Journal Home > Volume 17 , Issue 3

It is still a lack of bifunctional catalysts for ammonia oxidation reaction (AOR) and hydrogen evolution reaction (HER) due to their different reaction mechanisms. In this work, P is doped into PtZn alloy by calcination with NaH2PO2 as P source to induce the lattice tensile strain of Pt and the electronic interaction between P and Zn, which optimizes the AOR and HER activity simultaneously. The sample with the optimal P content can drive the AOR peak current density of 293.6 mA·mgPt−1, which is almost 2.7 times of Pt. For HER, the overpotential at −10 mA·cm−2 is only 23 mV with Tafel slope of 34.1 mV·dec−1. Furthermore, only 0.59 V is needed to obtain 50 mA·mgPt−1 for ammonia electrolysis under a two-electrode system. Therefore, this work shows an ingenious method to design bifunctional catalysts for ammonia electrolysis.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Bifunctional interstitial phosphorous doping strategy boosts platinum-zinc alloy for efficient ammonia oxidation reaction and hydrogen evolution reaction

Show Author's information Tianqi Yu1Kexin Tan1Jia Wu1Yongjin Zou2Shibin Yin1( )
Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
Guangxi Key Laboratory of Information Materials, Guilin University of Electronic Technology, Guilin 541004, China

Abstract

It is still a lack of bifunctional catalysts for ammonia oxidation reaction (AOR) and hydrogen evolution reaction (HER) due to their different reaction mechanisms. In this work, P is doped into PtZn alloy by calcination with NaH2PO2 as P source to induce the lattice tensile strain of Pt and the electronic interaction between P and Zn, which optimizes the AOR and HER activity simultaneously. The sample with the optimal P content can drive the AOR peak current density of 293.6 mA·mgPt−1, which is almost 2.7 times of Pt. For HER, the overpotential at −10 mA·cm−2 is only 23 mV with Tafel slope of 34.1 mV·dec−1. Furthermore, only 0.59 V is needed to obtain 50 mA·mgPt−1 for ammonia electrolysis under a two-electrode system. Therefore, this work shows an ingenious method to design bifunctional catalysts for ammonia electrolysis.

Keywords: hydrogen evolution reaction, bifunctional catalyst, ammonia oxidation reaction, PtZn alloy, phosphorous doping

References(56)

[1]
Qian, G. F.; Chen, J. L.; Jiang, W. J.; Yu, T. Q.; Tan, K. X.; Yin, S. B. Strong electronic coupling of CoNi and N-doped-carbon for efficient urea-assisted H2 production at a large current density. Carbon Energy, in press, https://doi.org/10.1002/cey2.368.
DOI
[2]

Züttel, A. Materials for hydrogen storage. Mater. Today 2003, 6, 24–33.

[3]

Cordero, B.; Gómez, V.; Platero-Prats, A. E.; Revés, M.; Echeverria, J.; Cremades, E.; Barragán, F.; Alvarez, S. Covalent radii revisited. Dalton Trans. 2008, 2832–2838.

[4]

Chang, F.; Gao, W. B.; Guo, J. P.; Chen, P. Emerging materials and methods toward ammonia-based energy storage and conversion. Adv. Mater. 2021, 33, 2005721.

[5]

Guo, W. H.; Zhang, K. X.; Liang, Z. B.; Zou, R. Q.; Xu, Q. Electrochemical nitrogen fixation and utilization: Theories, advanced catalyst materials and system design. Chem. Soc. Rev. 2019, 48, 5658–5716.

[6]

Guerra, C. F.; Reyes-Bozo, L.; Vyhmeister, E.; Caparrós, M. J.; Salazar, J. L.; Clemente-Jul, C. Technical-economic analysis for a green ammonia production plant in Chile and its subsequent transport to Japan. Renew. Energy 2020, 157, 404–414.

[7]

MacFarlane, D. R.; Cherepanov, P. V.; Choi, J.; Suryanto, B. H. R.; Hodgetts, R. Y.; Bakker, J. M.; Vallana, F. M. F.; Simonov, A. N. A roadmap to the ammonia economy. Joule 2020, 4, 1186–1205.

[8]

He, S.; Somayaji, V.; Wang, M. D.; Lee, S. H.; Geng, Z. J.; Zhu, S. Y.; Novello, P.; Varanasi, C. V.; Liu, J. High entropy spinel oxide for efficient electrochemical oxidation of ammonia. Nano Res. 2022, 15, 4785–4791.

[9]

Liang, J.; Liu, Q.; Alshehri, A. A.; Sun, X. P. Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. Nano Res. Energy 2022, 1, e9120010.

[10]

Lee, S. A.; Lee, M. G.; Jang, H. W. Catalysts for electrochemical ammonia oxidation: Trend, challenge, and promise. Sci. China Mater. 2022, 65, 3334–3352.

[11]

Tian, Y. R.; Mao, Z. X.; Wang, L. Q.; Liang, J. Green chemistry: Advanced electrocatalysts and system design for ammonia oxidation. Small Struct. 2023, 4, 2200266.

[12]

Adli, N. M.; Zhang, H.; Mukherjee, S.; Wu, G. Review—Ammonia oxidation electrocatalysis for hydrogen generation and fuel cells. J. Electrochem. Soc. 2018, 165, J3130–J3147.

[13]

Lyu, Z. H.; Fu, J. J.; Tang, T.; Zhang, J. N.; Hu, J. S. Design of ammonia oxidation electrocatalysts for efficient direct ammonia fuel cells. EnergyChem 2023, 5, 100093.

[14]

De Vooys, A. C. A.; Koper, M. T. M.; Van Santen, R. A.; Van Veen, J. A. R. The role of adsorbates in the electrochemical oxidation of ammonia on noble and transition metal electrodes. J. Electroanal. Chem. 2001, 506, 127–137.

[15]

Sun, H. Y.; Xu, G. R.; Li, F. M.; Hong, Q. L.; Jin, P. J.; Chen, P.; Chen, Y. Hydrogen generation from ammonia electrolysis on bifunctional platinum nanocubes electrocatalysts. J. Energy Chem. 2020, 47, 234–240.

[16]

Xue, Q.; Zhao, Y.; Zhu, J. Y.; Ding, Y.; Wang, T. J.; Sun, H. Y.; Li, F. M.; Chen, P.; Jin, P. J.; Yin, S. B. et al. PtRu nanocubes as bifunctional electrocatalysts for ammonia electrolysis. J. Mater. Chem. A 2021, 9, 8444–8451.

[17]

Li, Y.; Li, X.; Pillai, H. S.; Lattimer, J.; Adli, N. M.; Karakalos, S.; Chen, M. J.; Guo, L.; Xu, H.; Yang, J. et al. Ternary PtIrNi catalysts for efficient electrochemical ammonia oxidation. ACS Catal. 2020, 10, 3945–3957.

[18]

Chan, Y. T.; Siddharth, K.; Shao, M. H. Investigation of cubic Pt alloys for ammonia oxidation reaction. Nano Res. 2020, 13, 1920–1927.

[19]

Li, Y.; Pillai, H. S.; Wang, T.; Hwang, S.; Zhao, Y.; Qiao, Z.; Mu, Q. M.; Karakalos, S.; Chen, M. J.; Yang, J.; et al. High-performance ammonia oxidation catalysts for anion-exchange membrane direct ammonia fuel cells. Energy Environ. Sci. 2021, 14, 1449–1460.

[20]

Zheng, S. Y.; Wu, J.; Wang, K.; Hu, M. C.; Wen, H.; Yin, S. B. Electronic modulation of Ni-Mo-O porous nanorods by Co doping for selective oxidation of 5-hydroxymethylfurfural coupled with hydrogen evolution. Acta Phys. Chim. Sin. 2023, 39, 2301032.

[21]
Wang, K.; Wu, J.; Zheng, S. Y.; Yin, S. B. NiCo alloy nanoparticles anchored on mesoporous Mo2N nanosheets as efficient catalysts for 5-hydroxymethylfurfural electrooxidation and hydrogen generation. Chin. J. Struct. Chem., in press, https://doi.org/10.1016/j.cjsc.2023.100104.
DOI
[22]

Pu, Z. H.; Liu, T. T.; Amiinu, I. S.; Cheng, R. L.; Wang, P. Y.; Zhang, C. T.; Ji, P. X.; Hu, W. H.; Liu, J.; Mu, S. C. Transition-metal phosphides: Activity origin, energy-related electrocatalysis applications, and synthetic strategies. Adv. Funct. Mater. 2020, 30, 2004009.

[23]

Qu, G. X.; Wu, T. L.; Yu, Y. N.; Wang, Z. K.; Zhou, Y.; Tang, Z. D.; Yue, Q. Rational design of phosphorus-doped cobalt sulfides electrocatalysts for hydrogen evolution. Nano Res. 2019, 12, 2960–2965.

[24]

Weng, C. C.; Ren, J. T.; Yuan, Z. Y. Transition metal phosphide-based materials for efficient electrochemical hydrogen evolution: A critical review. ChemSusChem 2020, 13, 3357–3375.

[25]

Duan, H. H.; Li, D. G.; Tang, Y.; He, Y.; Ji, S. F.; Wang, R. Y.; Lv, H. F.; Lopes, P. P.; Paulikas, A. P.; Li, H. Y. et al. High-performance Rh2P electrocatalyst for efficient water splitting. J. Am. Chem. Soc. 2017, 139, 5494–5502.

[26]

Xue, H. Y.; Meng, A. L.; Chen, C. J.; Xue, H. Y.; Li, Z. J.; Wang, C. S. Phosphorus-doped MoS2 with sulfur vacancy defects for enhanced electrochemical water splitting. Sci. China Mater. 2022, 65, 712–720.

[27]

Gao, L.; Li, X. X.; Yao, Z. Y.; Bai, H. J.; Lu, Y. F.; Ma, C.; Lu, S. F.; Peng, Z. M.; Yang, J. L.; Pan, A. L. et al. Unconventional p-d hybridization interaction in PtGa ultrathin nanowires boosts oxygen reduction electrocatalysis. J. Am. Chem. Soc. 2019, 141, 18083–18090.

[28]

Shen, X. C.; Zhang, C. L.; Zhang, S. Y.; Dai, S.; Zhang, G. H.; Ge, M. Y.; Pan, Y. B.; Sharkey, S. M.; Graham, G. W.; Hunt, A. et al. Deconvolution of octahedral Pt3Ni nanoparticle growth pathway from in situ characterizations. Nat. Commun. 2018, 9, 4485.

[29]

Li, W. Z.; Lu, B. A.; Gan, L.; Tian, N.; Zhang, P. Y.; Yan, W.; Chen, W. X.; Chen, Y. H.; Zhou, Z. Y.; Sun, S. G. High activity and durability of carbon-supported core–shell PtPx@Pt/C catalyst for oxygen reduction reaction. Chin. J. Catal. 2021, 42, 2173–2180.

[30]
Si, L. X.; Li, H.; Zhang, Y.; Zhang, D. H.; An, X. W.; Yao, M. M.; Shao, Y. Y.; Zhu, J.; Hu, S. Shape-dependence in seeded-growth of Pd-Cu solid solution from Pd nanostructure towards methanol oxidation electrocatalyst. Nano Res., in press, https://doi.org/10.1007/s12274-023-5741-8.
DOI
[31]

Xia, B. Y.; Wu, H. B.; Li, N.; Yan, Y.; Lou, X. W.; Wang, X. One-pot synthesis of Pt-Co alloy nanowire assemblies with tunable composition and enhanced electrocatalytic properties. Angew. Chem., Int. Ed. 2015, 54, 3797–3801.

[32]

Liu, D. Y.; Zeng, Q.; Hu, C. Q.; Chen, D.; Liu, H.; Han, Y. S.; Xu, L.; Zhang, Q. B.; Yang, J. Light doping of tungsten into copper-platinum nanoalloys for boosting their electrocatalytic performance in methanol oxidation. Nano Res. Energy 2022, 1, e9120017.

[33]

Mao, Z. J.; Ding, C.; Liu, X.; Zhang, Q.; Qin, X. X.; Li, H.; Yang, F.; Li, Q.; Zhang, X. G.; Zhang, J. L. et al. Interstitial B-doping in Pt lattice to upgrade oxygen electroreduction performance. ACS Catal. 2022, 12, 8848–8856.

[34]

Chen, T. Y.; Foo, C.; Tsang, S. C. E. Interstitial and substitutional light elements in transition metals for heterogeneous catalysis. Chem. Sci. 2021, 12, 517–532.

[35]

Wang, Y.; Li, X. P.; Zhang, M. M.; Zhou, Y. G.; Rao, D. W.; Zhong, C.; Zhang, J. F.; Han, X. P.; Hu, W. B.; Zhang, Y. C. et al. Lattice-strain engineering of homogeneous NiS0.5Se0.5 core–shell nanostructure as a highly efficient and robust electrocatalyst for overall water splitting. Adv. Mater. 2020, 32, 2000231.

[36]

Zhou, D. J.; Wang, S. Y.; Jia, Y.; Xiong, X. Y.; Yang, H. B.; Liu, S.; Tang, J. L.; Zhang, J. M.; Liu, D.; Zheng, L. R. et al. NiFe hydroxide lattice tensile strain: Enhancement of adsorption of oxygenated intermediates for efficient water oxidation catalysis. Angew. Chem., Int. Ed. 2019, 58, 736–740.

[37]

Yang, X. B.; Wang, Y. Y.; Tong, X. L.; Yang, N. J. Strain engineering in electrocatalysts: Fundamentals, progress, and perspectives. Adv. Energy Mater. 2022, 12, 2102261.

[38]

Liang, J. S.; Xia, Y.; Liu, X.; Huang, F. Y.; Liu, J. J.; Li, S. Z.; Wang, T. Y.; Jiao, S. H.; Cao, R. G.; Han, J. T. et al. Molybdenum-doped ordered L10-PdZn nanosheets for enhanced oxygen reduction electrocatalysis. SusMat 2022, 2, 347–356.

[39]

Lu, B. A.; Shen, L. F.; Liu, J.; Zhang, Q. H.; Wan, L. Y.; Morris, D. J.; Wang, R. X.; Zhou, Z. Y.; Li, G.; Sheng, T. et al. Structurally disordered phosphorus-doped Pt as a highly active electrocatalyst for an oxygen reduction reaction. ACS Catal. 2021, 11, 355–363.

[40]

Zhang, Q. Q.; Xia, T. Y.; Huang, H.; Liu, J. L.; Zhu, M. Y.; Yu, H.; Xu, W. F.; Huo, Y. P.; He, C. L.; Shen, S. P. et al. Autocatalytic reduction-assisted synthesis of segmented porous PtTe nanochains for enhancing methanol oxidation reaction. Nano Res. Energy 2023, 2, e9120041.

[41]

Tian, J. Q.; Liu, Q.; Asiri, A. M.; Sun, X. P. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J. Am. Chem. Soc. 2014, 136, 7587–7590.

[42]

He, K.; Tsega, T. T.; Liu, X.; Zai, J. T.; Li, X. H.; Liu, X. J.; Li, W. H.; Ali, N.; Qian, X. F. Utilizing the space-charge region of the FeNi-LDH/CoP p-n junction to promote performance in oxygen evolution electrocatalysis. Angew. Chem., Int. Ed. 2019, 58, 11903–11909.

[43]

Katayama, Y.; Okanishi, T.; Muroyama, H.; Matsui, T.; Eguchi, K. Electrochemical oxidation of ammonia over rare earth oxide modified platinum catalysts. J. Phys. Chem. C 2015, 119, 9134–9141.

[44]

Liu, Y. J.; Chen, M. Q.; Yang, S. F. Chemical functionalization of 2D black phosphorus. InfoMat 2021, 3, 231–251.

[45]

Yang, X. B.; Liang, Z. P.; Chen, S.; Ma, M. J.; Wang, Q.; Tong, X. L.; Zhang, Q. H.; Ye, J. Y.; Gu, L.; Yang, N. J. A phosphorus-doped Ag@Pd catalyst for enhanced C–C bond cleavage during ethanol electrooxidation. Small 2020, 16, 2004727.

[46]

García, N.; Climent, V.; Orts, J. M.; Feliu, J. M.; Aldaz, A. Effect of pH and alkaline metal cations on the voltammetry of Pt (111) single crystal electrodes in sulfuric acid solution. ChemPhysChem 2004, 5, 1221–1227.

[47]

Marković, N. M.; Ross, P. N. Jr. Surface science studies of model fuel cell electrocatalysts. Surf. Sci. Rep. 2002, 45, 117–229.

[48]

Singh, Y.; Back, S.; Jung, Y. Activating transition metal dichalcogenides by substitutional nitrogen-doping for potential ORR electrocatalysts. ChemElectroChem 2018, 5, 4029–4035.

[49]

Yin, S. B.; Luo, L.; Xu, C.; Zhao, Y. L.; Qiang, Y. H.; Mu, S. C. Functionalizing carbon nanotubes for effective electrocatalysts supports by an intermittent microwave heating method. J. Power Sources 2012, 198, 1–6.

[50]

Zhu, J.; Hu, L. S.; Zhao, P. X.; Lee, L. Y. S.; Wong, K. Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles. Chem. Rev. 2020, 120, 851–918.

[51]

Chen, J. L.; Qian, G. F.; Zhang, H.; Feng, S. Q.; Mo, Y. S.; Luo, L.; Yin, S. B. PtCo@PtSn heterojunction with high stability/activity for pH-universal H2 evolution. Adv. Funct. Mater. 2022, 32, 2107597.

[52]

Sun, J. Y.; Tian, F.; Yu, F.; Yang, Z.; Yu, B.; Chen, S.; Ren, Z. F.; Zhou, H. Q. Robust hydrogen-evolving electrocatalyst from heterogeneous molybdenum disulfide-based catalyst. ACS Catal. 2020, 10, 1511–1519.

[53]

He, T. O.; Wang, W. C.; Shi, F. L.; Yang, X. L.; Li, X.; Wu, J. B.; Yin, Y. D.; Jin, M. S. Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature 2021, 598, 76–81.

[54]

Son, C. Y.; Kwak, I. H.; Lim, Y. R.; Park, J. FeP and FeP2 nanowires for efficient electrocatalytic hydrogen evolution reaction. Chem. Commun. 2016, 52, 2819–2822.

[55]

Kim, H.; Yang, W.; Lee, W. H.; Han, M. H.; Moon, J.; Jeon, C.; Kim, D.; Ji, S. G.; Chae, K. H.; Lee, K. S. et al. Operando stability of platinum electrocatalysts in ammonia oxidation reactions. ACS Catal. 2020, 10, 11674–11684.

[56]

Siddharth, K.; Hong, Y.; Qin, X. P.; Lee, H. J.; Chan, Y. T.; Zhu, S. Q.; Chen, G. H.; Choi, S. I.; Shao, M. H. Surface engineering in improving activity of Pt nanocubes for ammonia electrooxidation reaction. Appl. Catal. B: Environ. 2020, 269, 118821.

File
12274_2023_5962_MOESM1_ESM.pdf (2.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 May 2023
Revised: 25 June 2023
Accepted: 26 June 2023
Published: 31 July 2023
Issue date: March 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22162004), the Natural Science Foundation of Guangxi Province (No. 2022JJD120011), and the Opening Project of Guangxi Key Laboratory of Information Materials (No. 211025-K).

Return