Journal Home > Volume 17 , Issue 2

Electrocatalysis can enable efficient energy storage and conversion and thus is an effective way to achieve carbon neutrality. The unique structure and function of organisms can offer many ideas for the design of electrocatalysts, which has become one of the most promising research directions. Recently, the understanding of the mechanism of bio-inspired electrocatalysis has become clearer, which has promoted the design of bio-inspired catalysts and catalytic systems. Various bio-inspired catalysts (enzyme-like catalysts, layered porous catalysts, superhydrophobic/superhydrophilic surfaces, and so on) have been developed to enable efficient electrocatalytic reactions. Herein, we discuss the key advances in the field of bio-inspired electrocatalysts progressed in recent years. First, the role of bio-inspiration in increasing the intrinsic activity and number of active sites of catalysts is introduced. Then, the structure and mechanism of layered porous catalytic systems that mimic biological transport systems are comprehensively discussed. Subsequently, the design of three-phase interfaces from micro-nanoscale to atomic scale is highlighted, including the wettability of the electrode surface and the transport system near the electrode. We conclude the review by identifying challenges in bio-inspired electrocatalysts and providing insights into future prospects for the exciting research field.


menu
Abstract
Full text
Outline
About this article

Advances in bio-inspired electrocatalysts for clean energy future

Show Author's information Jing-Wen DuanMuMin-Rui Gao( )
Division of Nanomaterials & Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, Hefei 230026, China

Abstract

Electrocatalysis can enable efficient energy storage and conversion and thus is an effective way to achieve carbon neutrality. The unique structure and function of organisms can offer many ideas for the design of electrocatalysts, which has become one of the most promising research directions. Recently, the understanding of the mechanism of bio-inspired electrocatalysis has become clearer, which has promoted the design of bio-inspired catalysts and catalytic systems. Various bio-inspired catalysts (enzyme-like catalysts, layered porous catalysts, superhydrophobic/superhydrophilic surfaces, and so on) have been developed to enable efficient electrocatalytic reactions. Herein, we discuss the key advances in the field of bio-inspired electrocatalysts progressed in recent years. First, the role of bio-inspiration in increasing the intrinsic activity and number of active sites of catalysts is introduced. Then, the structure and mechanism of layered porous catalytic systems that mimic biological transport systems are comprehensively discussed. Subsequently, the design of three-phase interfaces from micro-nanoscale to atomic scale is highlighted, including the wettability of the electrode surface and the transport system near the electrode. We conclude the review by identifying challenges in bio-inspired electrocatalysts and providing insights into future prospects for the exciting research field.

Keywords: active sites, layered porous structure, bio-inspired electrocatalysts, three-phase interface

References(132)

[1]

Solomon, S. Stratospheric ozone depletion: A review of concepts and history. Rev. Geophys. 1999, 37, 275–316.

[2]

Hansen, J.; Sato, M.; Ruedy, R.; Lacis, A.; Oinas, V. Global warming in the twenty-first century: An alternative scenario. Proc. Natl. Acad. Sci. USA 2000, 97, 9875–9880.

[3]

Fang, J. Y.; Chen, A. P.; Peng, C. H.; Zhao, S. Q.; Ci, L. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 2001, 292, 2320–2322.

[4]

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

[5]

Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G. et al. Commentary: The materials project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002.

[6]

Augustyn, V.; Simon, P.; Dunn, B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 2014, 7, 1597–1614.

[7]

De Luna, P.; Hahn, C.; Higgins, D.; Jaffer, S. A.; Jaramillo, T. F.; Sargent, E. H. What would it take for renewably powered electrosynthesis to displace petrochemical processes. Science 2019, 364, eaav3506.

[8]

Xie, K.; Miao, R. K.; Ozden, A.; Liu, S. J.; Chen, Z.; Dinh, C. T.; Huang, J. E.; Xu, Q. C.; Gabardo, C. M.; Lee, G. et al. Bipolar membrane electrolyzers enable high single-pass CO2 electroreduction to multicarbon products. Nat. Commun. 2022, 13, 3609.

[9]

Shen, L. F.; Lu, B. A.; Li, Y. Y.; Liu, J.; Huangfu, Z. C.; Peng, H.; Ye, J. Y.; Qu, X. M.; Zhang, J. M.; Li, G. et al. Interfacial structure of water as a new descriptor of the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2020, 59, 22397–22402.

[10]

Wen, Y. Z.; Chen, P. N.; Wang, L.; Li, S. Y.; Wang, Z. Y.; Abed, J.; Mao, X. N.; Min, Y. M.; Dinh, C. T.; Luna, P. D. et al. Stabilizing highly active Ru sites by suppressing lattice oxygen participation in acidic water oxidation. J. Am. Chem. Soc. 2021, 143, 6482–6490.

[11]

Yan, Y.; Xia, B. Y.; Zhao, B.; Wang, X. A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. J. Mater. Chem. A 2016, 4, 17587–17603.

[12]

Gao, F. Y.; Liu, S. N.; Ge, J. C.; Zhang, X. L.; Zhu, L.; Zheng, Y. R.; Duan, Y.; Qin, S.; Dong, W. X.; Yu, X. X. et al. Nickel-molybdenum-niobium metallic glass for efficient hydrogen oxidation in hydroxide exchange membrane fuel cells. Nat. Catal. 2022, 5, 993–1005.

[13]

Li, X.; Kou, Z. K.; Wang, J. Manipulating interfaces of electrocatalysts down to atomic scales: Fundamentals, strategies, and electrocatalytic applications. Small Methods 2021, 5, 2001010.

[14]

Russell, A. E. Electrocatalysis: Theory and experiment at the interface. Preface. Faraday Discuss 2008, 140, 9–10.

[15]

Kong, X. D.; Wang, C.; Xu, Z. F.; Zhong, Y. Z.; Liu, Y.; Qin, L.; Zeng, J.; Geng, Z. G. Enhancing CO2 electroreduction selectivity toward multicarbon products via tuning the local H2O/CO2 molar ratio. Nano Lett. 2022, 22, 8000–8007.

[16]

Monteiro, M. C. O.; Dattila, F.; Hagedoorn, B.; García-Muelas, R.; López, N.; Koper, M. T. M. Absence of CO2 electroreduction on copper, gold, and silver electrodes without metal cations in solution. Nat. Catal. 2021, 4, 654–662.

[17]

Weng, Z.; Zhang, X.; Wu, Y. S.; Huo, S. J.; Jiang, J. B.; Liu, W.; He, G. J.; Liang, Y. Y.; Wang, H. L. Self-cleaning catalyst electrodes for stabilized CO2 reduction to hydrocarbons. Angew. Chem., Int. Ed. 2017, 56, 13135–13139.

[18]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[19]

Morales-Guio, C. G.; Cave, E. R.; Nitopi, S. A.; Feaster, J. T.; Wang, L.; Kuhl, K. P.; Jackson, A.; Johnson, N. C.; Abram, D. N.; Hatsukade, T. et al. Improved CO2 reduction activity towards C2+ alcohols on a tandem gold on copper electrocatalyst. Nat. Catal. 2018, 1, 764–771.

[20]

Kim, S. J.; Kim, Y. I.; Lamichhane, B.; Kim, Y. H.; Lee, Y.; Cho, C. R.; Cheon, M.; Kim, J. C.; Jeong, H. Y.; Ha, T. et al. Flat-surface-assisted and self-regulated oxidation resistance of Cu (111). Nature 2022, 603, 434–438.

[21]

Liu, K. S.; Cao, M. Y.; Fujishima, A.; Jiang, L. Bio-inspired titanium dioxide materials with special wettability and their applications. Chem. Rev. 2014, 114, 10044–10094.

[22]

Kurz, P. Biomimetic water-oxidation catalysts: Manganese oxides. Top. Curr. Chem. 2016, 371, 49–72.

[23]

Shu, R.; Jiang, X. S.; Sun, H. L.; Shao, Z. Y.; Song, T. F.; Luo, Z. P. Recent researches of the bio-inspired nano-carbon reinforced metal matrix composites. Compos. Part A Appl. Sci. Manuf. 2020, 131, 105816.

[24]

Lu, X.; Jiang, Z.; Yuan, X. L.; Wu, Y. S.; Malpass-Evans, R.; Zhong, Y. R.; Liang, Y. Y.; McKeown, N. B.; Wang, H. L. A bio-inspired O2-tolerant catalytic CO2 reduction electrode. Sci. Bull. 2019, 64, 1890–1895.

[25]

Dick, K. A.; Deppert, K.; Larsson, M. W.; Mårtensson, T.; Seifert, W.; Wallenberg, L. R.; Samuelson, L. Synthesis of branched “nanotrees” by controlled seeding of multiple branching events. Nat. Mater. 2004, 3, 380–384.

[26]

Trogadas, P.; Coppens, M. O. Nature-inspired electrocatalysts and devices for energy conversion. Chem. Soc. Rev. 2020, 49, 3107–3141.

[27]

Barthlott, W.; Neinhuis, C. Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta 1997, 202, 1–8.

[28]

Breslow, R. Centenary lecture-biomimetic chemistry. Chem. Soc. Rev. 1972, 1, 553–580.

[29]

Wegst, U. G. K.; Bai, H.; Saiz, E.; Tomsia, A. P.; Ritchie, R. O. Bioinspired structural materials. Nat. Mater. 2015, 14, 23–36.

[30]

Lauder, G. V.; Drucker, E. G. Morphology and experimental hydrodynamics of fish fin control surfaces. IEEE J. Oceanic Eng. 2004, 29, 556–571.

[31]

Wang, Y. C.; Lei, H. H.; Lu, S.; Yang, Z. M.; Xu, B. B.; Xing, L.; Liu, T. X. Cu2O nano-flowers/graphene enabled scaffolding structure catalyst layer for enhanced CO2 electrochemical reduction. Appl. Catal. B Environ. 2022, 305, 121022.

[32]

Xie, J. F.; Huang, Y. X.; Li, W. W.; Song, X. N.; Xiong, L.; Yu, H. Q. Efficient electrochemical CO2 reduction on a unique chrysanthemum-like Cu nanoflower electrode and direct observation of carbon deposite. Electrochim. Acta 2014, 139, 137–144.

[33]

Wei, W.; He, W. D.; Shi, B. B.; Dong, G. P.; Lu, X. B.; Zeng, M.; Gao, X. S.; Wang, Q. M.; Zhou, G. F.; Liu, J. M. et al. A bio-inspired 3D quasi-fractal nanostructure for an improved oxygen evolution reaction. Chem. Commun. 2019, 55, 357–360.

[34]

Guo, Y. X.; Yao, Z. Y.; Timmer, B. J. J.; Sheng, X.; Fan, L. Z.; Li, Y. Y.; Zhang, F. G.; Sun, L. C. Boosting nitrogen reduction reaction by bio-inspired FeMoS containing hybrid electrocatalyst over a wide pH range. Nano Energy 2019, 62, 282–288.

[35]

Murray, C. D. The physiological principle of minimum work applied to the angle of branching of arteries. J. Gen. Physiol. 1926, 9, 835–841.

[36]

Murray, C. D. The physiological principle of minimum work: II. Oxygen exchange in capillaries. Proc. Nat. Acad. Sci. USA 1926, 12, 299–304.

[37]

Trogadas, P.; Ramani, V.; Strasser, P.; Fuller, T. F.; Coppens, M. O. Hierarchically structured nanomaterials for electrochemical energy conversion. Angew. Chem., Int. Ed. 2016, 55, 122–148.

[38]

Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732–745.

[39]

Liu, M. J.; Wang, S. T.; Jiang, L. Nature-inspired superwettability systems. Nat. Rev. Mater. 2017, 2, 17036.

[40]

Xu, W. W.; Lu, Z. Y.; Sun, X. M.; Jiang, L.; Duan, X. Superwetting electrodes for gas-involving electrocatalysis. Acc. Chem. Res. 2018, 51, 1590–1598.

[41]

Niu, Z. Z.; Gao, F. Y.; Zhang, X. L.; Yang, P. P.; Liu, R.; Chi, L. P.; Wu, Z. Z.; Qin, S.; Yu, X. X.; Gao, M. R. Hierarchical copper with inherent hydrophobicity mitigates electrode flooding for high-rate CO2 electroreduction to multicarbon products. J. Am. Chem. Soc. 2021, 143, 8011–8021.

[42]

Li, J.; Chen, G. X.; Zhu, Y. Y.; Liang, Z.; Pei, A.; Wu, C. L.; Wang, H. X.; Lee, H. R.; Liu, K.; Chu, S. et al. Efficient electrocatalytic CO2 reduction on a three-phase interface. Nat. Catal. 2018, 1, 592–600.

[43]

Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science 2007, 317, 100–102.

[44]

Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274–10277.

[45]

Pei, G. X.; Liu, X. Y.; Wang, A. Q.; Lee, A. F.; Isaacs, M. A.; Li, L.; Pan, X. L.; Yang, X. F.; Wang, X. D.; Tai, Z. J. et al. Ag alloyed Pd single-atom catalysts for efficient selective hydrogenation of acetylene to ethylene in excess ethylene. ACS Catal. 2015, 5, 3717–3725.

[46]

Dong, C. Y.; Lian, C.; Hu, S. C.; Deng, Z. S.; Gong, J. Q.; Li, M. D.; Liu, H. L.; Xing, M. Y.; Zhang, J. L. Size-dependent activity and selectivity of carbon dioxide photocatalytic reduction over platinum nanoparticles. Nat. Commun. 2018, 9, 1252.

[47]

Barber, J. Photosynthetic energy conversion: Natural and artificial. Chem. Soc. Rev. 2009, 38, 185–196.

[48]

Said, S. I.; Mutt, V. Polypeptide with broad biological activity: Isolation from small intestine. Science 1970, 169, 1217–1218.

[49]

Barton, B. E.; Rauchfuss, T. B. Hydride-containing models for the active site of the nickel-iron hydrogenases. J. Am. Chem. Soc. 2010, 132, 14877–14885.

[50]

Alderton, W. K.; Cooper, C. E.; Knowles, R. G. Nitric oxide synthases: Structure, function, and inhibition. Biochem. J. 2001, 357, 593–615.

[51]

Rae, T. D.; Schmidt, P. J.; Pufahl, R. A.; Culotta, V. C.; O’Halloran, T. V. Undetectable intracellular free copper: The requirement of a copper chaperone for superoxide dismutase. Science 1999, 284, 805–808.

[52]

Collman, J. P.; Wagenknecht, P. S.; Hutchison, J. E. Molecular catalysts for multielectron redox reactions of small molecules: The “cofacial metallodiporphyrin” approach. Angew. Chem., Int. Ed. 1994, 33, 1537–1554.

[53]

Garrido-Barros, P.; Gimbert-Suriñach, C.; Matheu, R.; Sala, X.; Llobet, A. How to make an efficient and robust molecular catalyst for water oxidation. Chem. Soc. Rev. 2017, 46, 6088–6098.

[54]

Zhao, Y. F.; Zhou, H.; Zhu, X. R.; Qu, Y. T.; Xiong, C.; Xue, Z. G.; Zhang, Q. W.; Liu, X. K.; Zhou, F. Y.; Mou, X. M. et al. Simultaneous oxidative and reductive reactions in one system by atomic design. Nat. Catal. 2021, 4, 134–143.

[55]

Timoshenko, J.; Bergmann, A.; Rettenmaier, C.; Herzog, A.; Arán-Ais, R. M.; Jeon, H. S.; Haase, F. T.; Hejral, U.; Grosse, P.; Kühl, S. et al. Steering the structure and selectivity of CO2 electroreduction catalysts by potential pulses. Nat. Catal. 2022, 5, 259–267.

[56]

Zhen, S. Y.; Zhang, G.; Cheng, D. F.; Gao, H.; Li, L. L.; Lin, X. Y.; Ding, Z. Y.; Zhao, Z. J.; Gong, J. L. Nature of the active sites of copper zinc catalysts for carbon dioxide electroreduction. Angew. Chem., Int. Ed. 2022, 61, e202201913.

[57]

Wang, X.; Ou, P. F.; Ozden, A.; Hung, S. F.; Tam, J.; Gabardo, C. M.; Howe, J. Y.; Sisler, J.; Bertens, K.; García de Arquer, F. P. et al. Efficient electrosynthesis of n-propanol from carbon monoxide using a Ag-Ru-Cu catalyst. Nat. Energy 2022, 7, 170–176.

[58]

Tian, Z. Y.; Han, X. Q.; Du, J.; Li, Z. B.; Ma, Y. Y.; Han, Z. G. Bio-inspired FeMo2S4 microspheres as bifunctional electrocatalysts for boosting hydrogen oxidation/evolution reactions in alkaline solution. ACS Appl. Mater. Interfaces 2023, 15, 11853–11865.

[59]

Wang, Y. C.; Jiang, K.; Zhang, H.; Zhou, T.; Wang, J. W.; Wei, W.; Yang, Z. Q.; Sun, X. H.; Cai, W. B.; Zheng, G. F. Bio-inspired leaf-mimicking nanosheet/nanotube heterostructure as a highly efficient oxygen evolution catalyst. Adv. Sci. 2015, 2, 1500003.

[60]

Dubey, A.; Nencini, L.; Fayzullin, R. R.; Nervi, C.; Khusnutdinova, J. R. Bio-inspired Mn(I) complexes for the hydrogenation of CO2 to formate and formamide. ACS Catal. 2017, 7, 3864–3868.

[61]

Kilgore, U. J.; Roberts, J. A. S.; Pool, D. H.; Appel, A. M.; Stewart, M. P.; DuBois, M. R.; Dougherty, W. G.; Kassel, W. S.; Bullock, R. M.; DuBois, D. L. [Ni(PPh2NC6H4X2)2]2+ complexes as electrocatalysts for H2 production: Effect of substituents, acids, and water on catalytic rates. J. Am. Chem. Soc. 2011, 133, 5861–5872.

[62]

Nguyen, T. N.; Chen, Z.; Zeraati, A. S.; Shiran, H. S.; Sadaf, S. M.; Kibria, M. G.; Sargent, E. H.; Dinh, C. T. Catalyst regeneration via chemical oxidation enables long-term electrochemical carbon dioxide reduction. J. Am. Chem. Soc. 2022, 144, 13254–13265.

[63]

Li, M.; Hua, B.; Wang, L. C.; Sugar, J. D.; Wu, W.; Ding, Y.; Li, J.; Ding, D. Switching of metal-oxygen hybridization for selective CO2 electrohydrogenation under mild temperature and pressure. Nat. Catal. 2021, 4, 274–283.

[64]

Jeong, S.; Choi, M. H.; Jagdale, G. S.; Zhong, Y. X.; Siepser, N. P.; Wang, Y.; Zhan, X.; Baker, L. A.; Ye, X. C. Unraveling the structural sensitivity of CO2 electroreduction at facet-defined nanocrystals via correlative single-entity and macroelectrode measurements. J. Am. Chem. Soc. 2022, 144, 12673–12680.

[65]

Liu, W.; Zhai, P. B.; Li, A. W.; Wei, B.; Si, K. P.; Wei, Y.; Wang, X. G.; Zhu, G. D.; Chen, Q.; Gu, X. K. et al. Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays. Nat. Commun. 2022, 13, 1877.

[66]

Henry, R. M.; Shoemaker, R. K.; DuBois, D. L.; DuBois, M. R. Pendant bases as proton relays in iron hydride and dihydrogen complexes. J. Am. Chem. Soc. 2006, 128, 3002–3010.

[67]

Collman, J. P.; Decréau, R. A.; Lin, H. W.; Hosseini, A.; Yang, Y.; Dey, A.; Eberspacher, T. A. Role of a distal pocket in the catalytic O2 reduction by cytochrome c oxidase models immobilized on interdigitated array electrodes. Proc. Natl. Acad. Sci. USA 2009, 106, 7320–7323.

[68]

Sedona, F.; Di Marino, M.; Forrer, D.; Vittadini, A.; Casarin, M.; Cossaro, A.; Floreano, L.; Verdini, A.; Sambi, M. Tuning the catalytic activity of Ag (110)-supported Fe phthalocyanine in the oxygen reduction reaction. Nat. Mater. 2012, 11, 970–977.

[69]

Morozan, A.; Campidelli, S.; Filoramo, A.; Jousselme, B.; Palacin, S. Catalytic activity of cobalt and iron phthalocyanines or porphyrins supported on different carbon nanotubes towards oxygen reduction reaction. Carbon 2011, 49, 4839–4847.

[70]

Schilter, D.; Nilges, M. J.; Chakrabarti, M.; Lindahl, P. A.; Rauchfuss, T. B.; Stein, M. Mixed-valence nickel-iron dithiolate models of the [NiFe]-hydrogenase active site. Inorg. Chem. 2012, 51, 2338–2348.

[71]

Foster, S. L.; Bakovic, S. I. P.; Duda, R. D.; Maheshwari, S.; Milton, R. D.; Minteer, S. D.; Janik, M. J.; Renner, J. N.; Greenlee, L. F. Catalysts for nitrogen reduction to ammonia. Nat. Catal. 2018, 1, 490–500.

[72]

Einsle, O.; Tezcan, F. A.; Andrade, S. L. A.; Schmid, B.; Yoshida, M.; Howard, J. B.; Rees, D. C. Nitrogenase MoFe-protein at 1.16 Å resolution: A central ligand in the FeMo-cofactor. Science 2002, 297, 1696–1700.

[73]

Siegbahn, P. E. M. The mechanism for nitrogenase including all steps. Phys. Chem. Chem. Phys. 2019, 21, 15747–15759.

[74]

Seefeldt, L. C.; Hoffman, B. M.; Dean, D. R. Electron transfer in nitrogenase catalysis. Curr. Opin. Chem. Biol. 2012, 16, 19–25.

[75]

Einsle, O.; Messerschmidt, A.; Stach, P.; Bourenkov, G. P.; Bartunik, H. D.; Huber, R.; Kroneck, P. M. H. Structure of cytochrome c nitrite reductase. Nature 1999, 400, 476–480.

[76]

Wang, J.; Feng, T.; Chen, J. X.; Ramalingam, V.; Li, Z. X.; Kabtamu, D. M.; He, J. H.; Fang, X. S. Electrocatalytic nitrate/nitrite reduction to ammonia synthesis using metal nanocatalysts and bio-inspired metalloenzymes. Nano Energy 2021, 86, 106088.

[77]

Niu, Z. Y.; Jiao, L.; Zhang, T.; Zhao, X. M.; Wang, X. F.; Tan, Z. Q.; Liu, L. Z.; Chen, S. R.; Song, X. Z. Boosting electrocatalytic ammonia synthesis of bio-inspired porous mo-doped hematite via nitrogen activation. ACS Appl. Mater. Interfaces 2022, 14, 55559–55567.

[78]

Li, X.; Hai, G. T.; Liu, J.; Zhao, F. L.; Peng, Z. H.; Liu, H. H.; Leung, M. K. H.; Wang, H. H. Bio-inspired NiCoP/CoMoP/Co(Mo3Se4)4@C/NF multi-heterojunction nanoflowers: Effective catalytic nitrogen reduction by driving electron transfer. Appl. Catal. B Environ. 2022, 314, 121531.

[79]

Sun, Y. T.; Ding, S.; Xia, B. K.; Duan, J. J.; Antonietti, M.; Chen, S. Biomimetic FeMo(Se, Te) as joint electron pool promoting nitrogen electrofixation. Angew. Chem., Int. Ed. 2022, 61, e202115198.

[80]

Wang, Y. R.; Yang, R. X.; Chen, Y. F.; Gao, G. K.; Wang, Y. J.; Li, S. L.; Lan, Y. Q. Chloroplast-like porous bismuth-based core–shell structure for high energy efficiency CO2 electroreduction. Sci. Bull. 2020, 65, 1635–1642.

[81]

Doltchinkova, V.; Vitkova, V. Polylysine effect on thylakoid membranes. Biophys. Chem. 2020, 266, 106440.

[82]

McGorty, R.; Fung, J.; Kaz, D.; Manoharan, V. N. Colloidal self-assembly at an interface. Mater. Today 2010, 13, 34–42.

[83]

Kim, H. J.; Ingber, D. E. Gut-on-a-chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr. Biol. 2013, 5, 1130–1140.

[84]

Adhikari, R. Y.; Terrell, J.; Targos, J.; Huffman, K. A.; Wang, H. H.; Cradlebaugh, J. Electrical characterization of leaf-based wires & supercapacitors. RSC Adv. 2019, 9, 27289–27293.

[85]

Chen, B.; Zhang, Z.; Kim, S.; Baek, M.; Kim, D.; Yong, K. A biomimetic nanoleaf electrocatalyst for robust oxygen evolution reaction. Appl. Catal. B: Environ. 2019, 259, 118017.

[86]

Mehlhorn, D.; Kondrashova, D.; Küster, C.; Enke, D.; Emmerich, T.; Bunde, A.; Valiullin, R.; Kärger, J. Diffusion in complementary pore spaces. Adsorption 2016, 22, 879–890.

[87]

Trogadas, P.; Nigra, M. M.; Coppens, M. O. Nature-inspired optimization of hierarchical porous media for catalytic and separation processes. New J. Chem. 2016, 40, 4016–4026.

[88]

Murray, C. D. The physiological principle of minimum work: I. The vascular system and the cost of blood volume. Proc. Nat. Acad. Sci. USA 1926, 12, 207–214.

[89]

Zheng, X. F.; Shen, G. F.; Wang, C.; Li, Y.; Dunphy, D.; Hasan, T.; Brinker, C. J.; Su, B. L. Bio-inspired murray materials for mass transfer and activity. Nat. Commun. 2017, 8, 14921.

[90]

Li, J. C.; Hou, P. X.; Zhao, S. Y.; Liu, C.; Tang, D. M.; Cheng, M.; Zhang, F.; Cheng, H. M. A 3D bi-functional porous N-doped carbon microtube sponge electrocatalyst for oxygen reduction and oxygen evolution reactions. Energy Environ. Sci. 2016, 9, 3079–3084.

[91]

Funabashi, H.; Takeuchi, S.; Tsujimura, S. Hierarchical meso/macro-porous carbon fabricated from dual MgO templates for direct electron transfer enzymatic electrodes. Sci. Rep. 2017, 7, 45147.

[92]

Trogadas, P.; Cho, J. I. S.; Neville, T. P.; Marquis, J.; Wu, B.; Brett, D. J. L.; Coppens, M. O. A lung-inspired approach to scalable and robust fuel cell design. Energy Environ. Sci. 2018, 11, 136–143.

[93]

Lee, S. H.; Kim, J.; Chung, D. Y.; Yoo, J. M.; Lee, H. S.; Kim, M. J.; Mun, B. S.; Kwon, S. G.; Sung, Y. E.; Hyeon, T. Design principle of Fe-N-C electrocatalysts: How to optimize multimodal porous structures. J. Am. Chem. Soc. 2019, 141, 2035–2045.

[94]

Li, T. T.; Xue, B.; Wang, B. W.; Guo, G. N.; Han, D. D.; Yan, Y. C.; Dong, A. G. Tubular monolayer superlattices of hollow Mn3O4 nanocrystals and their oxygen reduction activity. J. Am. Chem. Soc. 2017, 139, 12133–12136.

[95]

Deng, Y. W.; Xi, X. Y.; Xia, Y.; Cao, Y. F.; Xue, S. Q.; Wan, S. Y.; Dong, A. G.; Yang, D. 2D FeP nanoframe superlattices via space-confined topochemical transformation. Adv. Mater. 2022, 34, 2109145.

[96]

Deng, C.; Wu, K. H.; Scott, J.; Zhu, S. M.; Zheng, X. F.; Amal, R.; Wang, D. W. Spherical murray-type assembly of Co-N-C nanoparticles as a high-performance trifunctional electrocatalyst. ACS Appl. Mater. Interfaces 2019, 11, 9925–9933.

[97]

Nesbitt, N. T.; Burdyny, T.; Simonson, H.; Salvatore, D.; Bohra, D.; Kas, R.; Smith, W. A. Liquid–solid boundaries dominate activity of CO2 reduction on gas-diffusion electrodes. ACS Catal. 2020, 10, 14093–14106.

[98]

Shi, R.; Guo, J. H.; Zhang, X. R.; Waterhouse, G. I. N.; Han, Z. J.; Zhao, Y. X.; Shang, L.; Zhou, C.; Jiang, L.; Zhang, T. R. Efficient wettability-controlled electroreduction of CO2 to CO at Au/C interfaces. Nat. Commun. 2020, 11, 3028.

[99]

Lai, Y. K.; Gao, X. F.; Zhuang, H. F.; Huang, J. Y.; Lin, C. J.; Jiang, L. Designing superhydrophobic porous nanostructures with tunable water adhesion. Adv. Mater. 2009, 21, 3799–3803.

[100]

Barrio, J.; Pedersen, A.; Favero, S.; Luo, H.; Wang, M. N.; Sarma, S. C.; Feng, J. Y.; Ngoc, L. T. T.; Kellner, S.; Li, A. Y. et al. Bioinspired and bioderived aqueous electrocatalysis. Chem. Rev. 2023, 123, 2311–2348.

[101]

Li, J.; Zhu, Y. Y.; Chen, W.; Lu, Z. Y.; Xu, J. W.; Pei, A.; Peng, Y. C.; Zheng, X. L.; Zhang, Z. W.; Chu, S. et al. Breathing-mimicking electrocatalysis for oxygen evolution and reduction. Joule 2019, 3, 557–569.

[102]

Yong, J. L.; Chen, F.; Fang, Y.; Huo, J. L.; Yang, Q.; Zhang, J. Z.; Bian, H.; Hou, X. Bioinspired design of underwater superaerophobic and superaerophilic surfaces by femtosecond laser ablation for anti- or capturing bubbles. ACS Appl. Mater. Interfaces 2017, 9, 39863–39871.

[103]

Yao, X.; Song, Y. L.; Jiang, L. Applications of bio-inspired special wettable surfaces. Adv. Mater. 2011, 23, 719–734.

[104]

Zan, G. T.; Wu, Q. S. Biomimetic and bioinspired synthesis of nanomaterials/nanostructures. Adv. Mater. 2016, 28, 2099–2147.

[105]

Barthlott, W.; Schimmel, T.; Wiersch, S.; Koch, K.; Brede, M.; Barczewski, M.; Walheim, S.; Weis, A.; Kaltenmaier, A.; Leder, A. et al. The salvinia paradox: Superhydrophobic surfaces with hydrophilic pins for air retention under water. Adv. Mater. 2010, 22, 2325–2328.

[106]

Gabardo, C. M.; Seifitokaldani, A.; Edwards, J. P.; Dinh, C. T.; Burdyny, T.; Kibria, M. G.; O’Brien, C. P.; Sargent, E. H.; Sinton, D. Combined high alkalinity and pressurization enable efficient CO2 electroreduction to CO. Energy Environ. Sci. 2018, 11, 2531–2539.

[107]

Li, L. B.; Chen, J.; Mosali, V. S. S.; Liang, Y.; Bond, A. M.; Gu, Q. F.; Zhang, J. Hydrophobicity graded gas diffusion layer for stable electrochemical reduction of CO2. Angew. Chem., Int. Ed. 2022, 61, e202208534.

[108]
Dinh, C. T.; Burdyny, T.; Kibria, M. G.; Seifitokaldani, A.; Gabardo, C. M.; De Arquer, F. P. G.; Kiani, A.; Edwards, J. P.; De Luna, P.; Bushuyev, O. S. et al. CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface. Science 2018, 360, 783–787.
DOI
[109]

Pattle, R. E. The lining layer of the lung alveoli. Br. Med. Bull. 1963, 19, 41–44.

[110]

Swigart, R. H.; Kane, D. J. Electron microscopic observations of pulmonary alveoli. Anat. Rec. 1954, 118, 57–71.

[111]

Mendenhall, R. M.; Sun, C. N. Surface lining of lung alveoli as a structure. Nature 1964, 201, 713–714.

[112]

Chen, C. B.; Li, Y. F.; Yang, P. D. Address the “alkalinity problem” in CO2 electrolysis with catalyst design and translation. Joule 2021, 5, 737–742.

[113]

Gao, F. Y.; Bao, R. C.; Gao, M. R.; Yu, S. H. Electrochemical CO2-to-CO conversion: Electrocatalysts, electrolytes, and electrolyzers. J. Mater. Chem. A 2020, 8, 15458–15478.

[114]

Chen, C. J.; Yan, X. P.; Wu, Y. H.; Liu, S. J.; Zhang, X. D.; Sun, X. F.; Zhu, Q. G.; Wu, H. H.; Han, B. X. Boosting the productivity of electrochemical CO2 reduction to multi-carbon products by enhancing CO2 diffusion through a porous organic cage. Angew. Chem., Int. Ed. 2022, 61, e202202607.

[115]

Lu, Z. Y.; Xu, W. W.; Ma, J.; Li, Y. J.; Sun, X. M.; Jiang, L. Superaerophilic carbon-nanotube-array electrode for high-performance oxygen reduction reaction. Adv. Mater. 2016, 28, 7155–7161.

[116]

Liu, W. G.; Liu, J. C.; Liu, X. L.; Zheng, H. N.; Liu, J. Bioinspired hydrophobic single-atom catalyst with flexible sulfur motif for aqueous-phase hydrogenative transformation. ACS Catal. 2023, 13, 530–539.

[117]

Wicks, J.; Jue, M. L.; Beck, V. A.; Oakdale, J. S.; Dudukovic, N. A.; Clemens, A. L.; Liang, S. W.; Ellis, M. E.; Lee, G.; Baker, S. E. et al. 3D-printable fluoropolymer gas diffusion layers for CO2 electroreduction. Adv. Mater. 2021, 33, 2003855.

[118]

Nam, D. H.; Shekhah, O.; Ozden, A.; McCallum, C.; Li, F. W.; Wang, X.; Lum, Y.; Lee, T.; Li, J.; Wicks, J. et al. High-rate and selective CO2 electrolysis to ethylene via metal-organic-framework-augmented CO2 availability. Adv. Mater. 2022, 34, 2207088.

[119]

Gao, X. F.; Jiang, L. Water-repellent legs of water striders. Nature 2004, 432, 36.

[120]

Wakerley, D.; Lamaison, S.; Ozanam, F.; Menguy, N.; Mercier, D.; Marcus, P.; Fontecave, M.; Mougel, V. Bio-inspired hydrophobicity promotes CO2 reduction on a Cu surface. Nat. Mater. 2019, 18, 1222–1227.

[121]

Doerr, S. H.; Ferreira, A. J. D.; Walsh, R. P. D.; Shakesby, R. A.; Leighton-Boyce, G.; Coelho, C. O. A. Soil water repellency as a potential parameter in rainfall-runoff modelling: Experimental evidence at point to catchment scales from Portugal. Hydrol. Process. 2003, 17, 363–377.

[122]

Li, Z. H.; Guo, Z. G. Bioinspired surfaces with wettability for antifouling application. Nanoscale 2019, 11, 22636–22663.

[123]

Dai, H. Y.; Dong, Z. C.; Jiang, L. Directional liquid dynamics of interfaces with superwettability. Sci. Adv. 2020, 6, eabb5528.

[124]

Song, S. Y.; Guo, M. J.; Zhang, S. S.; Zhan, K.; Yan, Y.; Yang, J. H.; Zhao, B.; Xu, M. Plasma-assisted synthesis of hierarchical NiCoxPy nanosheets as robust and stable electrocatalyst for hydrogen evolution reaction in both acidic and alkaline media. Electrochim. Acta 2020, 331, 135431.

[125]

Hu, Q.; Wang, Z. Y.; Huang, X. W.; Qin, Y. J.; Yang, H. P.; Ren, X. Z.; Zhang, Q. L.; Liu, J. H.; Shao, M. H.; He, C. X. Integrating well-controlled core–shell structures into “superaerophobic” electrodes for water oxidation at large current densities. Appl. Catal. B Environ. 2021, 286, 119920.

[126]

Zhang, F.; Zhao, R.; Wang, Y. R.; Han, L.; Gu, J. M.; Niu, Z. M.; Yuan, Y. M.; Qu, N. R.; Meng, J. X.; Wang, D. S. Superwettable surface-dependent efficiently electrocatalytic water splitting based on their excellent liquid adsorption and gas desorption. Chem. Eng. J. 2023, 452, 139513.

[127]

Zhou, Y.; Yang, Y.; Zhu, X.; Zhang, T.; Ye, D. D.; Chen, R.; Liao, Q. Novel superaerophobic anode with fern-shaped pd nanoarray for high-performance direct formic acid fuel cell. Adv. Funct. Mater. 2022, 32, 2201872.

[128]

Hao, M.; Charbonneau, V.; Fomena, N. N.; Gaudet, J.; Bruce, D. R.; Garbarino, S.; Harrington, D. A.; Guay, D. Hydrogen bubble templating of fractal Ni catalysts for water oxidation in alkaline media. ACS Appl. Energy Mater. 2019, 2, 5734–5743.

[129]

Yan, G. Y.; Wang, Y. Z.; Zhang, Z. Y.; Dong, Y. T.; Wang, J. Y.; Carlos, C.; Zhang, P.; Cao, Z. Q.; Mao, Y. C.; Wang, X. D. Nanoparticle-decorated ultrathin La2O3 nanosheets as an efficient electrocatalysis for oxygen evolution reactions. Nano-Micro Lett. 2020, 12, 49.

[130]

Long, Z. Y.; Zhao, Y. Y.; Zhang, C. H.; Zhang, Y. H.; Yu, C. M.; Wu, Y. C.; Ma, J.; Cao, M. Y.; Jiang, L. A multi-bioinspired dual-gradient electrode for microbubble manipulation toward controllable water splitting. Adv. Mater. 2020, 32, 1908099.

[131]

Yu, X. X.; Yu, Z. Y.; Zhang, X. L.; Zheng, Y. R.; Duan, Y.; Gao, Q.; Wu, R.; Sun, B.; Gao, M. R.; Wang, G. X. et al. “Superaerophobic” nickel phosphide nanoarray catalyst for efficient hydrogen evolution at ultrahigh current densities. J. Am. Chem. Soc. 2019, 141, 7537–7543.

[132]

He, J. L.; Hu, B. B.; Zhao, Y. Superaerophobic electrode with metal@metal-oxide powder catalyst for oxygen evolution reaction. Adv. Funct. Mater. 2016, 26, 5998–6004.

Publication history
Copyright
Acknowledgements

Publication history

Received: 30 May 2023
Revised: 28 June 2023
Accepted: 30 June 2023
Published: 19 August 2023
Issue date: February 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Basic Research Program of China (No. 2018YFA0702001), the National Natural Science Foundation of China (Nos. 22225901, 21975237, and 22175162), the Anhui Provincial Research and Development Program (No. 202004a05020073), the Fundamental Research Funds for the Central Universities (No. WK2340000101), the USTC Research Funds of the Double First-Class Initiative (No. YD2340002007), and the Open Funds of the State Key Laboratory of Rare Earth Resource Utilization (No. RERU2022007).

Return