Journal Home > Volume 17 , Issue 3

Semi-transparent perovskite solar cells (ST-PSCs) have broad applications in building integrated photovoltaics. However, the stability of ST-PSCs needs to be improved, especially in n-i-p ST-PSCs since the doped 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenyl-amine)-9,9'-spirobifluorene (Spiro-OMeTAD) is unstable at elevated temperatures and high humidity. In this work, a π-conjugated polymer poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophene-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione)] (PBDB-T) is selected to form a polymer composite hole transport layer (HTL) with Spiro-OMeTAD. The sulfur atom of the thiophene unit and the carbonyl group of the polymer interact with the undercoordinated Pb2+ at the perovskite surface, which stabilizes the perovskite/HTL interface and passivates the interfacial defects. The incorporation of the polymer also increases the glass transition temperature and the moisture resistance of Spiro-OMeTAD. As a result, we obtain ST-PSCs with a champion efficiency of 13.71% and an average visible light transmittance of 36.04%. Therefore, a high light utilization efficiency of 4.94% can be obtained. Moreover, the encapsulated device can maintain 84% of the initial efficiency after 751 h under continuous one-sun illumination (at 30% relative humidity) at the open circuit and the unencapsulated device can maintain 80% of the initial efficiency after maximum power tracking for more than 1250 h under continuous one-sun illumination.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Stabilizing semi-transparent perovskite solar cells with a polymer composite hole transport layer

Show Author's information Yongbin Jin,§Huiping Feng,§Zheng FangLiu YangKaikai LiuBingru DengJingfu ChenXueling ChenYawen ZhongJinxin YangChengbo TianLiqiang Xie( )Zhanhua Wei( )
Xiamen Key Laboratory of Optoelectronic Materials and Advanced Manufacturing, Institute of Luminescent Materials and Information Displays, College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, China

§ Yongbin Jin and Huiping Feng contributed equally to this work.

Abstract

Semi-transparent perovskite solar cells (ST-PSCs) have broad applications in building integrated photovoltaics. However, the stability of ST-PSCs needs to be improved, especially in n-i-p ST-PSCs since the doped 2,2',7,7'-tetrakis(N,N-di-p-methoxyphenyl-amine)-9,9'-spirobifluorene (Spiro-OMeTAD) is unstable at elevated temperatures and high humidity. In this work, a π-conjugated polymer poly[(2,6-(4,8-bis(5-(2-ethylhexyl)thiophene-2-yl)-benzo[1,2-b:4,5-b']dithiophene))-alt-(5,5-(1',3'-di-2-thienyl-5',7'-bis(2-ethylhexyl)benzo[1',2'-c:4',5'-c']dithiophene-4,8-dione)] (PBDB-T) is selected to form a polymer composite hole transport layer (HTL) with Spiro-OMeTAD. The sulfur atom of the thiophene unit and the carbonyl group of the polymer interact with the undercoordinated Pb2+ at the perovskite surface, which stabilizes the perovskite/HTL interface and passivates the interfacial defects. The incorporation of the polymer also increases the glass transition temperature and the moisture resistance of Spiro-OMeTAD. As a result, we obtain ST-PSCs with a champion efficiency of 13.71% and an average visible light transmittance of 36.04%. Therefore, a high light utilization efficiency of 4.94% can be obtained. Moreover, the encapsulated device can maintain 84% of the initial efficiency after 751 h under continuous one-sun illumination (at 30% relative humidity) at the open circuit and the unencapsulated device can maintain 80% of the initial efficiency after maximum power tracking for more than 1250 h under continuous one-sun illumination.

Keywords: building integrated photovoltaics, semi-transparent solar cells, composite hole transport layer, π-conjugated polymer

References(42)

[1]

Batmunkh, M.; Zhong, Y. L.; Zhao, H. J. Recent advances in perovskite-based building-integrated photovoltaics. Adv. Mater. 2020, 32, 2000631.

[2]

Bush, K. A.; Bailie, C. D.; Chen, Y.; Bowring, A. R.; Wang, W.; Ma, W.; Leijtens, T.; Moghadam, F.; McGehee, M. D. Thermal and environmental stability of semi-transparent perovskite solar cells for tandems enabled by a solution-processed nanoparticle buffer layer and sputtered ITO electrode. Adv. Mater. 2016, 28, 3937–3943.

[3]

Koh, T. M.; Wang, H.; Ng, Y. F.; Bruno, A.; Mhaisalkar, S.; Mathews, N. Halide perovskite solar cells for building integrated photovoltaics: Transforming building façades into power generators. Adv. Mater. 2022, 34, 2104661.

[4]

Bing, J. M.; Caro, L. G.; Talathi, H. P.; Chang, N. L.; McKenzie, D. R.; Ho-Baillie, A. W. Y. Perovskite solar cells for building integrated photovoltaics-glazing applications. Joule 2022, 6, 1446–1474.

[5]

Traverse, C. J.; Pandey, R.; Barr, M. C.; Lunt, R. R. Emergence of highly transparent photovoltaics for distributed applications. Nat. Energy 2017, 2, 849–860.

[6]

Lee, K. T.; Jang, J. Y.; Ha, N. Y.; Lee, S.; Park, H. J. High-performance colorful semitransparent perovskite solar cells with phase-compensated microcavities. Nano Res. 2018, 11, 2553–2561.

[7]

Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 2009, 131, 6050–6051.

[8]

Burschka, J.; Pellet, N.; Moon, S. J.; Humphry-Baker, R.; Gao, P.; Nazeeruddin, M. K.; Grätzel, M. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 2013, 499, 316–319.

[9]

Jeon, N. J.; Noh, J. H.; Yang, W. S.; Kim, Y. C.; Ryu, S.;Seo, J.; Seok, S. I. Compositional engineering of perovskite materials for high-performance solar cells. Nature 2015, 517, 476–480.

[10]

Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 2014, 13, 897–903.

[11]

Yang, W. S.; Noh, J. H.; Joong, N.; Kim, Y. C.; Ryu, S.; Seo, J.; Seok, S. I. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. Science 2015, 348, 1234–1237.

[12]

Yang, L.; Jin, Y. B.; Fang, Z.; Zhang, J. Y.; Nan, Z.; Zheng, L. F.; Zhuang, H. H.; Zeng, Q. H.; Liu, K. K.; Deng, B. R. et al. Efficient semi-transparent wide-bandgap perovskite solar cells enabled by pure-chloride 2D-perovskite passivation. Nano-Micro Lett. 2023, 15, 111.

[13]

Liu, K. K.; Tian, C. B.; Liang, Y. M.; Luo, Y. J.; Xie, L. Q.; Wei, Z. H. Progress toward understanding the fullerene-related chemical interactions in perovskite solar cells. Nano Res. 2022, 15, 7139–7153.

[14]

Mujahid, M.; Chen, C.; Zhang, J.; Li, C. N.; Duan, Y. Recent advances in semitransparent perovskite solar cells. InfoMat 2021, 3, 101–124.

[15]

Yu, J. C.; Li, B.; Dunn, C. J.; Yan, J. L.; Diroll, B. T.; Chesman, A. S. R.; Jasieniak, J. J. High-performance and stable semi-transparent perovskite solar cells through composition engineering. Adv. Sci. 2022, 9, 2201487.

[16]

Shi, H. X.; Zhang, L.; Huang, H.; Wang, X. T.; Li, Z. Y.; Xuan, D. Z.; Wang, C. Y.; Ou, Y. L.; Ni, C. J.; Li, D. G. et al. Simultaneous interfacial modification and defect passivation for wide-bandgap semitransparent perovskite solar cells with 14.4% power conversion efficiency and 38% average visible transmittance. Small 2022, 18, 2202144.

[17]

Jeong, M. J.; Lee, J. H.; You, C. H.; Kim, S. Y.; Lee, S.; Noh, J. H. Oxide/halide/oxide architecture for high performance semi-transparent perovskite solar cells. Adv. Energy Mater. 2022, 12, 2200661.

[18]

Yoon, S.; Ha, H. U.; Seok, H. J.; Kim, H. K.; Kang, D. W. Highly efficient and reliable semitransparent perovskite solar cells via top electrode engineering. Adv. Funct. Mater. 2022, 32, 2111760.

[19]

Lim, S. H.; Seok, H. J.; Kwak, M. J.; Choi, D. H.; Kim, S. K.; Kim, D. H.; Kim, H. K. Semi-transparent perovskite solar cells with bidirectional transparent electrodes. Nano Energy 2021, 82, 105703.

[20]
National Renewable Energy Laboratory. Best Research-Cell Efficiency Chart [Online]. https://www.nrel.gov/pv/cell-efficiency.html (accessed Jun 7, 2023).
[21]

Rombach, F. M.; Haque, S. A.; Macdonald, T. J. Lessons learned from spiro-OMeTAD and PTAA in perovskite solar cells. Energy Environ. Sci. 2021, 14, 5161–5190.

[22]

Xu, D. D.; Mai, R. S.; Jiang, Y.; Chen, C.; Wang, R.; Xu, Z. J.; Kempa, K.; Zhou, G. F.; Liu, J. M.; Gao, J. W. An internal encapsulating layer for efficient, stable, repairable and low-lead-leakage perovskite solar cells. Energy Environ. Sci. 2022, 15, 3891–3900.

[23]

Liu, X.; Zheng, B. L.; Shi, L.; Zhou, S. J.; Xu, J. T.; Liu, Z. H.; Yun, J. S.; Choi, E.; Zhang, M.; Lv, Y. H. et al. Perovskite solar cells based on spiro-OMeTAD stabilized with an alkylthiol additive. Nat. Photonics 2022, 17, 96–105.

[24]

Wang, L. G.; Zhou, H. P.; Li, N. X.; Zhang, Y.; Chen, L. H. K.; Ke, X. X.; Chen, Z. X.; Wang, Z. L.; Sui, M. L.; Chen, Y. H. et al. Carrier transport composites with suppressed glass-transition for stable planar perovskite solar cells. J. Mater. Chem. A 2020, 8, 14106–14113.

[25]

Jeong, M.; Choi, I. W.; Yim, K.; Jeong, S.; Kim, M.; Choi, S. J.; Cho, Y.; An, J. H.; Kim, H. B.; Jo, Y. et al. Large-area perovskite solar cells employing spiro-Naph hole transport material. Nat. Photonics 2022, 16, 119–125.

[26]

Xu, D. D.; Gong, Z. M.; Jiang, Y.; Feng, Y. C.; Wang, Z.; Gao, X. S.; Lu, X. B.; Zhou, G. F.; Liu, J. M.; Gao, J. W. Constructing molecular bridge for high-efficiency and stable perovskite solar cells based on P3HT. Nat. Commun. 2022, 13, 7020.

[27]

Jung, E. H.; Jeon, N. J.; Park, E. Y.; Moon, C. S.; Shin, T. J.; Yang, T. Y.; Noh, J. H.; Seo, J. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 2019, 567, 511–515.

[28]

Wang, Q.; Bi, C.; Huang, J. S. Doped hole transport layer for efficiency enhancement in planar heterojunction organolead trihalide perovskite solar cells. Nano Energy 2015, 15, 275–280.

[29]

Yu, C.; Zhang, B. Y.; Chen, C.; Wang, J. T.; Zhang, J.; Chen, P.; Li, C. N.; Duan, Y. Stable and highly efficient perovskite solar cells: Doping hydrophobic fluoride into hole transport material PTAA. Nano Res. 2022, 15, 4431–4438.

[30]

Jeong, M. J.; Yeom, K. M.; Kim, S. J.; Jung, E. H.; Noh, J. H. Spontaneous interface engineering for dopant-free poly(3-hexylthiophene) perovskite solar cells with efficiency over 24%. Energy Environ. Sci. 2021, 14, 2419–2428.

[31]

Wang, T.; Zhang, Y.; Kong, W. Y.; Qiao, L.; Peng, B. G.; Shen, Z. C.; Han, Q. F.; Chen, H.; Yuan, Z. L.; Zheng, R. K. et al. Transporting holes stably under iodide invasion in efficient perovskite solar cells. Science 2022, 377, 1227–1232.

[32]

Seo, J. Y.; Akin, S.; Zalibera, M.; Preciado, M. A. R.; Kim, H. S.; Zakeeruddin, S. M.; Milić, J. V.; Grätzel, M. Dopant engineering for spiro-OMeTAD hole-transporting materials towards efficient perovskite solar cells. Adv. Funct. Mater. 2021, 31, 2102124.

[33]

Kong, J.; Shin, Y.; Röhr, J. A.; Wang, H.; Meng, J.; Wu, Y. S.; Katzenberg, A.; Kim, G.; Kim, D. Y.; Li, T. D. et al. CO2 doping of organic interlayers for perovskite solar cells. Nature 2021, 594, 51–56.

[34]

Jeong, M.; Choi, I. W.; Go, E. M.; Cho, Y.; Kim, M.; Lee, B.; Jeong, S.; Jo, Y.; Choi, H. W.; Lee, J. et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science 2020, 369, 1615–1620.

[35]

Bai, Y. Q.; Zhou, Z. S.; Xue, Q. F.; Liu, C. C.; Li, N.; Tang, H. R.; Zhang, J. B.; Xia, X. X.; Zhang, J.; Lu, X. H. et al. Dopant-free bithiophene-imide-based polymeric hole-transporting materials for efficient and stable perovskite solar cells. Adv. Mater. 2022, 34, 2110587.

[36]

Liang, Y. M.; Song, P. Q.; Tian, H. R.; Tian, C. B.; Tian, W. J.; Nan, Z.; Cai, Y. T.; Yang, P. P.; Sun, C.; Chen, J. F. et al. Lead leakage preventable fullerene-porphyrin dyad for efficient and stable perovskite solar cells. Adv. Funct. Mater. 2021, 32, 2110139.

[37]

Xie, L. Q.; Lin, K. B.; Lu, J. X.; Feng, W. J.; Song, P. Q.; Yan, C. Z.; Liu, K. K.; Shen, L. N.; Tian, C. B.; Wei, Z. H. Efficient and stable low-bandgap perovskite solar cells enabled by a CsPbBr3-cluster assisted bottom-up crystallization approach. J. Am. Chem. Soc. 2019, 141, 20537–20546.

[38]

Shen, L. N.; Song, P. Q.; Zheng, L. F.; Liu, K. K.; Lin, K. B.; Tian, W. J.; Luo, Y. J.; Tian, C. B.; Xie, L. Q.; Wei, Z. H. Perovskite-type stabilizers for efficient and stable formamidinium-based lead iodide perovskite solar cells. J. Mater. Chem. A 2021, 9, 20807–20815.

[39]

Liu, K. K.; Luo, Y. J.; Jin, Y. B.; Liu, T. X.; Liang, Y. M.; Yang, L.; Song, P. Q.; Liu, Z. Y.; Tian, C. B.; Xie, L. Q. et al. Moisture-triggered fast crystallization enables efficient and stable perovskite solar cells. Nat. Commun. 2022, 13, 4891.

[40]

Fang, Z.; Yang, L.; Jin, Y. B.; Liu, K. K.; Feng, H. P.; Deng, B. R.; Zheng, L. F.; Cui, C. C.; Tian, C. B.; Xie, L. Q. et al. Sputtered SnO2 as an interlayer for efficient semitransparent perovskite solar cells. Chin. Phys. B 2022, 31, 118801.

[41]

Qin, P. L.; Yang, G.; Ren, Z. W.; Cheung, S. H.; So, S. K.; Chen, L.; Hao, J. H.; Hou, J. H.; Li, G. Stable and efficient organo-metal halide hybrid perovskite solar cells via π-conjugated lewis base polymer induced trap passivation and charge extraction. Adv. Mater. 2018, 30, 1706126.

[42]

Webb, T.; Liu, X. P.; Westbrook, R. J. E.; Kern, S.; Sajjad, M. T.; Jenatsch, S.; Jayawardena, K. D. G. I.; Perera, W. H. K.; Marko, I. P.; Sathasivam, S. et al. A multifaceted ferrocene interlayer for highly stable and efficient lithium doped spiro-OMeTAD-based perovskite solar cells. Adv. Energy Mater. 2022, 12, 2200666.

File
12274_2023_5975_MOESM1_ESM.pdf (1.7 MB)
12274_2023_5975_MOESM2_ESM.pdf (805.3 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 May 2023
Revised: 28 June 2023
Accepted: 30 June 2023
Published: 22 August 2023
Issue date: March 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22179042 and U21A2078) and the Natural Science Foundation of Fujian Province (Nos. 2020J06021 and 2020J01064).

Return