Journal Home > Volume 17 , Issue 3

Propylene carbonate (PC)-based electrolytes have exhibited significant advantages in boosting the low-temperature discharging of graphite-based Li-ion batteries. However, it is still unclear whether they can improve the charging property and suppress lithium plating. Studying this topic is challenging due to the problem of electrochemical compatibility. To overcome this issue, we introduced graphite with phase defects. The results show that the pouch-type full batteries using PC-based electrolyte exhibit steady performance over 500 cycles and can be reversibly charged over 30 times at −20 °C with an average Coulombic efficiency of 99.95%, while the corresponding value for the conventional ethylene carbonate (EC)-based electrolyte sample is only 31.20%. This indicates that the use of PC-based electrolyte significantly suppresses lithium plating during low-temperature charging. We further demonstrate that the improved performance is mainly attributed to the unique solvation structure, where more PF6 anions participate in solvation, leading to the formation of a stable F-rich solid state electrolyte interface on the graphite surface and a lower reduction tendency of Li+ ions. This work inspires new ideas for the design of PC-based electrolytes for low-temperature charging and fast-charging batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Boosting reversible charging of Li-ion batteries at low temperatures by a synergy of propylene carbonate-based electrolyte and defective graphite

Show Author's information Yingqiang Wu1Jiao Zhang1,2Jinli Liu1,3Li Sheng1( )Bo Zhang1Limin Wang2Siqi Shi4( )Li Wang1Hong Xu1Xiangming He1( )
Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), Changchun 130022, China
China National Quality Supervision and Inspection Center for Industrial Explosive Materials, Nanjing University of Science and Technology, Nanjing 210094, China
School of Materials Science and Engineering, Materials Genome Institute, Shanghai University, Shanghai 200444, China

Abstract

Propylene carbonate (PC)-based electrolytes have exhibited significant advantages in boosting the low-temperature discharging of graphite-based Li-ion batteries. However, it is still unclear whether they can improve the charging property and suppress lithium plating. Studying this topic is challenging due to the problem of electrochemical compatibility. To overcome this issue, we introduced graphite with phase defects. The results show that the pouch-type full batteries using PC-based electrolyte exhibit steady performance over 500 cycles and can be reversibly charged over 30 times at −20 °C with an average Coulombic efficiency of 99.95%, while the corresponding value for the conventional ethylene carbonate (EC)-based electrolyte sample is only 31.20%. This indicates that the use of PC-based electrolyte significantly suppresses lithium plating during low-temperature charging. We further demonstrate that the improved performance is mainly attributed to the unique solvation structure, where more PF6 anions participate in solvation, leading to the formation of a stable F-rich solid state electrolyte interface on the graphite surface and a lower reduction tendency of Li+ ions. This work inspires new ideas for the design of PC-based electrolytes for low-temperature charging and fast-charging batteries.

Keywords: graphite, lithium-ion batteries, propylene carbonate, low-temperature charging

References(54)

[1]

Liu, Y. Y.; Zhu, Y. Y.; Cui, Y. Challenges and opportunities towards fast-charging battery materials. Nat. Energy 2019, 4, 540–550.

[2]

Gupta, A.; Manthiram, A. Designing advanced lithium-based batteries for low-temperature conditions. Adv. Energy Mater. 2020, 10, 2001972.

[3]

Wu, Y. Q.; Xie, L. Q.; Ming, H.; Guo, Y. J.; Hwang, J. Y.; Wang, W. X.; He, X. M.; Wang, L. M.; Alshareef, H. N.; Sun, Y. K. et al. An empirical model for the design of batteries with high energy density. ACS Energy Lett. 2020, 5, 807–816.

[4]

Song, Y. Z.; Liu, X.; Ren, D. S.; Liang, H. M.; Wang, L.; Hu, Q.; Cui, H.; Xu, H.; Wang, J. L.; Zhao, C. et al. Simultaneously blocking chemical crosstalk and internal short circuit via gel-stretching derived nanoporous non-shrinkage separator for safe lithium-ion batteries. Adv. Mater. 2022, 34, 2106335.

[5]

Song, Y. Z.; Wang, L.; Cui, H.; Liang, H. M.; Hu, Q.; Ren, D. S.; Yang, Y.; Zhang, H.; Xu, H.; He, X. M. Boosting battery safety by mitigating thermal-induced crosstalk with a Bi-continuous separator. Adv. Energy Mater. 2022, 12, 2201964.

[6]

Zhang, N.; Deng, T.; Zhang, S. Q.; Wang, C. H.; Chen, L. X.; Wang, C. S.; Fan, X. L. Critical review on low-temperature Li-ion/metal batteries. Adv. Mater. 2022, 34, 2107899.

[7]

Hubble, D.; Brown, D. E.; Zhao, Y. Z.; Fang, C.; Lau, J.; McCloskey, B. D.; Liu, G. Liquid electrolyte development for low-temperature lithium-ion batteries. Energy Environ. Sci. 2022, 15, 550–578.

[8]

Fan, J.; Tan, S. Studies on charging lithium-ion cells at low temperatures. J. Electrochem. Soc. 2006, 153, A1081–A1092.

[9]

Cho, Y. G.; Li, M. Q.; Holoubek, J.; Li, W. K.; Yin, Y. J.; Meng, Y. S.; Chen, Z. Enabling the low-temperature cycling of NMC||graphite pouch cells with an ester-based electrolyte. ACS Energy Lett. 2021, 6, 2016–2023.

[10]

Petzl, M.; Kasper, M.; Danzer, M. A. Lithium plating in a commercial lithium-ion battery—A low-temperature aging study. J. Power Sources 2015, 275, 799–807.

[11]

von Lüders, C.; Zinth, V.; Erhard, S. V.; Osswald, P. J.; Hofmann, M.; Gilles, R.; Jossen, A. Lithium plating in lithium-ion batteries investigated by voltage relaxation and in situ neutron diffraction. J. Power Sources 2017, 342, 17–23.

[12]

Zhang, G. X.; Wei, X. Z.; Han, G. S.; Dai, H. F.; Zhu, J. G.; Wang, X. Y.; Tang, X.; Ye, J. P. Lithium plating on the anode for lithium-ion batteries during long-term low temperature cycling. J. Power Sources 2021, 484, 229312.

[13]

Piao, N.; Gao, X. N.; Yang, H. C.; Guo, Z. Q.; Hu, G. J.; Cheng, H. M.; Li, F. Challenges and development of lithium-ion batteries for low temperature environments. eTransportation 2022, 11, 100145.

[14]

Li, Q.; Liu, G.; Cheng, H. R.; Sun, Q. J.; Zhang, J. L.; Ming, J. Low-temperature electrolyte design for lithium-ion batteries: Prospect and challenges. Chem.—Eur. J. 2021, 27, 15842–15865.

[15]

Li, Q. Y.; Lu, D. P.; Zheng, J. M.; Jiao, S. H.; Luo, L. L.; Wang, C. M.; Xu, K.; Zhang, J. G.; Xu, W. Li+-desolvation dictating lithium-ion battery’s low-temperature performances. ACS Appl. Mater. Interfaces 2017, 9, 42761–42768.

[16]

Sun, C. C.; Ji, X.; Weng, S. T.; Li, R. H.; Huang, X. T.; Zhu, C. N.; Xiao, X. Z.; Deng, T.; Fan, L. W.; Chen, L. X. et al. 50 C fast-charge Li-ion batteries using a graphite anode. Adv. Mater. 2022, 34, 2206020.

[17]

Xu, K.; Lam, Y.; Zhang, S. S.; Jow, T. R.; Curtis, T. B. Solvation sheath of Li+ in nonaqueous electrolytes and its implication of graphite/electrolyte interface chemistry. J. Phys. Chem. C 2007, 111, 7411–7421.

[18]

Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303–4418.

[19]

Liao, B.; Li, H. Y.; Xu, M. Q.; Xing, L. D.; Liao, Y. H.; Ren, X. B.; Fan, W. Z.; Yu, L.; Xu, K.; Li, W. S. Designing low impedance interface films simultaneously on anode and cathode for high energy batteries. Adv. Energy Mater. 2018, 8, 1800802.

[20]

Deng, X. H.; Zhang, S.; Chen, C.; Lan, Q. H.; Yang, G. Z.; Feng, T. T.; Zhou, H. P.; Wang, H. Y.; Xu, Z. Q.; Wu, M. Q. Rational design of electrolytes operating at low temperatures: Does the co-solvent with a lower melting point correspond to better performance? Electrochim. Acta 2022, 415, 140268.

[21]

Yoo, D. J.; Liu, Q.; Cohen, O.; Kim, M.; Persson, K. A.; Zhang, Z. C. Understanding the role of SEI layer in low-temperature performance of lithium-ion batteries. ACS Appl. Mater. Interfaces 2022, 14, 11910–11918.

[22]

Ramasamy, H. V.; Kim, S.; Adams, E. J.; Rao, H.; Pol, V. G. A novel cyclopentyl methyl ether electrolyte solvent with a unique solvation structure for subzero (−40 °C) lithium-ion batteries. Chem. Commun. 2022, 58, 5124–5127.

[23]

Qian, Y. X.; Chu, Y. L.; Zheng, Z. T.; Shadike, Z.; Han, B.; Xiang, S. H.; Kang, Y. Y.; Hu, S. G.; Cao, C. W.; Zhong, L. et al. A new cyclic carbonate enables high power/low temperature lithium-ion batteries. Energy Storage Mater. 2022, 45, 14–23.

[24]

Kim, J.; Adiraju, V. A. K.; Chae, O. B.; Lucht, B. L. Lithium bis(trimethylsilyl) phosphate as an electrolyte additive to improve the low-temperature performance for LiNi0.8Co0.1Mn0.1O2/graphite cells. J. Electrochem. Soc. 2021, 168, 080538.

[25]

Klein, S.; van Wickeren, S.; Röser, S.; Bärmann, P.; Borzutzki, K.; Heidrich, B.; Börner, M.; Winter, M.; Placke, T.; Kasnatscheew, J. Understanding the outstanding high-voltage performance of NCM523||graphite lithium ion cells after elimination of ethylene carbonate solvent from conventional electrolyte. Adv. Energy Mater. 2021, 11, 2003738.

[26]

Ma, L.; Glazier, S. L.; Petibon, R.; Xia, J.; Peters, J. M.; Liu, Q.; Allen, J.; Doig, R. N. C.; Dahn, J. R. A guide to ethylene carbonate-free electrolyte making for Li-ion cells. J. Electrochem. Soc. 2017, 164, A5008–A5018.

[27]

Zou, Y. G.; Shen, Y. B.; Wu, Y. Q.; Xue, H. J.; Guo, Y. J.; Liu, G.; Wang, L. M.; Ming, J. A designed durable electrolyte for high-voltage lithium-ion batteries and mechanism analysis. Chem.—Eur. J. 2020, 26, 7930–7936.

[28]

Liu, Q. Q.; Xiong, D. J.; Petibon, R.; Du, C. Y.; Dahn, J. R. Gas evolution during unwanted lithium plating in Li-ion cells with EC-based or EC-free electrolytes. J. Electrochem. Soc. 2016, 163, A3010–A3015.

[29]

Chen, L. H.; Shu, J.; Huang, Y. B.; Shi, Z. P.; Luo, H.; Liu, Z. P.; Shen, C. Engineering solid electrolyte interphase for the application of propylene carbonate solvent for graphite anode in low temperate battery. Appl. Surf. Sci. 2022, 598, 153740.

[30]

Doi, T.; Shimizu, Y.; Hashinokuchi, M.; Inaba, M. Dilution of highly concentrated LiBF4/propylene carbonate electrolyte solution with fluoroalkyl ethers for 5-V LiNi0.5Mn1.5O4 positive electrodes. J. Electrochem. Soc. 2017, 164, A6412–A6416.

[31]

Nie, M. Y.; Abraham, D. P.; Seo, D. M.; Chen, Y. J.; Bose, A.; Lucht, B. L. Role of solution structure in solid electrolyte interphase formation on graphite with LiPF6 in propylene carbonate. J. Phys. Chem. C 2013, 117, 25381–25389.

[32]

Chung, G. C.; Kim, H. J.; Yu, S. I.; Jun, S. H.; Choi, J. W.; Kim, M. H. Origin of graphite exfoliation an investigation of the important role of solvent cointercalation. J. Electrochem. Soc. 2000, 147, 4391.

[33]

Gnanaraj, J. S.; Thompson, R. W.; DiCarlo, J. F.; Abraham, K. M. The role of carbonate solvents on lithium intercalation into graphite. J. Electrochem. Soc. 2007, 154, A185.

[34]

Guerin, K.; Fevrier-Bouvier, A.; Flandrois, S.; Couzi, M.; Simon, B.; Biensan, P. Effect of graphite crystal structure on lithium electrochemical intercalation. J. Electrochem. Soc. 1999, 146, 3660–3665.

[35]

Simon, B.; Flandrois, S.; Fevrier-bouvier, A.; Biensan, P. Hexagonal vs. rhombohedral graphite: The effect of crystal structure on electrochemical intercalation of lithium ions. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 1998, 310, 333–340.

[36]

Spahr, M. E.; Wilhelm, H.; Palladino, T.; Dupont-Pavlovsky, N.; Goers, D.; Joho, F.; Novák, P. The role of graphite surface group chemistry on graphite exfoliation during electrochemical lithium insertion. J. Power Sources 2003, 119–121, 543–549.

[37]

Kohs, W.; Santner, H. J.; Hofer, F.; Schröttner, H.; Doninger, J.; Barsukov, I.; Buqa, H.; Albering, J. H.; Möller, K. C.; Besenhard, J. O. et al. A study on electrolyte interactions with graphite anodes exhibiting structures with various amounts of rhombohedral phase. J. Power Sources 2003, 119–121, 528–537.

[38]

Fan, H. M.; Liu, X. W.; Luo, L. B.; Zhong, F. P.; Cao, Y. L. All-climate high-voltage commercial lithium-ion batteries based on propylene carbonate electrolytes. ACS Appl. Mater. Interfaces 2022, 14, 574–580.

[39]

Sun, H. COMPASS: An ab initio force-field optimized for condensed-phase applications—Overview with details on alkane and benzene compounds. J. Phys. Chem. B 1998, 102, 7338–7364.

[40]

Sun, H.; Ren, P.; Fried, J. R. The COMPASS force field: Parameterization and validation for phosphazenes. Comput. Theor. Polym. Sci. 1998, 8, 229–246.

[41]

Sun, H.; Jin, Z.; Yang, C. W.; Akkermans, R. L. C.; Robertson, S. H.; Spenley, N. A.; Miller, S.; Todd, S. M. COMPASS II: Extended coverage for polymer and drug-like molecule databases. J. Mol. Model. 2016, 22, 47.

[42]

Sodeyama, K.; Yamada, Y.; Aikawa, K.; Yamada, A.; Tateyama, Y. Sacrificial anion reduction mechanism for electrochemical stability improvement in highly concentrated Li-salt electrolyte. J. Phys. Chem. C 2014, 118, 14091–14097.

[43]

Xu, H.; Gao, J.; Jiang, D. L. Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat. Chem. 2015, 7, 905–912.

[44]

Xu, H.; Tao, S. S.; Jiang, D. L. Proton conduction in crystalline and porous covalent organic frameworks. Nat. Mater. 2016, 15, 722–726.

[45]

Jin, E. Q.; Asada, M.; Xu, Q.; Dalapati, S.; Addicoat, M. A.; Brady, M. A.; Xu, H.; Nakamura, T.; Heine, T.; Chen, Q. H. et al. Two-dimensional sp2 carbon-conjugated covalent organic frameworks. Science 2017, 357, 673–676.

[46]

Chou, C. P.; Sakti, A. W.; Nishimura, Y.; Nakai, H. Development of divide-and-conquer density-functional tight-binding method for theoretical research on Li-ion battery. Chem. Rec. 2019, 19, 746–757.

[47]

Sheng, L.; Wu, Y. Z.; Tian, J. K.; Wang, L.; Wang, J. L.; Tang, Y. P.; Xu, H.; He, X. M. Impact of lithium-ion coordination on lithium electrodeposition. Energy Environ. Mater. 2023, 6, e12266.

[48]

Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 1984, 81, 511–519.

[49]

Hoover, W. G. Canonical dynamics: Equilibrium phase-space distributions. Phys. Rev. A 1985, 31, 1695–1697.

[50]

Habedank, J. B.; Kriegler, J.; Zaeh, M. F. Enhanced fast charging and reduced lithium-plating by laser-structured anodes for lithium-ion batteries. J. Electrochem. Soc. 2019, 166, A3940–A3949.

[51]

Bugga, R. V.; Smart, M. C. Lithium plating behavior in lithium-ion cells. ECS Trans. 2010, 25, 241–252.

[52]

Wu, Y. Q.; Li, M. L.; Wahyudi, W.; Sheng, G.; Miao, X. H.; Anthopoulos, T. D.; Huang, K. W.; Li, Y. X.; Lai, Z. P. Performance and stability improvement of layered NCM lithium-ion batteries at high voltage by a microporous Al2O3 sol–gel coating. ACS Omega 2019, 4, 13972–13980.

[53]

Hou, P. Y.; Zhang, H. Z.; Deng, X. L.; Xu, X. J.; Zhang, L. Q. Stabilizing the electrode/electrolyte interface of LiNi0.8Co0.15Al0.05O2 through tailoring aluminum distribution in microspheres as long-life, high-rate, and safe cathode for lithium-ion batteries. ACS Appl. Mater. Interfaces 2017, 9, 29643–29653.

[54]

Chen, X.; Zhang, Q. Atomic insights into the fundamental interactions in lithium battery electrolytes. Acc. Chem. Res. 2020, 53, 1992–2002.

File
12274_2023_5968_MOESM1_ESM.pdf (1.7 MB)
12274_2023_5968_MOESM2_ESM.pdf (658.2 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 March 2023
Revised: 13 June 2023
Accepted: 28 June 2023
Published: 27 July 2023
Issue date: March 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22279071, 22279070, 52073161, and U21A20170), the Ministry of Science and Technology of the People’s Republic of China (Nos. 2019YFA0705703 and 2019YFE0100200), and Postdoctoral Research Foundation of China (No. 2021M701873).

Return