AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Assembly of peptide nanostructures with controllable sizes

Dan Cheng1Fan Jia1Yun-Bao Jiang1,2Vincent P. Conticello3( )Tao Jiang1,2( )
The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
Department of Chemistry, Emory University, Atlanta 30033, USA
Show Author Information

Graphical Abstract

Current progress in the regulation of peptide assembly size through implementation of molecular design is surveyed.

Abstract

Controlled peptide assembly offers significant promise to develop synthetic supramolecular nanostructures to display material and biological properties that mimic protein assemblies in nature. Despite the progress in forming peptide nanostructures of various morphology, there exists a distinct gap between natural and synthetic assembly systems in terms of size control. Constructing nanostructures with a narrow size distribution that can be tuned over a wide range of length-scales is essential for applications that require precise spacing between objects. This approach provides the opportunity to correlate materials and biological properties of interest with assembly size. In this review, we discuss representative endeavors over the past two decades for design of size-controllable peptide nanostructures using tunable building blocks. Other mechanisms for size control, e.g., molecular frustration, template-directed peptide assembly, and multi-component peptide co-assembly, will also be discussed. We also demonstrate the applicable scopes of these strategies and suggest potential future avenues for scientific advances in this field.

References

[1]

Whitesides, G. M.; Grzybowski, B. Self-assembly at all scales. Science 2002, 295, 2418–2421.

[2]

Luo, Q.; Hou, C. X.; Bai, Y. S.; Wang, R. B.; Liu, J. Q. Protein assembly: Versatile approaches to construct highly ordered nanostructures. Chem. Rev. 2016, 116, 13571–13632.

[3]

Zhang, S. G. Emerging biological materials through molecular self-assembly. Biotechnol. Adv. 2002, 20, 321–339.

[4]

Boyle, A. L.; Woolfson, D. N. De novo designed peptides for biological applications. Chem. Soc. Rev. 2011, 40, 4295–4306.

[5]

Aida, T.; Meijer, E. W.; Stupp, S. I. Functional supramolecular polymers. Science 2012, 335, 813–817.

[6]

Lou, S. F.; Wang, X. M.; Yu, Z. L.; Shi, L. Q. Peptide tectonics: Encoded structural complementarity dictates programmable self-assembly. Adv. Sci. 2019, 6, 1802043.

[7]

Sinha, N. J.; Langenstein, M. G.; Pochan, D. J.; Kloxin, C. J.; Saven, J. G. Peptide design and self-assembly into targeted nanostructure and functional materials. Chem. Rev. 2021, 121, 13915–13935.

[8]

Zhu, J.; Avakyan, N.; Kakkis, A.; Hoffnagle, A. M.; Han, K.; Li, Y. Y.; Zhang, Z. Y.; Choi, T. S.; Na, Y.; Yu, C. J. et al. Protein assembly by design. Chem. Rev. 2021, 121, 13701–13796.

[9]

Conticello, V. P. Peptide-based nanomaterials: Building back better & beyond. Curr. Opin. Solid State Mater. Sci. 2023, 27, 101066.

[10]

Varga, V.; Leduc, C.; Bormuth, V.; Diez, S.; Howard, J. Kinesin-8 motors act cooperatively to mediate length-dependent microtubule depolymerization. Cell 2009, 138, 1174–1183.

[11]

Lai, Y. T.; King, N. P.; Yeates, T. O. Principles for designing ordered protein assemblies. Trends Cell Biol. 2012, 22, 653–661.

[12]
Du, Y. L.; Lyu, Y. F.; Lin, J.; Ma, C. R.; Zhang, Q.; Zhang, Y. T.; Qiu, L. P.; Tan, W. H. Membrane-anchored DNA nanojunctions enable closer antigen-presenting cell-T-cell contact in elevated T-cell receptor triggering. Nat. Nanotechnol., in press, https://doi.org/10.1038/s41565-023-01333-2.
[13]

van der Borg, G.; Crone, N.; Boyle, A. L.; Kros, A.; Roos, W. H. SNARE mimic peptide triggered membrane fusion kinetics revealed using single particle techniques. Phys. Chem. Chem. Phys. 2023, 25, 13019–13026.

[14]

Hübner, K.; Pilo-Pais, M.; Selbach, F.; Liedl, T.; Tinnefeld, P.; Stefani, F. D.; Acuna, G. P. Directing single-molecule emission with DNA origami-assembled optical antennas. Nano. Lett. 2019, 19, 6629–6634.

[15]

Rinker, S.; Ke, Y. G.; Liu, Y.; Chhabra, R.; Yan, H. Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding. Nat. Nanotechnol. 2008, 3, 418–422.

[16]

Fries, C. N.; Wu, Y. Y.; Kelly, S. H.; Wolf, M.; Votaw, N. L.; Zauscher, S.; Collier, J. H. Controlled lengthwise assembly of helical peptide nanofibers to modulate CD8+ T-cell responses. Adv. Mater. 2020, 32, 2003310.

[17]

Bucciantini, M.; Giannoni, E.; Chiti, F.; Baroni, F.; Formigli, L.; Zurdo, J. S.; Taddei, N.; Ramponi, G.; Dobson, C. M.; Stefani, M. Inherent toxicity of aggregates implies a common mechanism for protein misfolding diseases. Nature 2002, 416, 507–511.

[18]

Li, W.; Tang, J.; Lee, D.; Tice, T. R.; Schwendeman, S. P.; Prausnitz, M. R. Clinical translation of long-acting drug delivery formulations. Nat. Rev. Mater. 2022, 7, 406–420.

[19]

Finbloom, J. A.; Sousa, F.; Stevens, M. M.; Desai, T. A. Engineering the drug carrier biointerface to overcome biological barriers to drug delivery. Adv. Drug Deliver. Rev. 2020, 167, 89–108.

[20]

Li, D. D.; Wei, X. Y.; Xue, W. L.; Xu, L. B.; Xiang, Z. Y.; Liu, S. H.; Yang, T.; Chen, S. F. Size effect of zwitterionic peptide-based nanoscale micelles on cancer therapy. ACS Appl. Nano Mater. 2022, 5, 9344–9355.

[21]

Wang, F. B.; Gnewou, O.; Wang, S. Y.; Osinski, T.; Zuo, X. B.; Egelman, E. H.; Conticello, V. P. Deterministic chaos in the self-assembly of β sheet nanotubes from an amphipathic oligopeptide. Matter 2021, 4, 3217–3231.

[22]

Stathopulos, P. B.; Scholz, G. A.; Hwang, Y. M.; Rumfeldt, J. A. O.; Lepock, J. R.; Meiering, E. M. Sonication of proteins causes formation of aggregates that resemble amyloid. Protein Sci. 2004, 13, 3017–3027.

[23]

Chatani, E.; Lee, Y. H.; Yagi, H.; Yoshimura, Y.; Naiki, H.; Goto, Y. Ultrasonication-dependent production and breakdown lead to minimum-sized amyloid fibrils. Proc. Natl. Acad. Sci. USA 2009, 106, 11119–11124.

[24]

Rhys, G. G.; Wood, C. W.; Lang, E. J. M.; Mulholland, A. J.; Brady, R. L.; Thomson, A. R.; Woolfson, D. N. Maintaining and breaking symmetry in homomeric coiled-coil assemblies. Nat. Commun. 2018, 9, 4132.

[25]
Kumar, P.; Paterson, N. G.; Clayden, J.; Woolfson, D. N. De novo design of discrete, stable 310-helix peptide assemblies. Nature 2022, 607, 387–392.
[26]

Doll, T. A. P. F.; Dey, R.; Burkhard, P. Design and optimization of peptide nanoparticles. J. Nanobiotechnol. 2015, 13, 73.

[27]

Fletcher, J. M.; Harniman, R. L.; Barnes, F. R. H.; Boyle, A. L.; Collins, A.; Mantell, J.; Sharp, T. H.; Antognozzi, M.; Booth, P. J.; Linden, N. et al. Self-assembling cages from coiled-coil peptide modules. Science 2013, 340, 595–599.

[28]

Park, W. M.; Bedewy, M.; Berggren, K. K.; Keating, A. E. Modular assembly of a protein nanotriangle using orthogonally interacting coiled coils. Sci. Rep. 2017, 7, 10577.

[29]

Jiang, L. H.; Zuo, X. B.; Li, J. P.; Traaseth, N. J.; Kirshenbaum, K. Programmed supramolecular assemblies using orthogonal pairs of heterodimeric coiled coil peptides. Angew. Chem., Int. Ed. 2022, 61, e202201895.

[30]

Lapenta, F.; Aupič, J.; Strmšek, Ž.; Jerala, R. Coiled coil protein origami: From modular design principles towards biotechnological applications. Chem. Soc. Rev. 2018, 47, 3530–3542.

[31]

Woolfson, D. N. Understanding a protein fold: The physics, chemistry, and biology of α-helical coiled coils. J. Biol. Chem. 2023, 299, 104579.

[32]

Egelman, E. H.; Xu, C.; DiMaio, F.; Magnotti, E.; Modlin, C.; Yu, X.; Wright, E.; Baker, D.; Conticello, V. P. Structural plasticity of helical nanotubes based on coiled-coil assemblies. Structure 2015, 23, 280–289.

[33]

Wang, F. B.; Gnewou, O.; Modlin, C.; Beltran, L. C.; Xu, C. F.; Su, Z. L.; Juneja, P.; Grigoryan, G.; Egelman, E. H.; Conticello, V. P. Structural analysis of cross α-helical nanotubes provides insight into the designability of filamentous peptide nanomaterials. Nat. Commun. 2021, 12, 407.

[34]

Walshaw, J.; Woolfson, D. N. Open-and-shut cases in coiled-coil assembly: α-sheets and α-cylinders. Protein Sci. 2001, 10, 668–673.

[35]

Hughes, S. A.; Wang, F. B.; Wang, S. Y.; Kreutzberger, M. A. B.; Osinski, T.; Orlova, A.; Wall, J. S.; Zuo, X. B.; Egelman, E. H.; Conticello, V. P. Ambidextrous helical nanotubes from self-assembly of designed helical hairpin motifs. Proc. Natl. Acad. Sci. USA 2019, 116, 14456–14464.

[36]

Tarabout, C.; Roux, S.; Gobeaux, F.; Fay, N.; Pouget, E.; Meriadec, C.; Ligeti, M.; Thomas, D.; Ijsselstijn, M.; Besselievre, F. et al. Control of peptide nanotube diameter by chemical modifications of an aromatic residue involved in a single close contact. Proc. Natl. Acad. Sci. USA 2011, 108, 7679–7684.

[37]

Valéry, C.; Paternostre, M.; Robert, B.; Gulik-Krzywicki, T.; Narayanan, T.; Dedieu, J. C.; Keller, G.; Torres, M. L.; Cherif-Cheikh, R.; Calvo, P. et al. Biomimetic organization: Octapeptide self-assembly into nanotubes of viral capsid-like dimension. Proc. Natl. Acad. Sci. USA 2003, 100, 10258–10262.

[38]

Pieri, L.; Wang, F. B.; Arteni, A. A.; Vos, M.; Winter, J. M.; Le Du, M. H.; Artzner, F.; Gobeaux, F.; Legrand, P.; Boulard, Y. et al. Atomic structure of Lanreotide nanotubes revealed by cryo-EM. Proc. Natl. Acad. Sci. USA 2022, 119, e2120346119.

[39]

Zhao, Y. R.; Yang, W.; Wang, D.; Wang, J. Q.; Li, Z. Y.; Hu, X. Z.; King, S.; Rogers, S.; Lu, J. R.; Xu, H. Controlling the diameters of nanotubes self-assembled from designed peptide bolaphiles. Small 2018, 14, 1703216.

[40]

Zhao, Y. R.; Wang, J. Q.; Deng, L.; Zhou, P.; Wang, S. J.; Wang, Y. T.; Xu, H.; Lu, J. R. Tuning the self-assembly of short peptides via sequence variations. Langmuir 2013, 29, 13457–13464.

[41]

Childers, W. S.; Mehta, A. K.; Ni, R.; Taylor, J. V.; Lynn, D. G. Peptides organized as bilayer membranes. Angew. Chem., Int. Ed. 2010, 49, 4104–4107.

[42]

Guo, Q.; Mehta, A. K.; Grover, M. A.; Chen, W.; Lynn, D. G.; Chen, Z. Shape selection and multi-stability in helical ribbons. Appl. Phys. Lett. 2014, 104, 211901.

[43]

Li, S.; Mehta, A. K.; Sidorov, A. N.; Orlando, T. M.; Jiang, Z. G.; Anthony, N. R.; Lynn, D. G. Design of asymmetric peptide bilayer membranes. J. Am. Chem. Soc. 2016, 138, 3579–3586.

[44]

Ghadiri, M. R.; Granja, J. R.; Milligan, R. A.; Mcree, D. E.; Khazanovich, N. Self-assembling organic nanotubes based on a cyclic peptide architecture. Nature 1993, 366, 324–327.

[45]

Chen, K. H.; Corro, K. A.; Le, S. P.; Nowick, J. S. X-ray crystallographic structure of a giant double-walled peptide nanotube formed by a macrocyclic β-sheet containing Aβ16–22. J. Am. Chem. Soc. 2017, 139, 8102–8105.

[46]

Thomas, F.; Burgess, N. C.; Thomson, A. R.; Woolfson, D. N. Controlling the assembly of coiled-coil peptide nanotubes. Angew. Chem., Int. Ed. 2016, 55, 987–991.

[47]

Xu, C. F.; Liu, R.; Mehta, A. K.; Guerrero-Ferreira, R. C.; Wright, E. R.; Dunin-Horkawicz, S.; Morris, K.; Serpell, L. C.; Zuo, X. B.; Wall, J. S. et al. Rational design of helical nanotubes from self-assembly of coiled-coil lock washers. J. Am. Chem. Soc. 2013, 135, 15565–15578.

[48]

Wu, D. D.; Sinha, N.; Lee, J.; Sutherland, B. P.; Halaszynski, N. I.; Tian, Y.; Caplan, J.; Zhang, H. V.; Saven, J. G.; Kloxin, C. J. et al. Polymers with controlled assembly and rigidity made with click-functional peptide bundles. Nature 2019, 574, 658–662.

[49]
Woolfson, D. N. Coiled-coil design: Updated and upgraded. In Fibrous Proteins: Structures and Mechanisms; Parry, D. A. D.; Squire, J. M., Eds.; Springer: Cham, 2017; pp 35–61.
[50]

Jiang, T.; Xu, C. F.; Liu, Y.; Liu, Z.; Wall, J. S.; Zuo, X. B.; Lian, T. Q.; Salaita, K.; Ni, C. Y.; Pochan, D. et al. Structurally defined nanoscale sheets from self-assembly of collagen-mimetic peptides. J. Am. Chem. Soc. 2014, 136, 4300–4308.

[51]

Nam, K. T.; Shelby, S. A.; Choi, P. H.; Marciel, A. B.; Chen, R.; Tan, L.; Chu, T. K.; Mesch, R. A.; Lee, B. C.; Connolly, M. D. et al. Free-floating ultrathin two-dimensional crystals from sequence-specific peptoid polymers. Nat. Mater. 2010, 9, 454–460.

[52]

Hamley, I. W.; Hutchinson, J.; Kirkham, S.; Castelletto, V.; Kaur, A.; Reza, M.; Ruokolainen, J. Nanosheet formation by an anionic surfactant-like peptide and modulation of self-assembly through ionic complexation. Langmuir 2016, 32, 10387–10393.

[53]

Zhang, H. V.; Polzer, F.; Haider, M. J.; Tian, Y.; Villegas, J. A.; Kiick, K. L.; Pochan, D. J.; Saven, J. G. Computationally designed peptides for self-assembly of nanostructured lattices. Sci. Adv. 2016, 2, e1600307.

[54]

Yu, Z. L.; Tantakitti, F.; Palmer, L. C.; Stupp, S. I. Asymmetric peptide nanoribbons. Nano. Lett. 2016, 16, 6967–6974.

[55]

Magnotti, E. L.; Hughes, S. A.; Dillard, R. S.; Wang, S. Y.; Hough, L.; Karumbamkandathil, A.; Lian, T. Q.; Wall, J. S.; Zuo, X. B.; Wright, E. R. et al. Self-assembly of an α-helical peptide into a crystalline two-dimensional nanoporous framework. J. Am. Chem. Soc. 2016, 138, 16274–16282.

[56]

Lin, Y. Y.; Thomas, M. R.; Gelmi, A.; Leonardo, V.; Pashuck, E. T.; Maynard, S. A.; Wang, Y.; Stevens, M. M. Self-assembled 2D free-standing janus nanosheets with single-layer thickness. J. Am. Chem. Soc. 2017, 139, 13592–13595.

[57]

Stupp, S. I.; LeBonheur, V.; Walker, K.; Li, L. S.; Huggins, K. E.; Keser, M.; Amstutz, A. Supramolecular materials: Self-organized nanostructures. Science 1997, 276, 384–389.

[58]

Besenius, P.; Portale, G.; Bomans, P. H. H.; Janssen, H. M.; Palmans, A. R. A.; Meijer, E. W. Controlling the growth and shape of chiral supramolecular polymers in water. Proc. Natl. Acad. Sci. USA 2010, 107, 17888–17893.

[59]

Dong, H.; Paramonov, S. E.; Aulisa, L.; Bakota, E. L.; Hartgerink, J. D. Self-assembly of multidomain peptides: Balancing molecular frustration controls conformation and nanostructure. J. Am. Chem. Soc. 2007, 129, 12468–12472.

[60]

Appel, R.; Fuchs, J.; Tyrrell, S. M.; Korevaar, P. A.; Stuart, M. C. A.; Voets, I. K.; Schönhoff, M.; Besenius, P. Steric constraints induced frustrated growth of supramolecular nanorods in water. Chem.—Eur. J. 2015, 21, 19257–19264.

[61]

Su, H.; Wang, F. H.; Wang, H.; Zhang, W. J.; Anderson, C. F.; Cui, H. G. Propagation-instigated self-limiting polymerization of multiarmed amphiphiles into finite supramolecular polymers. J. Am. Chem. Soc. 2021, 143, 18446–18453.

[62]

Jiang, T.; Xu, C. F.; Zuo, X. B.; Conticello, V. P. Structurally homogeneous nanosheets from self-assembly of a collagen-mimetic peptide. Angew. Chem., Int. Ed. 2014, 53, 8367–8371.

[63]

Merg, A. D.; Touponse, G.; van Genderen, E.; Zuo, X. B.; Bazrafshan, A.; Blum, T.; Hughes, S.; Salaita, K.; Abrahams, J. P.; Conticello, V. P. 2D crystal engineering of nanosheets assembled from helical peptide building blocks. Angew. Chem., Int. Ed. 2019, 58, 13507–13512.

[64]

Bull, S. R.; Palmer, L. C.; Fry, N. J.; Greenfield, M. A.; Messmore, B. W.; Meade, T. J.; Stupp, S. I. A templating approach for monodisperse self-assembled organic nanostructures. J. Am. Chem. Soc. 2008, 130, 2742–2743.

[65]

Ruff, Y.; Moyer, T.; Newcomb, C. J.; Demeler, B.; Stupp, S. I. Precision templating with DNA of a virus-like particle with peptide nanostructures. J. Am. Chem. Soc. 2013, 135, 6211–6219.

[66]

Stubbs, G.; Warren, S.; Holmes, K. Structure of RNA and RNA binding site in tobacco mosaic virus from 4-Å map calculated from X-ray fibre diagrams. Nature 1977, 267, 216–221.

[67]

Hernandez-Garcia, A.; Kraft, D. J.; Janssen, A. F. J.; Bomans, P. H. H.; Sommerdijk, N. A. J. M.; Thies-Weesie, D. M. E.; Favretto, M. E.; Brock, R.; de Wolf, F. A.; Werten, M. W. T. et al. Design and self-assembly of simple coat proteins for artificial viruses. Nat. Nanotechnol. 2014, 9, 698–702.

[68]
Lourenço, T. C.; de Mello, L. R.; Icimoto, M. Y.; Bicev, R. N.; Hamley, I. W.; Castelletto, V.; Nakaie, C. R.; da Silva, E. R. DNA-templated self-assembly of bradykinin into bioactive nanofibrils. Soft Matter, in press, https://doi.org/10.1039/d3sm00431g.
[69]

Ni, R.; Chau, Y. Structural mimics of viruses through peptide/DNA co-assembly. J. Am. Chem. Soc. 2014, 136, 17902–17905.

[70]

Ni, R.; Chau, Y. Tuning the inter-nanofibril interaction to regulate the morphology and function of peptide/DNA Co-assembled viral mimics. Angew. Chem., Int. Ed. 2017, 56, 9356–9360.

[71]

Lin, B. F.; Marullo, R. S.; Robb, M. J.; Krogstad, D. V.; Antoni, P.; Hawker, C. J.; Campos, L. M.; Tirrell, M. V. De novo design of bioactive protein-resembling nanospheres via dendrimer-templated peptide amphiphile assembly. Nano Lett. 2011, 11, 3946–3950.

[72]

Grigoryan, G.; Kim, Y. H.; Acharya, R.; Axelrod, K.; Jain, R. M.; Willis, L.; Drndic, M.; Kikkawa, J. M.; DeGrado, W. F. Computational design of virus-like protein assemblies on carbon nanotube surfaces. Science 2011, 332, 1071–1076.

[73]

Chen, C.; Daniel, M. C.; Quinkert, Z. T.; De, M.; Stein, B.; Bowman, V. D.; Chipman, P. R.; Rotello, V. M.; Kao, C. C.; Dragnea, B. Nanoparticle-templated assembly of viral protein cages. Nano Lett. 2006, 6, 611–615.

[74]

Sun, J. C.; DuFort, C.; Daniel, M. C.; Murali, A.; Chen, C.; Gopinath, K.; Stein, B.; De, M.; Rotello, V. M.; Holzenburg, A. et al. Core-controlled polymorphism in virus-like particles. Proc. Natl. Acad. Sci. USA 2007, 104, 1354–1359.

[75]

Villegas, J. A.; Sinha, N. J.; Teramoto, N.; Von Bargen, C. D.; Pochan, D. J.; Saven, J. G. Computational design of single-peptide nanocages with nanoparticle templating. Molecules 2022, 27, 1237.

[76]

Porrata, P.; Goun, E.; Matsui, H. Size-controlled self-assembly of peptide nanotubes using polycarbonate membranes as templates. Chem. Mater. 2002, 14, 4378–4381.

[77]

Woolfson, D. N.; Mahmoud, Z. N. More than just bare scaffolds: Towards multi-component and decorated fibrous biomaterials. Chem. Soc. Rev. 2010, 39, 3464–3479.

[78]

Collier, J. H.; Rudra, J. S.; Gasiorowski, J. Z.; Jung, J. P. Multi-component extracellular matrices based on peptide self-assembly. Chem. Soc. Rev. 2010, 39, 3413–3424.

[79]

Raymond, D. M.; Nilsson, B. L. Multicomponent peptide assemblies. Chem. Soc. Rev. 2018, 47, 3659–3720.

[80]

Okesola, B. O.; Mata, A. Multicomponent self-assembly as a tool to harness new properties from peptides and proteins in material design. Chem. Soc. Rev. 2018, 47, 3721–3736.

[81]

Adler-Abramovich, L.; Marco, P.; Amon, Z. A.; Creasey, R. C. G.; Michaels, T. C. T.; Levin, A.; Scurr, D. J.; Roberts, C. J.; Knowles, T. P. J.; Tendler, S. J. B. et al. Controlling the physical dimensions of peptide nanotubes by supramolecular polymer coassembly. ACS Nano 2016, 10, 7436–7442.

[82]

Ueda, M.; Makino, A.; Imai, T.; Sugiyama, J.; Kimura, S. Rational design of peptide nanotubes for varying diameters and lengths. J. Pept. Sci. 2011, 17, 94–99.

[83]

Aluri, S.; Pastuszka, M. K.; Moses, A. S.; MacKay, J. A. Elastin-like peptide amphiphiles form nanofibers with tunable length. Biomacromolecules 2012, 13, 2645–2654.

[84]

Zheng, J.; Liu, C.; Sawaya, M. R.; Vadla, B.; Khan, S.; Woods, R. J.; Eisenberg, D.; Goux, W. J.; Nowick, J. S. Macrocyclic β-sheet peptides that inhibit the aggregation of a tau-protein-derived hexapeptide. J. Am. Chem. Soc. 2011, 133, 3144–3157.

[85]

Bromley, E. H. C.; Sessions, R. B.; Thomson, A. R.; Woolfson, D. N. Designed α-helical tectons for constructing multicomponent synthetic biological systems. J. Am. Chem. Soc. 2009, 131, 928–930.

[86]

Cheng, D.; Chen, X.; Zhang, W. J.; Guo, P.; Xue, W. H.; Xia, J. F.; Wu, S. Y.; Shi, J. H.; Ma, D.; Zuo, X. B. et al. Design of multicomponent peptide fibrils with ordered and programmable compositional patterns. Angew. Chem., Int. Ed. 2023, 62, e202303684.

[87]

Lumb, K. J.; Kim, P. S. A buried polar interaction imparts structural uniqueness in a designed heterodimeric coiled coil. Biochemistry 1995, 34, 8642–8648.

[88]

Dong, H.; Hartgerink, J. D. Short homodimeric and heterodimeric coiled coils. Biomacromolecules 2006, 7, 691–695.

[89]

Mason, J. M.; Schmitz, M. A.; Müller, K.; Arndt, K. M. Semirational design of Jun-Fos coiled coils with increased affinity: Universal implications for leucine zipper prediction and design. Proc. Natl. Acad. Sci. USA 2006, 103, 8989–8994.

[90]

Reinke, A. W.; Grant, R. A.; Keating, A. E. A synthetic coiled-coil interactome provides heterospecific modules for molecular engineering. J. Am. Chem. Soc. 2010, 132, 6025–6031.

[91]

Gradišar, H.; Jerala, R. De novo design of orthogonal peptide pairs forming parallel coiled-coil heterodimers. J. Pept. Sci. 2011, 17, 100–106.

[92]

Gradišar, H.; Bošič, S.; Doles, T.; Vengust, D.; Hafner-Bratkovič, I.; Mertelj, A.; Webb, B.; šali, A.; Klavžar, S.; Jerala, R. Design of a single-chain polypeptide tetrahedron assembled from coiled-coil segments. Nat. Chem. Biol. 2013, 9, 362–366.

[93]

Crooks, R. O.; Baxter, D.; Panek, A. S.; Lubben, A. T.; Mason, J. M. Deriving heterospecific self-assembling protein–protein interactions using a computational interactome screen. J. Mol. Biol. 2016, 428, 385–398.

[94]

Wang, F. B.; Gnewou, O.; Solemanifar, A.; Conticello, V. P.; Egelman, E. H. Cryo-EM of helical polymers. Chem. Rev. 2022, 122, 14055–14065.

[95]

Miller, J. G.; Hughes, S. A.; Modlin, C.; Conticello, V. P. Structures of synthetic helical filaments and tubes based on peptide and peptido-mimetic polymers. Quart. Rev. Biophys. 2022, 55, e2.

[96]

Huang, P. S.; Oberdorfer, G.; Xu, C. F.; Pei, X. Y.; Nannenga, B. L.; Rogers, J. M.; DiMaio, F.; Gonen, T.; Luisi, B.; Baker, D. High thermodynamic stability of parametrically designed helical bundles. Science 2014, 346, 481–485.

[97]

Thomson, A. R.; Wood, C. W.; Burton, A. J.; Bartlett, G. J.; Sessions, R. B.; Brady, R. L.; Woolfson, D. N. Computational design of water-soluble α-helical barrels. Science 2014, 346, 485–488.

[98]

Chen, Z. B.; Boyken, S. E.; Jia, M. X.; Busch, F.; Flores-Solis, D.; Bick, M. J.; Lu, P. L.; VanAernum, Z. L.; Sahasrabuddhe, A.; Langan, R. A. et al. Programmable design of orthogonal protein heterodimers. Nature 2019, 565, 106–111.

[99]

Batra, R.; Loeffler, T. D.; Chan, H.; Srinivasan, S.; Cui, H. G.; Korendovych, I. V.; Nanda, V.; Palmer, L. C.; Solomon, L. A.; Fry, H. C. et al. Machine learning overcomes human bias in the discovery of self-assembling peptides. Nat. Chem. 2022, 14, 1427–1435.

[100]

Yan, H.; Park, S. H.; Finkelstein, G.; Reif, J. H.; LaBean, T. H. DNA-templated self-assembly of protein arrays and highly conductive nanowires. Science 2003, 301, 1882–1884.

[101]

Ghosh, P. S.; Hamilton, A. D. Noncovalent template-assisted mimicry of multiloop protein surfaces: Assembling discontinuous and functional domains. J. Am. Chem. Soc. 2012, 134, 13208–13211.

[102]

Wang, D. B.; Capehart, S. L.; Pal, S.; Liu, M. H.; Zhang, L.; Schuck, P. J.; Liu, Y.; Yan, H.; Francis, M. B.; De Yoreo, J. J. Hierarchical assembly of plasmonic nanostructures using virus capsid scaffolds on DNA origami templates. ACS Nano 2014, 8, 7896–7904.

[103]

Udomprasert, A.; Bongiovanni, M. N.; Sha, R. J.; Sherman, W. B.; Wang, T.; Arora, P. S.; Canary, J. W.; Gras, S. L.; Seeman, N. C. Amyloid fibrils nucleated and organized by DNA origami constructions. Nat. Nanotechnol. 2014, 9, 537–541.

[104]

Jiang, T.; Meyer, T. A.; Modlin, C.; Zuo, X. B.; Conticello, V. P.; Ke, Y. G. Structurally ordered nanowire formation from co-assembly of DNA origami and collagen-mimetic peptides. J. Am. Chem. Soc. 2017, 139, 14025–14028.

[105]

Jin, J.; Baker, E. G.; Wood, C. W.; Bath, J.; Woolfson, D. N.; Turberfield, A. J. Peptide assembly directed and quantified using megadalton DNA nanostructures. ACS Nano 2019, 13, 9927–9935.

[106]

Buchberger, A.; Simmons, C. R.; Fahmi, N. E.; Freeman, R.; Stephanopoulos, N. Hierarchical assembly of nucleic acid/coiled-coil peptide nanostructures. J. Am. Chem. Soc. 2020, 142, 1406–1416.

Nano Research
Pages 151-161
Cite this article:
Cheng D, Jia F, Jiang Y-B, et al. Assembly of peptide nanostructures with controllable sizes. Nano Research, 2024, 17(1): 151-161. https://doi.org/10.1007/s12274-023-5970-x
Topics:

762

Views

2

Crossref

0

Web of Science

1

Scopus

0

CSCD

Altmetrics

Received: 29 April 2023
Revised: 29 June 2023
Accepted: 30 June 2023
Published: 26 July 2023
© Tsinghua University Press 2023
Return