracellular delivery of glutathione peroxidase degrader induces ferroptosis in vivo. Angew. Chem., Int. Ed. 2022, 61, e202206277.

[8]

Yang, Y. X.; Zhou, R. Y.; Wang, Y. F.; Zhang, Y. Q.; Yu, J. C.; Gu, Z. Recent advances in oral and transdermal protein delivery systems. Angew. Chem., Int. Ed. 2023, 62, e202214795.

[9]

Tumeh, P. C.; Harview, C. L.; Yearley, J. H.; Shintaku, I. P.; Taylor, E. J. M.; Robert, L.; Chmielowski, B.; Spasic, M.; Henry, G.; Ciobanu, V. et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature 2014, 515, 568–571.

[10]

Chen, Q.; Chen, G. J.; Chen, J. W.; Shen, J. J.; Zhang, X. D.; Wang, J. Q.; Chan, A.; Gu, Z. Bioresponsive protein complex of aPD1 and aCD47 antibodies for enhanced immunotherapy. Nano Lett. 2019, 19, 4879–4889.

[11]

Tang, J. K.; Liu, J.; Zheng, Q. Z.; Li, W. T.; Sheng, J. H.; Mao, L. Q.; Wang, M. In-situ encapsulation of protein into nanoscale hydrogen-bonded organic frameworks for intracellular biocatalysis. Angew. Chem. , Int. Ed. 2021, 60, 22315–22321.

[12]

Liu, X.; Li, W.; Wang, M. R.; Liu, N. Y.; Yang, Q.; He, Y. J.; Hu, D. M.; Zhu, R. Y.; Yin, L. C. Inflammatory cell-inspired cascade nanozyme induces intracellular radical storm for enhanced anticancer therapy. Small Methods 2023, 7, 2201641.

[13]

Tai, W. Y.; Zhao, P. F.; Gao, X. H. Cytosolic delivery of proteins by cholesterol tagging. Sci. Adv. 2020, 6, eabb0310.

[14]

Wei, Y. S.; Li, X. D.; Lin, J. H.; Zhou, Y.; Yang, J. D.; Hou, M. Y.; Wu, F.; Yan, J.; Ge, C. L.; Hu, D. M. et al. Oral delivery of siRNA using fluorinated, small-sized nanocapsules toward anti-inflammation treatment. Adv. Mater. 2023, 35, 2206821.

[15]

Qu, Y. J.; De Rose, R.; Kim, C. J.; Zhou, J. J.; Lin, Z. X.; Ju, Y.; Bhangu, S. K.; Cortez-Jugo, C.; Cavalieri, F.; Caruso, F. Supramolecular polyphenol-DNA microparticles for in vivo adjuvant and antigen co-delivery and immune stimulation. Angew. Chem., Int. Ed. 2023, 62, e202214935.

[16]

Li, Y. M.; Li, A. C.; Xu, Q. B. Intracellular delivery of His-tagged genome-editing proteins enabled by nitrilotriacetic acid-containing lipidoid nanoparticles. Adv. Healthc. Mater. 2019, 8, 1800996.

[17]

Jing, R. R.; Jiao, P.; Chen, J. Q.; Meng, X. H.; Wu, X. Y.; Duan, Y. T.; Shang, K.; Qian, L. L.; Huang, Y. J.; Liu, J. W. et al. Cas9-cleavage sequences in size-reduced plasmids enhance nonviral genome targeting of CARs in primary human T cells. Small Methods 2021, 5, 2100071.

[18]

Tan, E. C.; Wan, T.; Yu, C. L.; Fan, Q. Q.; Liu, W. B.; Chang, H.; Lv, J.; Wang, H.; Li, D. L.; Ping, Y. et al. ROS-responsive polypeptides for intracellular protein delivery and CRISPR/Cas9 gene editing. Nano Today 2022, 46, 101617.

[19]

Tietz, O.; Cortezon-Tamarit, F.; Chalk, R.; Able, S.; Vallis, K. A. Tricyclic cell-penetrating peptides for efficient delivery of functional antibodies into cancer cells. Nat. Chem. 2022, 14, 284–293.

[20]

Guo, S. W.; Huang, Q. X.; Wei, J. W.; Wang, S. P.; Wang, Y. T.; Wang, L. Y.; Wang, R. B. Efficient intracellular delivery of native proteins facilitated by preorganized guanidiniums on pillar[5]arene skeleton. Nano Today 2022, 43, 101396.

[21]

Wang, M.; Zuris, J. A.; Meng, F. T.; Rees, H.; Sun, S.; Deng, P.; Han, Y.; Gao, X.; Pouli, D.; Wu, Q. et al. Efficient delivery of genome-editing proteins using bioreducible lipid nanoparticles. Proc. Natl. Acad. Sci. USA 2016, 113, 2868–2873.

[22]

Li, Y. J.; Wu, J. Y.; Hu, X. B.; Ding, T. J. T.; Tang, T. T.; Xiang, D. X. Biomimetic liposome with surface-bound elastase for enhanced tumor penetration and chemo-immumotherapy. Adv. Healthc. Mater. 2021, 10, 2100794.

[23]

Li, Y. M.; Ye, Z. F.; Yang, H. Y.; Xu, Q. B. Tailoring combinatorial lipid nanoparticles for intracellular delivery of nucleic acids, proteins, and drugs. Acta Pharm. Sin. B 2022, 12, 2624–2639.

[24]

Liu, X.; Zhao, Z. Y.; Wu, F.; Chen, Y. B.; Yin, L. C. Tailoring hyperbranched poly(β-amino ester) as a robust and universal platform for cytosolic protein delivery. Adv. Mater. 2022, 34, 2108116.

[25]

Lu, R. J.; Zheng, Y. J.; Wang, M. R.; Lin, J. H.; Zhao, Z. Y.; Chen, L.; Zhang, J. H.; Liu, X.; Yin, L. C.; Chen, Y. B. Reactive oxygen species-responsive branched poly (β-amino ester) with robust efficiency for cytosolic protein delivery. Acta Biomater. 2022, 152, 355–366.

[26]

Egloff, S.; Runser, A.; Klymchenko, A.; Reisch, A. Size-dependent electroporation of dye-loaded polymer nanoparticles for efficient and safe intracellular delivery. Small Methods 2021, 5, 2000947.

[27]

Zhang, Z.; Gao, X.; Li, Y. W.; Lv, J.; Wang, H.; Cheng, Y. Y. Catechol-based polymers with high efficacy in cytosolic protein delivery. CCS Chem. 2023, 5, 1411–1421.

[28]

Purwada, A.; Tian, Y. F.; Huang, W. S.; Rohrbach, K. M.; Deol, S.; August, A.; Singh, A. Self-assembly protein nanogels for safer cancer immunotherapy. Adv. Healthc. Mater. 2016, 5, 1413–1419.

[29]

Liang, K.; Ng, S.; Lee, F.; Lim, J.; Chung, J. E.; Lee, S. S.; Kurisawa, M. Targeted intracellular protein delivery based on hyaluronic acid-green tea catechin nanogels. Acta Biomater. 2016, 33, 142–152.

[30]

Zhang, X. W.; Centurion, F.; Misra, A.; Patel, S.; Gu, Z. Molecularly targeted nanomedicine enabled by inorganic nanoparticles for atherosclerosis diagnosis and treatment. Adv. Drug Deliv. Rev. 2023, 194, 114709.

[31]

Dembélé, J.; Liao, J. H.; Liu, T. P.; Chen, Y. P. Overcoming cytosolic delivery barriers of proteins using denatured protein-conjugated mesoporous silica nanoparticles. ACS Appl. Mater. Interfaces 2023, 15, 432–451.

[32]

Xu, X. M.; Xu, Y. N.; Li, Y. A.; Li, M.; Wang, L. L.; Zhang, Q.; Zhou, B. J.; Lin, Q.; Gong, T.; Sun, X. et al. Glucose-responsive erythrocyte-bound nanoparticles for continuously modulated insulin release. Nano Res. 2022, 15, 5205–5215.

[33]

Yang, X. T.; Tang, Q.; Jiang, Y.; Zhang, M. N.; Wang, M.; Mao, L. Q. Nanoscale ATP-responsive zeolitic imidazole framework-90 as a general platform for cytosolic protein delivery and genome editing. J. Am. Chem. Soc. 2019, 141, 3782–3786.

[34]

Cases Díaz, J.; Lozano-Torres, B.; Giménez-Marqués, M. Boosting protein encapsulation through Lewis-acid-mediated metal-organic framework mineralization: Toward effective intracellular delivery. Chem. Mater. 2022, 34, 7817–7827.

[35]

Zheng, Q. Z.; Li, W. T.; Mao, L. Q.; Wang, M. Nanoscale metal-organic frameworks for the intracellular delivery of CRISPR/Cas9 genome editing machinery. Biomater. Sci. 2021, 9, 7024–7033.

[36]

Xu, J.; Lv, J.; Zhuang, Q.; Yang, Z. J.; Cao, Z. Q.; Xu, L. G.; Pei, P.; Wang, C. Y.; Wu, H. F.; Dong, Z. L. et al. A general strategy towards personalized nanovaccines based on fluoropolymers for post-surgical cancer immunotherapy. Nat. Nanotechnol. 2020, 15, 1043–1052.

[37]

Liu, C. Y.; Wan, T.; Wang, H.; Zhang, S.; Ping, Y.; Cheng, Y. Y. A boronic acid-rich dendrimer with robust and unprecedented efficiency for cytosolic protein delivery and CRISPR-Cas9 gene editing. Sci. Adv. 2019, 5, eaaw8922.

[38]

Wang, Q.; Yang, Y. F.; Liu, D. K.; Ji, Y.; Gao, X. D.; Yin, J.; Yao, W. B. Cytosolic protein delivery for intracellular antigen targeting using supercharged polypeptide delivery platform. Nano Lett. 2021, 21, 6022–6030.

[39]

Xu, J. K.; Li, Z.; Fan, Q. Q.; Lv, J.; Li, Y. W.; Cheng, Y. Y. Dynamic polymer amphiphiles for efficient intracellular and in vivo protein delivery. Adv. Mater. 2021, 33, 2104355.

[40]

Lv, J.; Tan, E. C.; Wang, Y. Q.; Fan, Q. Q.; Yu, J. W.; Cheng, Y. Y. Tailoring guanidyl-rich polymers for efficient cytosolic protein delivery. J. Control. Release 2020, 320, 412–420.

[41]

Zhang, Z. J.; Shen, W. W.; Ling, J.; Yan, Y.; Hu, J. J.; Cheng, Y. Y. The fluorination effect of fluoroamphiphiles in cytosolic protein delivery. Nat. Commun. 2018, 9, 1377.

[42]

Luo, M.; Wang, H.; Wang, Z. H.; Cai, H. C.; Lu, Z. G.; Li, Y.; Du, M. J.; Huang, G.; Wang, C. S.; Chen, X. et al. A STING-activating nanovaccine for cancer immunotherapy. Nat. Nanotechnol. 2017, 12, 648–654.

[43]

He, X.; Long, Q. P.; Zeng, Z. Y.; Yang, L.; Tang, Y. Q.; Feng, X. L. Simple and efficient targeted intracellular protein delivery with self-assembled nanovehicles for effective cancer therapy. Adv. Funct. Mater. 2019, 29, 1906187.

[44]

Rui, Y.; Wilson, D. R.; Choi, J.; Varanasi, M.; Sanders, K.; Karlsson, J.; Lim, M.; Green, J. J. Carboxylated branched poly(β-amino ester) nanoparticles enable robust cytosolic protein delivery and CRISPR-Cas9 gene editing. Sci. Adv. 2019, 5, eaay3255.

[45]

Battig, M. R.; Soontornworajit, B.; Wang, Y. Programmable release of multiple protein drugs from aptamer-functionalized hydrogels via nucleic acid hybridization. J. Am. Chem. Soc. 2012, 134, 12410–12413.

[46]

Sgolastra, F.; Backlund, C. M.; Ozay, E. I.; Deronde, B. M.; Minter, L. M.; Tew, G. N. Sequence segregation improves non-covalent protein delivery. J. Control. Release 2017, 254, 131–136.

[47]

Jia, X. Q.; Wang, L. Y.; Du, J. J. In situ polymerization on biomacromolecules for nanomedicines. Nano Res 2018, 11, 5028–5048.

[48]

Zhao, M. X.; Biswas, A.; Hu, B. L.; Joo, K. I.; Wang, P.; Gu, Z.; Tang, Y. Redox-responsive nanocapsules for intracellular protein delivery. Biomaterials 2011, 32, 5223–5230.

[49]

Gu, Z.; Yan, M.; Hu, B. L.; Joo, K. I.; Biswas, A.; Huang, Y.; Lu, Y. F.; Wang, P.; Tang, Y. Protein nanocapsule weaved with enzymatically degradable polymeric network. Nano Lett. 2009, 9, 4533–4538.

[50]

Liu, M.; Shen, S. Y.; Wen, D.; Li, M. R.; Li, T.; Chen, X. J.; Gu, Z.; Mo, R. Hierarchical nanoassemblies-assisted combinational delivery of cytotoxic protein and antibiotic for cancer treatment. Nano Lett. 2018, 18, 2294–2303.

[51]

Gu, Z.; Dang, T. T.; Ma, M. L.; Tang, B. C.; Cheng, H.; Jiang, S.; Dong, Y. Z.; Zhang, Y. L.; Anderson, D. G. Glucose-responsive microgels integrated with enzyme nanocapsules for closed-loop insulin delivery. ACS Nano 2013, 7, 6758–6766.

[52]

Honda, Y.; Nomoto, T.; Matsui, M.; Takemoto, H.; Kaihara, Y.; Miura, Y.; Nishiyama, N. Sequential self-assembly using tannic acid and phenylboronic acid-modified copolymers for potential protein delivery. Biomacromolecules 2020, 21, 3826–3835.

[53]

Liu, C. Y.; Shen, W. W.; Li, B. N.; Li, T. F.; Chang, H.; Cheng, Y. Y. Natural polyphenols augment cytosolic protein delivery by a functional polymer. Chem. Mater. 2019, 31, 1956–1965.

[54]

Lv, S. X.; Wu, Y. C.; Cai, K. M.; He, H.; Li, Y. J.; Lan, M.; Chen, X. S.; Cheng, J. J.; Yin, L. C. High drug loading and sub-quantitative loading efficiency of polymeric micelles driven by donor-receptor coordination interactions. J. Am. Chem. Soc. 2018, 140, 1235–1238.

[55]

Hashimoto, T.; Gálvez, A. O.; Maruoka, K. In situ assembled boronate ester assisted chiral carboxylic acid catalyzed asymmetric trans-aziridinations. J. Am. Chem. Soc. 2013, 135, 17667–17670.

[56]

Lim, J.; Lee, J.; Jung, S.; Kim, W. J. Phenylboronic-acid-based nanocomplex as a feasible delivery platform of immune checkpoint inhibitor for potent cancer immunotherapy. J. Control. Release 2021, 330, 1168–1177.

[57]

Zhang, P.; Zhang, Y.; Ding, X. Y.; Shen, W.; Li, M. Q.; Wagner, E.; Xiao, C. S.; Chen, X. S. A multistage cooperative nanoplatform enables intracellular co-delivery of proteins and chemotherapeutics for cancer therapy. Adv. Mater. 2020, 32, 2000013.

[58]

Cal, P. M. S. D.; Vicente, J. B.; Pires, E.; Coelho, A. V.; Veiros, L. F.; Cordeiro, C.; Gois, P. M. P. Iminoboronates: A new strategy for reversible protein modification. J. Am. Chem. Soc. 2012, 134, 10299–10305.

[59]

Zhao, Z. Y.; Liu, X.; Hou, M. Y.; Zhou, R. X.; Wu, F.; Yan, J.; Li, W.; Zheng, Y. J.; Zhong, Q. M.; Chen, Y. B. et al. Endocytosis-independent and cancer-selective cytosolic protein delivery via reversible tagging with LAT1 substrate. Adv. Mater. 2022, 34, 2110560.

[60]

Reda, M.; Ngamcherdtrakul, W.; Nelson, M. A.; Siriwon, N.; Wang, R. J.; Zaidan, H. Y.; Bejan, D. S.; Reda, S.; Hoang, N. H.; Crumrine, N. A. et al. Development of a nanoparticle-based immunotherapy targeting PD-L1 and PLK1 for lung cancer treatment. Nat. Commun. 2022, 13, 4261.

[61]

Li, X. D.; Wei, Y. S.; Wu, Y. C.; Yin, L. C. Hypoxia-induced pro-protein therapy assisted by a self-catalyzed nanozymogen. Angew. Chem., Int. Ed. 2020, 59, 22544–22553.

File
12274_2023_5978_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 May 2023
Revised: 02 July 2023
Accepted: 03 July 2023
Published: 14 August 2023
Issue date: March 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the Natural Science Foundation of Jiangsu Province (No. BK20220245), the National Natural Science Foundation of China (Nos. 52273144 and 82241008), Collaborative Innovation Center of Suzhou Nano Science & Technology, the 111 project, Suzhou Key Laboratory of Nanotechnology and Biomedicine, and Joint International Research Laboratory of Carbon-Based Functional Materials and Devices.

Return