Journal Home > Volume 17 , Issue 3

Chlorine (Cl2) is one of the most important chemicals produced by the electrolysis of brine solutions and is a key raw material for many areas of industrial chemistry. For nearly half a century, dimensionally stable anode (DSA) made from a mixture of RuO2 and TiO2 solid oxides coated on Ti substrate has been the most widely used electrode for chlorine evolution reaction (CER). In harsh operating environments, the stability of DSAs remains a major challenge greatly affecting their lifetime. The deactivation of DSAs significantly increases the cost of the chlor-alkali industry due to the corrosion of Ru and the formation of the passivation layer TiO2. Therefore, it is urgent to develop catalysts with higher activity and stability, which requires a thorough understanding of the deactivation mechanism of DSA catalysts. This paper reviews existing references on the deactivation mechanisms of DSA catalysts, including both experimental and theoretical studies. Studies on how CER selectivity affects electrode stability are also discussed. Furthermore, studies on the effects of the preparation process, elemental composition, and surface/interface structures on the DSA stability and corresponding improvement strategies are summarized. The development of other non-DSA-type catalysts with comparable stability is also reviewed, and future opportunities in this exciting field are also outlined.


menu
Abstract
Full text
Outline
About this article

Stability of dimensionally stable anode for chlorine evolution reaction

Show Author's information Ziliang Deng1Shuying Xu1Chuhao Liu2Xueqiang Zhang3Mufan Li2( )Zipeng Zhao1( )
Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, Beijing 10081, China

Abstract

Chlorine (Cl2) is one of the most important chemicals produced by the electrolysis of brine solutions and is a key raw material for many areas of industrial chemistry. For nearly half a century, dimensionally stable anode (DSA) made from a mixture of RuO2 and TiO2 solid oxides coated on Ti substrate has been the most widely used electrode for chlorine evolution reaction (CER). In harsh operating environments, the stability of DSAs remains a major challenge greatly affecting their lifetime. The deactivation of DSAs significantly increases the cost of the chlor-alkali industry due to the corrosion of Ru and the formation of the passivation layer TiO2. Therefore, it is urgent to develop catalysts with higher activity and stability, which requires a thorough understanding of the deactivation mechanism of DSA catalysts. This paper reviews existing references on the deactivation mechanisms of DSA catalysts, including both experimental and theoretical studies. Studies on how CER selectivity affects electrode stability are also discussed. Furthermore, studies on the effects of the preparation process, elemental composition, and surface/interface structures on the DSA stability and corresponding improvement strategies are summarized. The development of other non-DSA-type catalysts with comparable stability is also reviewed, and future opportunities in this exciting field are also outlined.

Keywords: metal oxide, chlorine evolution reaction (CER), RuO2-TiO2, anode stability, dimensionally stable anode (DSA)

References(70)

[1]
O’Brien, T. F.; Bommaraju, T. V.; Hine, F. Handbook of Chlor-Alkali Technology; Springer: New York, 2005; pp 1–16.
DOI
[2]
Schmittinger, P.; Florkiewicz, T.; Curlin, L.C.; Lüke, B.; Scannell, R.; Navin, T.; Zelfel, E.; Bartsch, R. Chlorine. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2011.
[3]
Chlor-alkali industry review 2021-2022 [Online]. https://www.eurochlor.org/publication/chlor-alkali-industry-review-2021-2022/ (accessed Dec 1, 2022).
[4]

Barmashenko, V.; Jörissen, J. Recovery of chlorine from dilute hydrochloric acid by electrolysis using a chlorine resistant anion exchange membrane. J. Appl. Electrochem. 2005, 35, 1311–1319.

[5]

Eberil', V. I.; Novikov, E. A.; Mazanko, A. F. Reasons for the DSA passivation during chlorate electrolysis and the means for extending the anode service life. Russ. J. Electrochem. 2001, 37, 1054–1058.

[6]

Tilak, B. V.; Birss, V. I.; Wang, J.; Chen, C. P.; Rangarajan, S. K. Deactivation of thermally formed Ru/Ti oxide electrodes: An AC impedance characterization study. J. Electrochem. Soc. 2001, 148, D112–D120.

[7]

Lakshmanan, S.; Murugesan, T. The chlor-alkali process: Work in progress. Clean Technol. Environ. Policy 2014, 16, 225–234.

[8]

Cornell, A.; Håkansson, B.; Lindbergh, G. Ruthenium based DSA® in chlorate electrolysis—Critical anode potential and reaction kinetics. Electrochim. Acta 2003, 48, 473–481.

[9]

Trasatti, S. Electrocatalysis: Understanding the success of DSA®. Electrochim. Acta 2000, 45, 2377–2385.

[10]

Takasu, Y.; Sugimoto, W.; Nishiki, Y.; Nakamatsu, S. Structural analyses of RuO2-TiO2/Ti and IrO2-RuO2-TiO2/Ti anodes used in industrial chlor-alkali membrane processes. J. Appl. Electrochem. 2010, 40, 1789–1795.

[11]

Llopis, J.; Vázquez, M. Passivation of ruthenium in hydrochloric acid solution. Electrochim. Acta 1966, 11, 633–640.

[12]

Llopis, J.; Gamboa, J. M.; Alfayate, J. M. Radiochemical study of the anodic corrosion of ruthenium. Electrochim. Acta 1967, 12, 57–65.

[13]

Loucka, T. The reasons for the loss of activity of titanium-ruthenium dioxide anodes in sulphuric acid media. J. Appl. Electrochem. 1981, 11, 143–144.

[14]

Loučka, T. The potential-pH diagram for the Ru-H2O-Cl system at 25 °C. J. Appl. Electrochem. 1990, 20, 522–523.

[15]

Guglielmi, M.; Colombo, P.; Rigato, V.; Battaglin, G.; Boscolo-Boscoletto, A.; DeBattisti, A. Compositional and microstructural characterization of RuO2-TiO2 catalysts synthesized by the sol-gel method. J. Electrochem. Soc. 1992, 139, 1655–1661.

[16]

Vallet, H. C. Comparison of scanning probe microscopies with RBS and SEM/EDX for the analysis of RuO2, TiO2 composites. Appl. Phys. A 1997, 65, 387–394.

[17]

Hine, F.; Yasuda, M.; Noda, T.; Yoshida, T.; Okuda, J. Electrochemical behavior of the oxide-coated metal anodes. J. Electrochem. Soc. 1979, 126, 1439–1445.

[18]

Zeradjanin, A. R.; Menzel, N.; Schuhmann, W.; Strasser, P. On the faradaic selectivity and the role of surface inhomogeneity during the chlorine evolution reaction on ternary Ti-Ru-Ir mixed metal oxide electrocatalysts. Phys. Chem. Chem. Phys. 2014, 16, 13741–13747.

[19]

Karlsson, R. K. B.; Cornell, A. Selectivity between oxygen and chlorine evolution in the chlor-alkali and chlorate processes. Chem. Rev. 2016, 116, 2982–3028.

[20]

Hansen, H. A.; Man, I. C.; Studt, F.; Abild-Pedersen, F.; Bligaard, T.; Rossmeisl, J. Electrochemical chlorine evolution at rutile oxide(110) surfaces. Phys. Chem. Chem. Phys. 2010, 12, 283–290.

[21]

Lim, T.; Jung, G. Y.; Kim, J. H.; Park, S. O.; Park, J.; Kim, Y. T.; Kang, S. J.; Jeong, H. Y.; Kwak, S. K.; Joo, S. H. Atomically dispersed Pt-N4 sites as efficient and selective electrocatalysts for the chlorine evolution reaction. Nat. Commun. 2020, 11, 412.

[22]
Cheng, W. T.; Liu, Y. L.; Wu, L.; Chen, R. S.; Wang, J. X.; Chang, S.; Ma, F.; Li, Y.; Ni, H. W. RuO2/IrO2 nanoparticles decorated TiO2 nanotube arrays for improved activity towards chlorine evolution reaction. Catal. Today 2022, 400–401, 26–34.
DOI
[23]

Lim, H. W.; Park, J. H.; Yan, B. Y.; Kim, J. Y.; Lee, C. W. Liquid-diffusion electrode with core–shell structured mixed metal oxide catalyst for near-zero polarization in chlor-alkali electrolysis. Appl. Catal. B Environ. 2023, 322, 122095–122107.

[24]

Saha, S.; Kishor, K.; Pala, R. G. Modulating selectivity in CER and OER through doped RuO2. ECS Trans. 2018, 85, 201.

[25]

Xiong, K.; Deng, Z. H.; Li, L.; Chen, S. G.; Xia, M. R.; Zhang, L.; Qi, X. Q.; Ding, W.; Tan, S. Y.; Wei, Z. D. Sn and Sb co-doped RuTi oxides supported on TiO2 nanotubes anode for selectivity toward electrocatalytic chlorine evolution. J. Appl. Electrochem. 2013, 43, 847–854.

[26]

Wang, S. W.; Xu, H. L.; Yao, P. D.; Chen, X. M. Ti/RuO2-IrO2-SnO2-Sb2O5 anodes for Cl2 evolution from seawater. Electrochemistry 2012, 80, 507–511.

[27]

Chen, S. Y.; Zheng, Y. H.; Wang, S. W.; Chen, X. M. Ti/RuO2-Sb2O5-SnO2 electrodes for chlorine evolution from seawater. Chem. Eng. J. 2011, 172, 47–51.

[28]

Menzel, N.; Ortel, E.; Mette, K.; Kraehnert, R.; Strasser, P. Dimensionally stable Ru/Ir/TiO2-anodes with tailored mesoporosity for efficient electrochemical chlorine evolution. ACS Catal. 2013, 3, 1324–1333.

[29]

Wang, Y. T.; Xue, Y. D.; Zhang, C. H. Rational surface and interfacial engineering of IrO2/TiO2 nanosheet arrays toward high-performance chlorine evolution electrocatalysis and practical environmental remediation. Small 2021, 17, 2006587.

[30]

Xiong, K.; Peng, L. S.; Wang, Y.; Liu, L. H.; Deng, Z. H.; Li, L.; Wei, Z. D. In situ growth of RuO2-TiO2 catalyst with flower-like morphologies on the Ti substrate as a binder-free integrated anode for chlorine evolution. J. Appl. Electrochem. 2016, 46, 841–849.

[31]

Jiang, M.; Wang, H.; Li, Y. J.; Zhang, H. C.; Zhang, G. X.; Lu, Z. Y.; Sun, X. M.; Jiang, L. Superaerophobic RuO2-based nanostructured electrode for high-performance chlorine evolution reaction. Small 2017, 13, 1602240.

[32]

Lim, T.; Kim, J. H.; Kim, J.; Baek, D. S.; Shin, T. J.; Jeong, H. Y.; Lee, K. S.; Exner, K. S.; Joo, S. H. General efficacy of atomically dispersed Pt catalysts for the chlorine evolution reaction: Potential-dependent switching of the kinetics and mechanism. ACS Catal. 2021, 11, 12232–12246.

[33]

Liu, Y. Y.; Li, C.; Tan, C. H.; Pei, Z. X.; Yang, T.; Zhang, S. Z.; Huang, Q. W.; Wang, Y. H.; Zhou, Z.; Liao, X. Z. et al. Electrosynthesis of chlorine from seawater-like solution through single-atom catalysts. Nat. Commun. 2023, 14, 2475.

[34]

Zhu, X. L.; Wang, P.; Wang, Z. Y.; Liu, Y. Y.; Zheng, Z. K.; Zhang, Q. Q.; Zhang, X. Y.; Dai, Y.; Whangbo, M. H.; Huang, B. B. Co3O4 nanobelt arrays assembled with ultrathin nanosheets as highly efficient and stable electrocatalysts for the chlorine evolution reaction. J. Mater. Chem. A 2018, 6, 12718–12723.

[35]

Aromaa, J.; Forsén, O. Evaluation of the electrochemical activity of a Ti-RuO2-TiO2 permanent anode. Electrochim. Acta 2006, 51, 6104–6110.

[36]

Goryachev, A.; Pascuzzi, M. E. C.; Carlà, F.; Weber, T.; Over, H.; Hensen, E. J. M.; Hofmann, J. P. Electrochemical stability of RuO2(110)/Ru(0001) model electrodes in the oxygen and chlorine evolution reactions. Electrochim. Acta 2020, 336, 135713.

[37]

Chen, R. Y.; Trieu, V.; Schley, B.; Natter, H.; Kintrup, J.; Bulan, A.; Weber, R.; Hempelmann, R. Anodic electrocatalytic coatings for electrolytic chlorine production: A review. Z. Phys. Chem. 2013, 227, 651–666.

[38]

Dong, H.; Yu, W. L.; Hoffmann, M. R. Mixed metal oxide electrodes and the chlorine evolution reaction. J. Phys. Chem. C 2021, 125, 20745–20761.

[39]

Chen, R. Y.; Trieu, V.; Zeradjanin, A. R.; Natter, H.; Teschner, D.; Kintrup, J.; Bulan, A.; Schuhmann, W.; Hempelmann, R. Microstructural impact of anodic coatings on the electrochemical chlorine evolution reaction. Phys. Chem. Chem. Phys. 2012, 14, 7392–7399.

[40]

Moradi, F.; Dehghanian, C. Influence of heat treatment temperature on the electrochemical properties and corrosion behavior of RuO2-TiO2 coating in acidic chloride solution. Prot. Met. Phys. Chem. Surf. 2013, 49, 699–704.

[41]

Mirseyed, S. F.; Jafarzadeh, K.; Rostamian, A.; Semnani, A.; Abbasi, H. M.; Ostadhassan, M. A novel approach to the role of iridium and titanium oxide in deactivation mechanisms of a Ti/(36RuO2-xIrO2-(64−x)TiO2) coating in sodium chloride solution. Corros. Sci. 2022, 206, 110481.

[42]

Wang, Y. H.; Liu, Y. Y.; Wiley, D.; Zhao, S. L.; Tang, Z. Y. Recent advances in electrocatalytic chloride oxidation for chlorine gas production. J. Mater. Chem. A 2021, 9, 18974–18993.

[43]

Košević, M.; Stopic, S.; Bulan, A.; Kintrup, J.; Weber, R.; Stevanović, J.; Panić, V.; Friedrich, B. A continuous process for the ultrasonic spray pyrolysis synthesis of RuO2/TiO2 particles and their application as a coating of activated titanium anode. Adv. Powder Technol. 2017, 28, 43–49.

[44]

Hoseinieh, S. M.; Ashrafizadeh, F.; Maddahi, M. H. A comparative investigation of the corrosion behavior of RuO2-IrO2-TiO2 coated titanium anodes in chloride solutions. J. Electrochem. Soc. 2010, 157, E50.

[45]

Le Luu, T.; Kim, J.; Yoon, J. Physicochemical properties of RuO2 and IrO2 electrodes affecting chlorine evolutions. J. Ind. Eng. Chem. 2015, 21, 400–404.

[46]

Trasatti, S. Progress in the understanding of the mechanism of chlorine evolution at oxide electrodes. Electrochim. Acta 1987, 32, 369–382.

[47]

Pourbaix, M.; Schmets, J.; Van Muylder, J. Atlas of electrochemical equilibria in aqueous solutions. NACE 1966, 10, 280–285.

[48]

Over, H. Atomic scale insights into electrochemical versus gas phase oxidation of HCl over RuO2-based catalysts: A comparative review. Electrochim. Acta 2013, 93, 314–333.

[49]

Macounová, K.; Makarova, M.; Jirkovský, J.; Franc, J.; Krtil, P. Parallel oxygen and chlorine evolution on Ru1−xNixO2−y nanostructured electrodes. Electrochim. Acta 2008, 53, 6126–6134.

[50]

Goudarzi, M.; Ghorbani, M. A study on ternary mixed oxide coatings containing Ti, Ru, Ir by sol-gel method on titanium. J. Sol-Gel Sci. Technol. 2015, 73, 332–340.

[51]

Abbott, D. F.; Petrykin, V.; Okube, M.; Bastl, Z.; Mukerjee, S.; Krtil, P. Selective chlorine evolution catalysts based on Mg-doped nanoparticulate ruthenium dioxide. J. Electrochem. Soc. 2015, 162, H23–H31.

[52]

Cherevko, S.; Reier, T.; Zeradjanin, A. R.; Pawolek, Z.; Strasser, P.; Mayrhofer, K. J. J. Stability of nanostructured iridium oxide electrocatalysts during oxygen evolution reaction in acidic environment. Electrochem. Commun. 2014, 48, 81–85.

[53]

Zeradjanin, A. R.; Topalov, A. A.; Van Overmeere, Q.; Cherevko, S.; Chen, X. X.; Ventosa, E.; Schuhmann, W.; Mayrhofer, K. J. J. Rational design of the electrode morphology for oxygen evolution-enhancing the performance for catalytic water oxidation. RSC Adv. 2014, 4, 9579–9587.

[54]

Gorodetskii, V.; Pecherskii, M.; Yanke, V.; Bune, N. Y.; Bussemachukas, V.; Kubasov, V.; Losev, V. Effect of acidity on the electrochemical and corrosion behavior of titanium-ruthenium oxide anodes in chloride solutions. Sov. Electrochem. 1981, 17, 421–425.

[55]

Kötz, R.; Stucki, S.; Scherson, D.; Kolb, D. M. In-situ identification of RuO4 as the corrosion product during oxygen evolution on ruthenium in acid media. J. Electroanal. Chem. Interfac. Electrochem. 1984, 172, 211–219.

[56]

Exner, K. S. Controlling stability and selectivity in the competing chlorine and oxygen evolution reaction over transition metal oxide electrodes. ChemElectroChem 2019, 6, 3401–3409.

[57]

Exner, K. S. Design criteria for the competing chlorine and oxygen evolution reactions: Avoid the OCl adsorbate to enhance chlorine selectivity. Phys. Chem. Chem. Phys. 2020, 22, 22451–22458.

[58]

Gaudet, J.; Tavares, A. C.; Trasatti, S.; Guay, D. Physicochemical characterization of mixed RuO2-SnO2 solid solutions. Chem. Mater. 2005, 17, 1570–1579.

[59]

Chi, M. C.; Luo, B.; Zhang, Q. T.; Jiang, H. R.; Chen, C. Z.; Wang, S. F.; Min, D Y. Lignin-based monolithic carbon electrode decorating with RuO2 nanospheres for high-performance chlorine evolution reaction. Ind. Crops Prod. 2021, 159, 113088.

[60]

Finke, C. E.; Omelchenko, S. T.; Jasper, J. T.; Lichterman, M. F.; Read, C. G.; Lewis, N. S.; Hoffmann, M. R. Enhancing the activity of oxygen-evolution and chlorine-evolution electrocatalysts by atomic layer deposition of TiO2. Energy Environ. Sci. 2019, 12, 358–365.

[61]

Petrykin, V.; Bastl, Z.; Franc, J.; Macounova, K.; Makarova, M.; Mukerjee, S.; Ramaswamy, N.; Spirovova, I.; Krtil, P. Local structure of nanocrystalline Ru1−xNixO2−δ dioxide and its implications for electrocatalytic behavior—An XPS and XAS study. J. Phys. Chem. C 2009, 113, 21657–21666.

[62]

Sood, K.; Rana, S.; Wadhwa, R.; Bhasin, K. K.; Jha, M. Mechanistic insights of electrochemical Cl2 and O2 generation from lanthanum cobalt manganese oxide. Adv. Mater. Interfaces 2022, 9, 2201138.

[63]

Moreno-Hernandez, I. A.; Brunschwig, B. S.; Lewis, N. S. Crystalline nickel, cobalt, and manganese antimonates as electrocatalysts for the chlorine evolution reaction. Energy Environ. Sci. 2019, 12, 1241–1248.

[64]

Huang, J. H.; Hou, M. J.; Wang, J. Y.; Teng, X.; Niu, Y. L.; Xu, M. Z.; Chen, Z. F. RuO2 nanoparticles decorate belt-like anatase TiO2 for highly efficient chlorine evolution. Electrochim. Acta 2020, 339, 135878.

[65]

Roginskaya, Y. E.; Belova, I. D.; Galyamov, B. S.; Chibirova, F. K.; Shiprina, R. R. On the character of solid solutions in ruthenium-titanium oxide anodes. Mater. Chem. Phys. 1989, 22, 203–229.

[66]

Panić, V.; Dekanski, A.; Mišković-Stanković, V. B.; Milonjić, S.; Nikolić, B. On the deactivation mechanism of RuO2-TiO2/Ti anodes prepared by the sol-gel procedure. J. Electroanal. Chem. 2005, 579, 67–76.

[67]

Royaei, N.; Shahrabi, T.; Yaghoubinezhad, Y. The investigation of the electrocatalytic and corrosion behavior of a TiO2-RuO2 anode modified by graphene oxide and reduced graphene oxide nanosheets via a sol-gel method. Catal. Sci. Technol. 2018, 8, 4957–4974.

[68]

Ferro, S.; De Battisti, A.; Duo, I.; Comninellis, C.; Haenni, W.; Perret, A. Chlorine evolution at highly boron-doped diamond electrodes. J. Electrochem. Soc. 2000, 147, 2614–2619.

[69]

Mirzaei Alavijeh, M.; Habibzadeh, S.; Roohi, K.; Keivanimehr, F.; Naji, L.; Ganjali, M. R. A selective and efficient precious metal-free electrocatalyst for chlorine evolution reaction: An experimental and computational study. Chem. Eng. J. 2021, 421, 127785.

[70]
Yang, J. R.; Li, W. H.; Tang, H. T.; Pan, Y. M.; Wang, D. S.; Li, Y. D. CO2-mediated organocatalytic chlorine evolution under industrial conditions. Nature 2023, 617, 519–523.
DOI
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 May 2023
Revised: 09 June 2023
Accepted: 28 June 2023
Published: 14 August 2023
Issue date: March 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

We acknowledge the support of the Experimental Center of Advanced Materials at the Beijing Institute of Technology. Financial support was provided by the startup fund from the College of Chemistry and Molecular Engineering, Peking University and Beijing National Laboratory for Molecular Sciences (BNLMS).

Return