AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Polyoxometalates for continuous power generation by atmospheric humidity

Tuo Ji1Weilin Chen1 ( )Zhenhui Kang2,3Liming Zhang4
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Northeast Normal University, Changchun 130024, China
Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Department, Soochow University, Suzhou 215123, China
Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau 999078, China
Institute of Functional State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
Show Author Information

Graphical Abstract

The polyoxometalate power generator can effectively collect the natural atmospheric humidity and produce continuous electrical signals by the uneven distribution and directional movement of ions, which will provide a new idea for the continuous utilization of low-value energy and a new research visual angle for polyoxometalate chemistry.

Abstract

Atmospheric humidity is a sustainable low-value energy widely existing in natural environment, which is a promising candidate to solve the noncontinuous and low efficiency of low-value energy power generation. Here the mono-substituted Dawson-type polyoxometalates are constructed to be highly dispersed organic ammonium-polyoxoanion clusters and are assembled into thin films power generators with micropores, working in atmospheric humidity. The optimal polyoxometalates generator with the thickness of 7.2 μm and the area of 0.36 cm2 produces a voltage of 0.68 V and a current density of 19.5 μA·cm−2 under simulated natural environment, and works continuously and stably under almost all-natural environments (humidity 10%–90%). The highly dispersed polyoxometalate nanoclusters can form microporous in polyoxometalate films to effectively absorb atmospheric humidity and spontaneously form distribution gradient of water, which is the structural basis of power generation. The continuous power generation may be maintained by the effective adsorption and utilization of H2O, the huge electrostatic field of organic ammonium-polyoxoanion clusters, and the reasonably designed polyoxometalates containing inorganic small ions with high mobility. It is the first humidity generator designed with polyoxometalates, which may provide a new research direction for polyoxometalates in sustainable utilization of low-value energy.

Electronic Supplementary Material

Download File(s)
12274_2023_5959_MOESM1_ESM.pdf (3.9 MB)

References

[1]

Hong, H. X.; Yang, X. Y.; Cui, H.; Zheng, D.; Wen, H. Y.; Huang, R. Y.; Liu, L. Q.; Duan, J. L.; Tang, Q. W. Self-powered seesaw structured spherical buoys based on a hybrid triboelectric–electromagnetic nanogenerator for sea surface wireless positioning. Energy Environ. Sci. 2022, 15, 621–632.

[2]

Wang, T.; Ji, T.; Chen, W. L.; Li, X. H.; Guan, W.; Geng, Y.; Wang, X. L.; Li, Y. G.; Kang, Z. H. Polyoxometalate film simultaneously converts multiple low-value all-weather environmental energy to electricity. Nano Energy 2020, 68, 104349.

[3]

Guerra, O. J.; Zhang, J. Z.; Eichman, J.; Denholm, P.; Kurtz, J.; Hodge, B. M. The value of seasonal energy storage technologies for the integration of wind and solar power. Energy Environ. Sci. 2020, 13, 1909–1922.

[4]

Davids, P. S.; Kirsch, J.; Starbuck, A.; Jarecki, R.; Shank, J.; Peters, D. Electrical power generation from moderate-temperature radiative thermal sources. Science 2020, 367, 1341–1345.

[5]

Zheng, Y. Y.; Han, X.; Yang, J. W.; Jing, Y. Y.; Chen, X. Y.; Li, Q. Q.; Zhang, T.; Li, G. D.; Zhu, H. T.; Zhao, H. Z. et al. Durable, stretchable, and washable inorganic-based woven thermoelectric textiles for power generation and solid-state cooling. Energy Environ. Sci. 2022, 15, 2374–2385.

[6]

Gao, M. Y.; Wang, P.; Jiang, L. L.; Wang, B. W.; Yao, Y.; Liu, S.; Chu, D. W.; Cheng, W. L.; Lu, Y. R. Power generation for wearable systems. Energy Environ. Sci. 2021, 14, 2114–2157.

[7]

Jing, Z. X.; Zhang, J. C.; Wang, J. L.; Zhu, M. K.; Wang, X. X.; Cheng, T. H.; Zhu, J. Y.; Wang, Z. L. 3D fully-enclosed triboelectric nanogenerator with bionic fish-like structure for harvesting hydrokinetic energy. Nano Res. 2022, 15, 5098–5104.

[8]

Zhang, S.; Jing, Z. X.; Wang, X. X.; Zhu, M. K.; Yu, X.; Zhu, J. Y.; Cheng, T. H.; Zhao, H. W.; Wang, Z. L. Soft-bionic-fishtail structured triboelectric nanogenerator driven by flow-induced vibration for low-velocity water flow energy harvesting. Nano Res. 2023, 16, 466–472.

[9]

Gong, S.; Yap, L. W.; Zhu, B. W.; Zhai, Q. F.; Liu, Y. Y.; Lyu, Q. X.; Wang, K. X.; Yang, M. J.; Ling, Y. Z.; Lai, D. T. H. et al. Local crack-programmed gold nanowire electronic skin tattoos for in-plane multisensor integration. Adv. Mater. 2019, 31, 1903789.

[10]

Sun, W. P.; Ding, Z.; Qin, Z. Y.; Chu, F. L.; Han, Q. K. Wind energy harvesting based on fluttering double-flag type triboelectric nanogenerators. Nano Energy 2020, 70, 104526.

[11]

Wang, Y.; Chen, T. Y.; Sun, S. W.; Liu, X. Y.; Hu, Z. Y.; Lian, Z. H.; Liu, L.; Shi, Q. F.; Wang, H.; Mi, J. C. et al. A humidity resistant and high performance triboelectric nanogenerator enabled by vortex-induced vibration for scavenging wind energy. Nano Res. 2021, 15, 3246–3253.

[12]

Wang, Y.; Wang, J. Y.; Xiao, X.; Wang, S. Y.; Kien, P. T.; Dong, J. L.; Mi, J. C.; Pan, X. X.; Wang, H. F.; Xu, M. Y. Multi-functional wind barrier based on triboelectric nanogenerator for power generation, self-powered wind speed sensing and highly efficient windshield. Nano Energy 2020, 73, 104736.

[13]

Bai, J. X.; Huang, Y. X.; Wang, H. Y.; Guang, T. L.; Liao, Q. H.; Cheng, H. H.; Deng, S. H.; Li, Q. K.; Shuai, Z. G.; Qu, L. T. Sunlight-coordinated high-performance moisture power in natural conditions. Adv. Mater. 2022, 34, 2103897.

[14]

Wang, G.; Huang, R.; Zhang, J. W.; Mao, J. J.; Wang, D. S.; Li, Y. D. Synergistic modulation of the separation of photo-generated carriers via engineering of dual atomic sites for promoting photocatalytic performance. Adv. Mater. 2021, 33, 2105904.

[15]

Duan, J. L.; Hu, T. Y.; Zhao, Y. Y.; He, B. L.; Tang, Q. W. Carbon-electrode-tailored all-inorganic perovskite solar cells to harvest solar and water-vapor energy. Angew. Chem., Int. Ed. 2018, 57, 5746–5749.

[16]

Yang, L.; Nandakumar, D. K.; Miao, L. Q.; Suresh, L.; Zhang, D. W.; Xiong, T.; Vaghasiya, J. V.; Kwon, K. C.; Tan, S. C. Energy harvesting from atmospheric humidity by a hydrogel-integrated ferroelectric-semiconductor system. Joule 2020, 4, 176–188.

[17]

Zhang, Y. X.; Nandakumar, D. K.; Tan, S. C. Digestion of ambient humidity for energy generation. Joule 2020, 4, 2532–2536.

[18]

Zhang, Y. X.; Tan, S. C. Best practices for solar water production technologies. Nat. Sustain. 2022, 5, 554–556.

[19]

Ding, H. Y.; Xin, Z. Q.; Yang, Y. Y.; Luo, Y. F.; Xia, K. L.; Wang, B. L.; Sun, Y. F.; Wang, J. P.; Zhang, Y. Y.; Wu, H. et al. Ultrasensitive, low-voltage operational, and asymmetric ionic sensing hydrogel for multipurpose applications. Adv. Funct. Mater. 2020, 30, 1909616.

[20]

Wei, Q. M.; Ge, W. N.; Yuan, Z. C.; Wang, S. X.; Lu, C. G.; Feng, S. L.; Zhao, L.; Liu, Y. H. Moisture electricity generation: Mechanisms, structures, and applications. Nano Res. 2023, 16, 7496–7510.

[21]

Wang, K. Q.; Xu, W. H.; Zhang, W.; Wang, X.; Yang, X.; Li, J. F.; Zhang, H. L.; Li, J. J.; Wang, Z. K. Bio-inspired water-driven electricity generators: From fundamental mechanisms to practical applications. Nano Res. Energy 2023, 2, e9120042.

[22]

Zheng, S.; Tang, J. Y.; Lv, D.; Wang, M.; Yang, X.; Hou, C. S.; Yi, B.; Lu, G.; Hao, R. R.; Wang, M. Z. et al. Continuous energy harvesting from ubiquitous humidity gradients using liquid-infused nanofluidics. Adv. Mater. 2022, 34, 2106410.

[23]

Zhou, S. Y.; Qiu, Z.; Strømme, M.; Xu, C. Solar-driven ionic power generation via a film of nanocellulose@conductive metal-organic framework. Energy Environ. Sci. 2021, 14, 900–905.

[24]
Zhang, Y. X.; Yu, Z.; Qu, H.; Guo, S.; Yang, J. C.; Zhang, S. L.; Yang, L.; Cheng, S. A.; Wang, J.; Tan, S. C. Self-sustained programmable hygroelectronic interfaces for humidity-regulated hierarchical information encryption and display. Adv. Mater., in press, https://doi.org/10.1002/adma.202208081.
[25]

Zhang, Y. X.; Guo, S.; Yu, Z. G.; Qu, H.; Sun, W. X.; Yang, J. C.; Suresh, L.; Zhang, X. P.; Koh, J. J.; Tan, S. C. An asymmetric hygroscopic structure for moisture-driven hygro-ionic electricity generation and storage. Adv. Mater. 2022, 34, 2201228.

[26]

Moreira, K. S.; Lermen, D.; dos Santos, L. P.; Galembeck, F.; Burgo, T. A. L. Flexible, low-cost and scalable, nanostructured conductive paper-based, efficient hygroelectric generator. Energy Environ. Sci. 2021, 14, 353–358.

[27]

Wang, H. Y.; Sun, Y. L.; He, T. C.; Huang, Y. X.; Cheng, H. H.; Li, C.; Xie, D.; Yang, P. F.; Zhang, Y. F.; Qu, L. T. Bilayer of polyelectrolyte films for spontaneous power generation in air up to an integrated 1000 V output. Nat. Nanotechnol. 2021, 16, 811–819.

[28]

Bai, J. X.; Hu, Y. J.; Guang, T. L.; Zhu, K. X.; Wang, H. Y.; Cheng, H. H.; Liu, F.; Qu, L. T. Vapor and heat dual-drive sustainable power for portable electronics in ambient environments. Energy Environ. Sci. 2022, 15, 3086–3096.

[29]

Yang, C.; Huang, Y. X.; Cheng, H. H.; Jiang, L.; Qu, L. T. Hygroelectric generators: Rollable, stretchable, and reconfigurable graphene hygroelectric generators (Adv. Mater. 2/2019). Adv. Mater. 2019, 31, 1970013.

[30]

Huang, Y. X.; Cheng, H. H.; Yang, C.; Yao, H. Z.; Li, C.; Qu, L. T. All-region-applicable, continuous power supply of graphene oxide composite. Energy Environ. Sci. 2019, 12, 1848–1856.

[31]

Sun, Z. Y.; Wen, X.; Wang, L. M.; Ji, D. X.; Qin, X. H.; Yu, J. Y.; Ramakrishna, S. Emerging design principles, materials, and applications for moisture-enabled electric generation. eScience 2022, 2, 32–46.

[32]

Wang, H. Y.; He, T. C.; Hao, X. Z.; Huang, Y. X.; Yao, H. Z.; Liu, F.; Cheng, H. H.; Qu, L. T. Moisture adsorption–desorption full cycle power generation. Nat. Commun. 2022, 13, 2524.

[33]

Liu, X. M.; Gao, H. Y.; Ward, J. E.; Liu, X. R.; Yin, B.; Fu, T. D.; Chen, J. H.; Lovley, D. R.; Yao, J. Power generation from ambient humidity using protein nanowires. Nature 2020, 578, 550–554.

[34]

Wang, D.; Jiang, J.; Cao, M. Y.; Xie, S. S.; Li, Y. M.; Chen, L. J.; Zhao, J. W.; Yang, G. Y. An unprecedented dumbbell-shaped pentadeca-nuclear W-Er heterometal cluster stabilizing nanoscale hexameric arsenotungstate aggregate and electrochemical sensing properties of its conductive hybrid film-modified electrode. Nano Res. 2021, 15, 3628–3637.

[35]

Cameron, J. M.; Guillemot, G.; Galambos, T.; Amin, S. S.; Hampson, E.; Haidaraly, K. M.; Newton, G. N.; Izzet, G. Supramolecular assemblies of organo-functionalised hybrid polyoxometalates: From functional building blocks to hierarchical nanomaterials. Chem. Soc. Rev. 2022, 51, 293–328.

[36]
Zhang, Y. F.; Li, Z. W.; Zhang, J. J.; Xu, L. L.; Han, Z. K.; Baiker, A.; Li, G. Nanostructured Ni-MoCx: An efficient non-noble metal catalyst for the chemoselective hydrogenation of nitroaromatics. Nano Res., in press, https://doi.org/10.1007/s12274-023-5598-x.
[37]
Wang, J.; Wang, L.; Liu, C. Y.; Wang, Y.; Ye, F.; Yan, W.; Liu, B. Polyoxovanadate ionic crystals with open tunnels stabilized by macrocations for lithium-ion storage. Nano Res., in press, https://doi.org/10.1007/s12274-023-5491-7.
[38]

Jordan, J. W.; Cameron, J. M.; Lowe, G. A.; Rance, G. A.; Fung, K. L. Y.; Johnson, L. R.; Walsh, D. A.; Khlobystov, A. N.; Newton, G. N. Stabilization of polyoxometalate charge carriers via redox-driven nanoconfinement in single-walled carbon nanotubes. Angew. Chem., Int. Ed. 2022, 61, e202115619.

[39]

Lin, L. H.; Wei, F. F.; Jiang, R.; Huang, Y. C.; Lin, S. The role of central heteroatom in electrochemical nitrogen reduction catalyzed by polyoxometalate-supported single-atom catalyst. Nano Res. 2023, 16, 309–317.

[40]

Duan, S. J.; Xu, X. Y.; Chen, W. L.; Zhi, J. J.; Li, F. R. Grain boundaries passivation of high efficiency and stable perovskite photodetector by polyoxometalate-based composite SiW11@ZIF-8. Polyoxometalates 2022, 1, 9140003.

[41]

Li, J.; Zhang, D.; Chi, Y. N.; Hu, C. W. Catalytic application of polyoxovanadates in the selective oxidation of organic molecules. Polyoxometalates 2022, 1, 9140012.

[42]

Wei, Y. G. Polyoxometalates: An interdisciplinary journal focused on all aspects of polyoxometalates. Polyoxometalates 2022, 1, 9140014.

[43]

Zhang, S. M.; Shi, W. X.; Wang, X. Locking volatile organic molecules by subnanometer inorganic nanowire-based organogels. Science 2022, 377, 100–104.

[44]

Liu, Q. D.; He, S. Q.; Yu, B.; Cheng, X. J.; Shi, W. X.; Wang, X. Visible light induced Ag-polyoxometalate coassembly into single-cluster nanowires. Adv. Mater. 2022, 34, 2206178.

[45]

Zhao, D.; Zhuang, Z. W.; Cao, X.; Zhang, C.; Peng, Q.; Chen, C.; Li, Y. D. Atomic site electrocatalysts for water splitting, oxygen reduction, and selective oxidation. Chem. Soc. Rev. 2020, 49, 2215–2264.

[46]

Xiong, Y.; Dong, J. C.; Huang, Z. Q.; Xin, P. Y.; Chen, W. X.; Wang, Y.; Li, Z.; Jin, Z.; Xing, W.; Zhuang, Z. B. et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 2020, 15, 390–397.

[47]

Yang, D. R.; Zuo, S. W.; Yang, H. Z.; Wang, X. Single-unit-cell catalysis of CO2 electroreduction over sub-1 nm Cu9S5 nanowires. Adv. Energy Mater. 2021, 11, 2100272.

[48]

Liu, Q. D.; Zhang, Q. H.; Shi, W. X.; Hu, H. S.; Zhuang, J.; Wang, X. Self-assembly of polyoxometalate clusters into two-dimensional clusterphene structures featuring hexagonal pores. Nat. Chem. 2022, 14, 433–440.

[49]

Zhang, H. Y.; Zhao, W. L.; Li, H. Q.; Zhuang, Q. H.; Sun, Z. Q.; Cui, D. Y.; Chen, X. J.; Guo, A.; Ji, X.; An, S. et al. Latest progress in covalently modified polyoxometalates-based molecular assemblies and advanced materials. Polyoxometalates 2022, 1, 9140011.

[50]

Zhang, Y.; Liu, Y. F.; Wang, D.; Liu, J. C.; Zhao, J. W. State-of-the-art advances in the syntheses, structures, and applications of polyoxometalate-based metal-organic frameworks. Polyoxometalates 2023, 2, 9140017.

[51]

Lu, M.; Zhang, M.; Liu, J.; Yu, T. Y.; Chang, J. N.; Shang, L. J.; Li, S. L.; Lan, Y. Q. Confining and highly dispersing single polyoxometalate clusters in covalent organic frameworks by covalent linkages for CO2 photoreduction. J. Am. Chem. Soc. 2022, 144, 1861–1871.

[52]

Liu, J. C.; Zhao, J. W.; Streb, C.; Song, Y. F. Recent advances on high-nuclear polyoxometalate clusters. Coord. Chem. Rev. 2022, 471, 214734.

[53]

Luo, S.; Luo, Y. F.; Wu, H. C.; Li, M. Y.; Yan, L. J.; Jiang, K. L.; Liu, L.; Li, Q. Q.; Fan, S. S.; Wang, J. P. Self-assembly of 3D carbon nanotube sponges: A simple and controllable way to build macroscopic and ultralight porous architectures. Adv. Mater. 2017, 29, 1603549.

[54]

Ji, S. F.; Chen, Y. J.; Wang, X. L.; Zhang, Z. D.; Wang, D. S.; Li, Y. D. Chemical synthesis of single atomic site catalysts. Chem. Rev. 2020, 120, 11900–11955.

[55]

Miras, H. N.; Yan, J.; Long, D. L.; Cronin, L. Engineering polyoxometalates with emergent properties. Chem. Soc. Rev. 2012, 41, 7403–7430.

[56]

Li, J. R.; Chen, M. J.; Zhou, S. J.; Li, H. G.; Hao, J. C. Self-assembly of fullerene C60-based amphiphiles in solutions. Chem. Soc. Rev. 2022, 51, 3226–3242.

[57]

Gumerova, N. I.; Rompel, A. Polyoxometalates in solution: Speciation under spotlight. Chem. Soc. Rev. 2020, 49, 7568–7601.

[58]

Martin-Sabi, M.; Soriano-López, J.; Winter, R. S.; Chen, J. J.; Vilà-Nadal, L.; Long, D. L.; Galán-Mascarós, J. R.; Cronin, L. Redox tuning the Weakley-type polyoxometalate archetype for the oxygen evolution reaction. Nat. Catal. 2018, 1, 208–213.

[59]

Gumerova, N. I.; Rompel, A. Synthesis, structures, and applications of electron-rich polyoxometalates. Nat. Rev. Chem. 2018, 2, 0112.

[60]

Yang, L.; Lei, J.; Fan, J. M.; Yuan, R. M.; Zheng, M. S.; Chen, J. J.; Dong, Q. F. The intrinsic charge carrier behaviors and applications of polyoxometalate clusters based materials. Adv. Mater. 2021, 33, 2005019.

[61]

Liu, R. J.; Streb, C. Polyoxometalate-single atom catalysts (POM-SACs) in energy research and catalysis. Adv. Energy Mater. 2021, 11, 2101120.

[62]

Horn, M. R.; Singh, A.; Alomari, S.; Goberna-Ferrón, S.; Benages-Vilau, R.; Chodankar, N.; Motta, N.; Ostrikov, K.; MacLeod, J.; Sonar, P. et al. Polyoxometalates (POMs): From electroactive clusters to energy materials. Energy Environ. Sci. 2021, 14, 1652–1700.

[63]

Fang, Z. H.; Luo, Y. F.; Liu, H. T.; Hong, Z. X.; Wu, H. C.; Zhao, F.; Liu, P.; Li, Q. Q.; Fan, S. S.; Duan, W. H. et al. Boosting the oxidative potential of polyethylene glycol-based polymer electrolyte to 4.36 V by spatially restricting hydroxyl groups for high-voltage flexible lithium-ion battery applications. Adv. Sci. 2021, 8, 2100736.

[64]

Zhang, J.; Zhang, K. N.; Xia, B. Y.; Wei, Y.; Li, D. Q.; Zhang, K.; Zhang, Z. X.; Wu, Y.; Liu, P.; Duan, X. D. et al. Carbon-nanotube-confined vertical heterostructures with asymmetric contacts. Adv. Mater. 2017, 29, 1702942.

[65]

Liu, Q. D.; He, P. L.; Yu, H. D.; Gu, L.; Ni, B.; Wang, D.; Wang, X. Single molecule-mediated assembly of polyoxometalate single-cluster rings and their three-dimensional superstructures. Sci. Adv. 2019, 5, eaax1081.

[66]

Lyon, D. K.; Miller, W. K.; Novet, T.; Domaille, P. J.; Evitt, E.; Johnson, D. C.; Finke, R. G. Highly oxidation resistant inorganic-porphyrin analog polyoxometalate oxidation catalysts. 1. The synthesis and characterization of aqueous-soluble potassium salts of α2-P2W17O61(Mn+·OH2)(n−10) and organic solvent soluble tetra-n-butylammonium salts of α2-P2W17O61(Mn+·OH2)(n−11) (M = Mn3+, Fe3+, Co2+, Ni2+, Cu2+). J. Am. Chem. Soc. 1991, 113, 7209–7221.

[67]

Contant, R.; Richet, M.; Lu, Y. W.; Keita, B.; Nadjo, L. Isomerically pure α1-monosubstituted tungstodiphosphates: Synthesis, characterization, and stability in aqueous solutions. Eur. J. Inorg. Chem. 2002, 2002, 2587–2593.

[68]

Granadeiro, C. M.; Ferreira, R. A. S.; Soares-Santos, P. C. R.; Carlos, L. D.; Nogueira, H. I. S. Lanthanopolyoxometalates as building blocks for multiwavelength photoluminescent organic–inorganic hybrid materials. Eur. J. Inorg. Chem. 2009, 2009, 5088–5095.

[69]

Geue, N.; Winpenny, R. E. P.; Barran, P. E. Structural characterisation methods for supramolecular chemistry that go beyond crystallography. Chem. Soc. Rev. 2022, 51, 8–27.

[70]

Qian, K.; Winans, R. E.; Li, T. Insights into the nanostructure, solvation, and dynamics of liquid electrolytes through small-angle X-ray scattering. Adv. Energy Mater. 2020, 11, 200282.

[71]

Liu, Y. Y.; Gao, F. Y.; Ko, S.; Wang, C. Z.; Liu, H. H.; Tang, X. L.; Yi, H. H.; Zhou, Y. S. Superior catalytic performance within H2O-vapor of W-modified CoMn2O4/TiO2 catalyst for selective catalytic reduction of NOx with NH3. Chem. Eng. J. 2022, 434, 134770.

[72]

Wang, D. Y.; Zhang, D. Z.; Yang, Y.; Mi, Q.; Zhang, J. H.; Yu, L. D. Multifunctional latex/polytetrafluoroethylene-based triboelectric nanogenerator for self-powered organ-like MXene/metal-organic framework-derived CuO nanohybrid ammonia sensor. ACS Nano 2021, 15, 2911–2919.

[73]

Zhou, T.; Zhu, L. M.; Xie, L. L.; Han, Q.; Yang, X. L.; Cao, X. Y.; Ma, J. M. New insight on K2Zn2V10O28 as an advanced cathode for rechargeable aqueous zinc-ion batteries. Small 2022, 18, 2107102.

[74]

Chen, Y. C.; Huang, Y.; Xu, M. J.; Asset, T.; Yan, X. X.; Artyushkova, K.; Kodali, M.; Murphy, E.; Ly, A.; Pan, X. Q. et al. Catalysts by pyrolysis: Direct observation of transformations during re-pyrolysis of transition metal-nitrogen-carbon materials leading to state-of-the-art platinum group metal-free electrocatalyst. Mater. Today 2022, 53, 58–70.

[75]

McGregor, D.; Burton-Pye, B. P.; Howell, R. C.; Mbomekalle, I. M.; Lukens, W. W. Jr.; Bian, F.; Mausolf, E.; Poineau, F.; Czerwinski, K. R.; Francesconi, L. C. Synthesis, structure elucidation, and redox properties of 99Tc complexes of lacunary Wells–Dawson polyoxometalates: Insights into molecular 99Tc–metal oxide interactions. Inorg. Chem. 2011, 50, 1670–1681.

[76]

Wang, T.; Xu, M.; Li, X. H.; Wang, C. L.; Chen, W. L. Highly dispersed redox-active polyoxometalates’ periodic deposition on multi-walled carbon nanotubes for boosting electrocatalytic triiodide reduction in dye-sensitized solar cells. Inorg. Chem. Front. 2020, 7, 1676–1684.

[77]

Zhang, S. M.; Shi, H. D.; Tang, J. W.; Shi, W. X.; Wu, Z. S.; Wang, X. Super-aligned films of sub-1 nm Bi2O3-polyoxometalate nanowires as interlayers in lithium-sulfur batteries. Sci. China Mater. 2021, 64, 2949–2957.

[78]

Zhang, S. M.; Shi, W. X.; Siegler, T. D.; Gao, X. Q.; Ge, F.; Korgel, B. A.; He, Y.; Li, S. Z.; Wang, X. An all-inorganic colloidal nanocrystal flexible polarizer. Angew. Chem., Int. Ed. 2019, 58, 8730–8735.

[79]

Liu, H. L.; Gong, Q. H.; Yue, Y. H.; Guo, L.; Wang, X. Sub-1 nm nanowire based superlattice showing high strength and low modulus. J. Am. Chem. Soc. 2017, 139, 8579–8585.

[80]

Gunn, R. Thunderstorm electrification of hail and graupel by polar dribble. Science 1966, 151, 686–687.

[81]

Gouveia, R. F.; Galembeck, F. Electrostatic charging of hydrophilic particles due to water adsorption. J. Am. Chem. Soc. 2009, 131, 11381–11386.

[82]

Jin, D. W.; Ko, Y. J.; Ahn, C. W.; Hur, S.; Lee, T. K.; Jeong, D. G.; Lee, M.; Kang, C. Y.; Jung, J. H. Polarization- and electrode-optimized polyvinylidene fluoride films for harsh environmental piezoelectric nanogenerator applications. Small 2021, 17, 2007289.

[83]

Chen, Z. M.; Gu, X. Q.; Guo, Y. T.; Wang, X.; Shao, M. W.; Dong, B.; Kang, Z. H. A carbon dot-based total green and self-recoverable solid-state electrochemical cell fully utilizing O2/H2O redox couple. SusMat 2021, 1, 448–457.

[84]

Khan, M.; Hussain, A.; Malik, M. Y.; Salahuddin, T.; Aly, S. Numerical analysis of Carreau fluid flow for generalized Fourier’s and Fick’s laws. Appl. Numer. Math. 2019, 144, 100–117.

[85]

Chen, F. R.; Chen, H. F. A diffusion model of the pervaporation separation of ethylene glycol-water mixtures through crosslinked poly(vinyl alcohol) membrane. J. Membrane Sci. 1998, 139, 201–209.

[86]

Raut, D. R.; Mohapatra, P. K.; Choudhary, M. K.; Nayak, S. K. Evaluation of two calix-crown-6 ligands for the recovery of radio cesium from nuclear waste solutions: Solvent extraction and liquid membrane studies. J. Membrane Sci. 2013, 429, 197–205.

Nano Research
Pages 1875-1885
Cite this article:
Ji T, Chen W, Kang Z, et al. Polyoxometalates for continuous power generation by atmospheric humidity. Nano Research, 2024, 17(3): 1875-1885. https://doi.org/10.1007/s12274-023-5959-5
Topics:

1159

Views

8

Crossref

7

Web of Science

5

Scopus

0

CSCD

Altmetrics

Received: 07 April 2023
Revised: 25 June 2023
Accepted: 25 June 2023
Published: 01 August 2023
© Tsinghua University Press 2023
Return