Journal Home > Volume 17 , Issue 3

The separation of photogenerated electron–hole pairs is vitally important for photocatalysis, which can be effectively promoted by polarization field. However, it only manifests in piezoelectric/pyroelectric/ferroelectric materials that have a non-centrosymmetric structure. Here, we demonstrate that the polarization enhanced photocatalysis (with wide spectra from ultraviolet (UV) light to visible light) can be achieved in centrosymmetric semiconductors, such as δ-MnO2 and TiO2 nanosheets integrated nanoflowers, by using the strain-gradient-induced flexoelectric polarization that is always overlooked in polarization-enhanced catalysis. Under ultrasonic and illumination excitation, the organic pollutants (methylene blue (MB), etc.) can be effectively degraded within 30 min with excellent stability and repeatability. Compared with photocatalysis, the flexo-photocatalytic performance of above centrosymmetric semiconductors is substantially increased by 85%. Moreover, the factors related to flexo-photocatalysis such as material morphology, mechanical stimuli source, and adsorption are explored to deeply understand the mechanism of flexo-photocatalysis. This work opens up a way for high-performance photocatalysis in centrosymmetric semiconductors.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Flexo-photocatalysis in centrosymmetric semiconductors

Show Author's information Kang Liu1,2,§Tong Wu2,3,§Luying Xu2,3Zhuangzhuang Zhang2,3Zhiyu Liu2,3Longfei Wang2,3( )Zhong Lin Wang1,2,4,5( )
Center on Nanoenergy Research, School of Physical Science & Technology, Guangxi University, Nanning 530004, China
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China
College of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Georgia Institute of Technology, Atlanta, GA 30332-0245, USA
Yonsei Frontier Lab, Yonsei University, Seoul 03722, Republic of Korea

§ Kang Liu and Tong Wu contributed equally to this work.

Abstract

The separation of photogenerated electron–hole pairs is vitally important for photocatalysis, which can be effectively promoted by polarization field. However, it only manifests in piezoelectric/pyroelectric/ferroelectric materials that have a non-centrosymmetric structure. Here, we demonstrate that the polarization enhanced photocatalysis (with wide spectra from ultraviolet (UV) light to visible light) can be achieved in centrosymmetric semiconductors, such as δ-MnO2 and TiO2 nanosheets integrated nanoflowers, by using the strain-gradient-induced flexoelectric polarization that is always overlooked in polarization-enhanced catalysis. Under ultrasonic and illumination excitation, the organic pollutants (methylene blue (MB), etc.) can be effectively degraded within 30 min with excellent stability and repeatability. Compared with photocatalysis, the flexo-photocatalytic performance of above centrosymmetric semiconductors is substantially increased by 85%. Moreover, the factors related to flexo-photocatalysis such as material morphology, mechanical stimuli source, and adsorption are explored to deeply understand the mechanism of flexo-photocatalysis. This work opens up a way for high-performance photocatalysis in centrosymmetric semiconductors.

Keywords: flexoelectricity, polarization, photocatalysis, piezo-photocatalysis, centrosymmetric semiconductor

References(44)

[1]

Yang, X. G.; Wang, D. W. Photocatalysis: From fundamental principles to materials and applications. ACS Appl. Energy Mater. 2018, 1, 6657–6693.

[2]

Wang, X. C.; Faungnawakij, K.; Chareonpanich, M. Editorial: Photocatalysis-from solar power to sustainable chemical production. ChemCatChem 2019, 11, 5838–5841.

[3]

Men, X. J.; Chen, H. B.; Chang, K. W.; Fang, X. F.; Wu, C. F.; Qin, W. P.; Yin, S. Y. Three-dimensional free-standing ZnO/graphene composite foam for photocurrent generation and photocatalytic activity. Appl. Catal. B:Environ. 2016, 187, 367–374.

[4]

Qu, Y. Q.; Duan, X. F. Progress, challenge and perspective of heterogeneous photocatalysts. Chem. Soc. Rev. 2013, 42, 2568–2580.

[5]

Ma, D. D.; Shi, J. W.; Zou, Y. J.; Fan, Z. Y.; Ji, X.; Niu, C. M.; Wang, L. Z. Rational design of CdS@ZnO core–shell structure via atomic layer deposition for drastically enhanced photocatalytic H2 evolution with excellent photostability. Nano Energy 2017, 39, 183–191.

[6]

Jiao, X. C.; Chen, Z. W.; Li, X. D.; Sun, Y. F.; Gao, S.; Yan, W. S.; Wang, C. M.; Zhang, Q.; Lin, Y.; Luo, Y. et al. Defect-mediated electron–hole separation in one-unit-cell ZnIn2S4 layers for boosted solar-driven CO2 reduction. J. Am. Chem. Soc. 2017, 139, 7586–7594.

[7]

Cui, L. F.; Song, J. L.; McGuire, A. F.; Kang, S. F.; Fang, X. Y.; Wang, J. J.; Yin, C. C.; Li, X.; Wang, Y. G.; Cui, B. X. Constructing highly uniform onion-ring-like graphitic carbon nitride for efficient visible-light-driven photocatalytic hydrogen evolution. ACS Nano 2018, 12, 5551–5558.

[8]

Wang, J. J.; Hu, C.; Zhang, Y. H.; Huang, H. W. Engineering piezoelectricity and strain sensitivity in CdS to promote piezocatalytic hydrogen evolution. Chin. J. Catal. 2022, 43, 1277–1285.

[9]

Chen, F.; Ma, Z. Y.; Ye, L. Q.; Ma, T. Y.; Zhang, T. R.; Zhang, Y. H.; Huang, H. W. Macroscopic spontaneous polarization and surface oxygen vacancies collaboratively boosting CO2 photoreduction on BiOIO3 single crystals. Adv. Mater. 2020, 32, 1908350.

[10]

Liu, L. Z.; Li, M. T.; Chen, F.; Huang, H. W. Recent advances on single-atom catalysts for CO2 reduction. Small Struct. 2023, 4, 2200188.

[11]

Chen, F.; Zhang, Y. H.; Huang, H. W. Layered photocatalytic nanomaterials for environmental applications. Chin. Chem. Lett. 2023, 34, 107523.

[12]

Zhang, C. X.; Lei, D.; Xie, C. F.; Hang, X. S.; He, C. X.; Jiang, H. L. Piezo-photocatalysis over metal-organic frameworks: Promoting photocatalytic activity by piezoelectric effect. Adv. Mater. 2021, 33, 2106308.

[13]

Zhang, S. C.; Chen, D.; Liu, Z. F.; Ruan, M. N.; Guo, Z. G. Novel strategy for efficient water splitting through pyro-electric and pyro-photo-electric catalysis of BaTiO3 by using thermal resource and solar energy. Appl. Catal. B:Environ. 2021, 284, 119686.

[14]

Liu, Y.; Zhang, M. J.; Wang, Z.; He, J. D.; Zhang, J.; Ye, S.; Wang, X. L.; Li, D. F.; Yin, H.; Zhu, Q. H. et al. Bipolar charge collecting structure enables overall water splitting on ferroelectric photocatalysts. Nat. Commun. 2022, 13, 4245.

[15]

Kogan, S. M. Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals. Sov. Phys. Solid State 1964, 5, 2069–2070.

[16]

Narvaez, J.; Vasquez-Sancho, F.; Catalan, G. Enhanced flexoelectric-like response in oxide semiconductors. Nature 2016, 538, 219–221.

[17]

Jiang, J.; Chen, Z. Z.; Hu, Y.; Xiang, Y.; Zhang, L. F.; Wang, Y. P.; Wang, G. C.; Shi, J. Flexo-photovoltaic effect in MoS2. Nat. Nanotechnol. 2021, 16, 894–901.

[18]

Shu, L. L.; Ke, S. M.; Fei, L. F.; Huang, W. B.; Wang, Z. G.; Gong, J. H.; Jiang, X. N.; Wang, L.; Li, F.; Lei, S. J. et al. Photoflexoelectric effect in halide perovskites. Nat. Mater. 2020, 19, 605–609.

[19]

Wang, L. F.; Liu, S. H.; Feng, X. L.; Zhang, C. L.; Zhu, L. P.; Zhai, J. Y.; Qin, Y.; Wang, Z. L. Flexoelectronics of centrosymmetric semiconductors. Nat. Nanotechnol. 2020, 15, 661–667.

[20]

Xue, X. Y.; Zang, W. L.; Deng, P.; Wang, Q.; Xing, L. L.; Zhang, Y.; Wang, Z. L. Piezo-potential enhanced photocatalytic degradation of organic dye using ZnO nanowires. Nano Energy 2015, 13, 414–422.

[21]

Li, H. D.; Sang, Y. H.; Chang, S. J.; Huang, X.; Zhang, Y.; Yang, R. S.; Jiang, H. D.; Liu, H.; Wang, Z. L. Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect. Nano Lett. 2015, 15, 2372–2379.

[22]

Flint, E. B.; Suslick, K. S. The temperature of cavitation. Science 1991, 253, 1397–1399.

[23]

Flannigan, D. J.; Suslick, K. S. Plasma formation and temperature measurement during single-bubble cavitation. Nature 2005, 434, 52–55.

[24]

Bhaskar, U. K.; Banerjee, N.; Abdollahi, A.; Wang, Z.; Schlom, D. G.; Rijnders, G.; Catalan, G. A flexoelectric microelectromechanical system on silicon. Nat. Nanotechnol. 2016, 11, 263–266.

[25]

Zubko, P.; Catalan, G.; Buckley, A.; Welche, P. R. L.; Scott, J. F. Strain-gradient-induced polarization in SrTiO3 single crystals. Phys. Rev. Lett. 2007, 99, 167601.

[26]

Yang, R. J.; Guo, Z. J.; Cai, L. X.; Zhu, R. S.; Fan, Y. Y.; Zhang, Y. F.; Han, P. P.; Zhang, W. J.; Zhu, X. G.; Zhao, Q. T. et al. Investigation into the phase–activity relationship of MnO2 nanomaterials toward ozone-assisted catalytic oxidation of toluene. Small 2021, 17, 2103052.

[27]

Zhu, S. J.; Huo, W. C.; Liu, X. Y.; Zhang, Y. X. Birnessite based nanostructures for supercapacitors: Challenges, strategies and prospects. Nanoscale Adv. 2020, 2, 37–54.

[28]

Li, K.; Chen, C.; Zhang, H. B.; Hu, X. J.; Sun, T. H.; Jia, J. P. Effects of phase structure of MnO2 and morphology of δ-MnO2 on toluene catalytic oxidation. Appl. Surf. Sci. 2019, 496, 143662.

[29]

Wang, J. L.; Wang, K.; He, Z. H.; Li, S. S.; Zhang, R. R.; Guo, P. F.; Wang, W. T.; Yang, Y.; Liu, Z. T. Solvent-induced synthesis of hierarchical TiO2 nanoflowers with tunable morphology by monolayer self-assembly for probing the photocatalytic performance. J. Nanostruct. Chem. 2022, 12, 1075–1087.

[30]

Kitchaev, D. A.; Peng, H. W.; Liu, Y.; Sun, J. W.; Perdew, J. P.; Ceder, G. Energetics of MnO2 polymorphs in density functional theory. Phys. Rev. B 2016, 93, 045132.

[31]

Wu, T.; Liu, K.; Liu, S. H.; Feng, X. L.; Wang, X. F.; Wang, L. F.; Qin, Y.; Wang, Z. L. Highly efficient flexocatalysis of two-dimensional semiconductors. Adv. Mater. 2022, 35, 2208121.

[32]

Wang, Z. M.; Berbille, A.; Feng, Y. W.; Li, S. T.; Zhu, L. P.; Tang, W.; Wang, Z. L. Contact-electro-catalysis for the degradation of organic pollutants using pristine dielectric powders. Nat. Commun. 2022, 13, 130.

[33]

Remucal, C. K.; Ginder-Vogel, M. A critical review of the reactivity of manganese oxides with organic contaminants. Environ. Sci.: Processes Impacts 2014, 16, 1247–1266.

[34]

Guo, R.; You, L.; Lin, W. N.; Abdelsamie, A.; Shu, X. Y.; Zhou, G. W.; Chen, S. H.; Liu, L.; Yan, X. B.; Wang, J. L. et al. Continuously controllable photoconductance in freestanding BiFeO3 by the macroscopic flexoelectric effect. Nat. Commun. 2020, 11, 2571.

[35]

Das, S.; Wang, B.; Paudel, T. R.; Park, S. M.; Tsymbal, E. Y.; Chen, L. Q.; Lee, D.; Noh, T. W. Enhanced flexoelectricity at reduced dimensions revealed by mechanically tunable quantum tunnelling. Nat. Commun. 2019, 10, 537.

[36]

Gao, P.; Yang, S. Z.; Ishikawa, R.; Li, N.; Feng, B.; Kumamoto, A.; Shibata, N.; Yu, P.; Ikuhara, Y. Atomic-scale measurement of flexoelectric polarization at SrTiO3 dislocations. Phys. Rev. Lett. 2018, 120, 267601.

[37]

Hu, K.; Wang, R. H.; Maimaitituersun, M.; Sun, H. J.; Liu, X. F.; Zhang, Y. Synergetic piezo-photocatalytic effect in ultrathin Bi2WO6 nanosheets for decomposing organic dye. J. Mater. Sci. :Mater. Electron. 2022, 33, 9845–9857.

[38]

Tang, Q.; Wu, J.; Chen, X. Z.; Sanchis-Gual, R.; Veciana, A.; Franco, C.; Kim, D.; Surin, I.; Pérez-Ramírez, J.; Mattera, M. et al. Tuning oxygen vacancies in Bi4Ti3O12 nanosheets to boost piezo-photocatalytic activity. Nano Energy 2023, 108, 108202.

[39]

Liu, Z.; Wang, B.; Cazorla, C. Strain engineering of two-dimensional piezophotocatalytic materials for improved hydrogen evolution reaction. ACS Sustainable Chem. Eng. 2022, 10, 16924–16934.

[40]

Dong, X. L.; Wang, Z. M.; Berbille, A.; Zhao, X.; Tang, W.; Wang, Z. L. Investigations on the contact-electro-catalysis under various ultrasonic conditions and using different electrification particles. Nano Energy 2022, 99, 107346.

[41]

Lipomi, D. J.; Vosgueritchian, M.; Tee, B. C. K.; Hellstrom, S. L.; Lee, J. A.; Fox, C. H.; Bao, Z. N. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 2011, 6, 788–792.

[42]

Fu, X. W.; Liao, Z. M.; Zhou, J. X.; Wu, H. C.; Zhang, R.; Jing, G. Y.; Xu, J.; Wu, X. S.; Guo, W. L.; Yu, D. P. Strain dependent resistance in chemical vapor deposition grown graphene. Appl. Phys. Lett. 2011, 99, 213107.

[43]

Yan, C. Y.; Wang, J. X.; Kang, W. B.; Cui, M. Q.; Wang, X.; Foo, C. Y.; Chee, K. J.; Lee, P. S. Highly stretchable piezoresistive grapheme-nanocellulose nanopaper for strain sensors. Adv. Mater. 2014, 26, 2022–2027.

[44]

Cohen, D. J.; Mitra, D.; Peterson, K.; Maharbiz, M. M. A highly elastic, capacitive strain gauge based on percolating nanotube networks. Nano Lett. 2012, 12, 1821–1825.

File
12274_2023_5957_MOESM1_ESM.pdf (2.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 May 2023
Revised: 14 June 2023
Accepted: 23 June 2023
Published: 01 August 2023
Issue date: March 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This research was supported by the National Natural Science Foundation of China (No. 52202162).

Return