Journal Home > Volume 17 , Issue 1

Advanced soft ion-conducting hydrogels have been developed rapidly in the integrated portable health monitoring equipment due to their higher sensitivity, sensory traits, tunable conductivity, and stretchability for physiological activities and personal healthcare detection. However, traditional hydrogel conductors are normally susceptible to large deformation and strong mechanical stress, which leads to inferior electro-mechanical stability for real application scenarios. Herein, a strong ionically conductive hydrogel (poly(vinyl alcohol)-boric acid-glycerol/sodium alginate-calcium chloride/electrolyte ions (PBG/SC/EI)) was designed by engineering the covalently and ionically crosslinked networks followed by the salting-out effect to further enhance the mechanical strength and ionic conductivity of the hydrogel. Owing to the collective effects of the energy-dissipation mechanism and salting-out effect, the designed PBG/SC/EI with excellent structural integrity and robustness exhibits exceptional mechanical properties (elongation at break for 559.1% and tensile strength of 869.4 kPa) and high ionic conductivity (1.618 S·m−1). As such, the PBG/SC/EI strain sensor features high sensitivity (gauge factor = 2.29), which can effectively monitor various kinds of human motions (joint motions, facial micro-expression, faint respiration, and voice recognition). Meanwhile, the hydrogel-based Zn||MnO2 battery delivers a high capacity of 267.2 mAh·g−1 and a maximal energy density of 356.8 Wh·kg−1 associated with good cycle performance of 71.8% capacity retention after 8000 cycles. Additionally, an integrated bio-monitoring system with the sensor and Zn||MnO2 battery can accurately identify diverse physiological activities in a real-time and non-invasive way. This work presents a feasible strategy for designing high-performance conductive hydrogels for highly-reliable integrated bio-monitoring systems with excellent practicability.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

An integrated portable bio-monitoring system based on tough hydrogels for comprehensive detection of physiological activities

Show Author's information Congcong Yang1Chenchen Ji1( )Fengjiao Guo1Chunjiang Jin1Hongyu Mi1( )Zhongchang Wang2( )
State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
International Iberian Nanotechnology Laboratory (INL), Avenide Mestre Jose Veiga, Braga 4715-330, Portugal

Abstract

Advanced soft ion-conducting hydrogels have been developed rapidly in the integrated portable health monitoring equipment due to their higher sensitivity, sensory traits, tunable conductivity, and stretchability for physiological activities and personal healthcare detection. However, traditional hydrogel conductors are normally susceptible to large deformation and strong mechanical stress, which leads to inferior electro-mechanical stability for real application scenarios. Herein, a strong ionically conductive hydrogel (poly(vinyl alcohol)-boric acid-glycerol/sodium alginate-calcium chloride/electrolyte ions (PBG/SC/EI)) was designed by engineering the covalently and ionically crosslinked networks followed by the salting-out effect to further enhance the mechanical strength and ionic conductivity of the hydrogel. Owing to the collective effects of the energy-dissipation mechanism and salting-out effect, the designed PBG/SC/EI with excellent structural integrity and robustness exhibits exceptional mechanical properties (elongation at break for 559.1% and tensile strength of 869.4 kPa) and high ionic conductivity (1.618 S·m−1). As such, the PBG/SC/EI strain sensor features high sensitivity (gauge factor = 2.29), which can effectively monitor various kinds of human motions (joint motions, facial micro-expression, faint respiration, and voice recognition). Meanwhile, the hydrogel-based Zn||MnO2 battery delivers a high capacity of 267.2 mAh·g−1 and a maximal energy density of 356.8 Wh·kg−1 associated with good cycle performance of 71.8% capacity retention after 8000 cycles. Additionally, an integrated bio-monitoring system with the sensor and Zn||MnO2 battery can accurately identify diverse physiological activities in a real-time and non-invasive way. This work presents a feasible strategy for designing high-performance conductive hydrogels for highly-reliable integrated bio-monitoring systems with excellent practicability.

Keywords: strain sensor, human motion monitoring, Zn-based battery, Ionically conductive hydrogel, integrated bio-monitoring system

References(55)

[1]

Zhang, Y.; Wang, Y. F.; Guan, Y.; Zhang, Y. J. Peptide-enhanced tough, resilient and adhesive eutectogels for highly reliable strain/pressure sensing under extreme conditions. Nat. Commun. 2022, 13, 6671.

[2]

Wu, M.; Wang, X.; Xia, Y. F.; Zhu, Y.; Zhu, S. L.; Jia, C. Y.; Guo, W. Y.; Li, Q. Q.; Yan, Z. G. Stretchable freezing-tolerant triboelectric nanogenerator and strain sensor based on transparent, long-term stable, and highly conductive gelatin-based organohydrogel. Nano Energy 2022, 95, 106967.

[3]

Li, W. D.; Ke, K.; Jia, J.; Pu, J. H.; Zhao, X.; Bao, R. Y.; Liu, Z. Y.; Bai, L.; Zhang, K.; Yang, M. B. et al. Recent advances in multiresponsive flexible sensors towards e-skin: A delicate design for versatile sensing. Small 2022, 18, 2103734.

[4]

Huang, J. R.; Peng, S. J.; Gu, J. F.; Chen, G. Q.; Gao, J. H.; Zhang, J.; Hou, L. X.; Yang, X. X.; Jiang, X. C.; Guan, L. H. Self-powered integrated system of a strain sensor and flexible all-solid-state supercapacitor by using a high performance ionic organohydrogel. Mater. Horiz. 2020, 7, 2085–2096.

[5]

Mo, F. N.; Huang, Y.; Li, Q.; Wang, Z. F.; Jiang, R. J.; Gai, W. M.; Zhi, C. Y. A highly stable and durable capacitive strain sensor based on dynamically super-tough hydro/organo-gels. Adv. Funct. Mater. 2021, 31, 2010830.

[6]

Bai, Z. X.; Wang, X. C.; Zheng, M. H.; Yue, O. Y.; Huang, M. C.; Zou, X. L.; Cui, B. Q.; Xie, L.; Dong, S. Y.; Shang, J. J. et al. Mechanically robust and transparent organohydrogel-based E-skin nanoengineered from natural skin. Adv. Funct. Mater. 2023, 33, 2212856.

[7]

Lu, Y.; Qu, X. Y.; Wang, S. Y.; Zhao, Y.; Ren, Y. F.; Zhao, W. L.; Wang, Q.; Sun, C. C.; Wang, W. J.; Dong, X. C. Ultradurable, freeze-resistant, and healable MXene-based ionic gels for multi-functional electronic skin. Nano Res. 2022, 15, 4421–4430.

[8]

Shen, J. D.; Du, P.; Zhou, B. B.; Zhang, G. B.; Tang, X. X.; Pan, J.; Li, B.; Zhang, J. Y.; Lu, J.; Li, Y. Y. An anti-freezing biomineral hydrogel of high strain sensitivity for artificial skin applications. Nano Res. 2022, 15, 6655–6661.

[9]

Cui, W.; Zheng, Y.; Zhu, R. J.; Mu, Q. F.; Wang, X. Y.; Wang, Z. S.; Liu, S. Q.; Li, M.; Ran, R. Strong tough conductive hydrogels via the synergy of ion-induced cross-linking and salting-out. Adv. Funct. Mater. 2022, 32, 2204823.

[10]

Ren, Z. H.; Yang, J. H.; Qi, D. C.; Sonar, P.; Liu, L. Y.; Lou, Z.; Shen, G. Z.; Wei, Z. M. Flexible sensors based on organic–inorganic hybrid materials. Adv. Mater. Technol. 2021, 6, 2000889.

[11]

He, P.; Guo, R. S.; Hu, K.; Liu, K.; Lin, S.; Wu, H.; Huang, L. L.; Chen, L. H.; Ni, Y. H. Tough and super-stretchable conductive double network hydrogels with multiple sensations and moisture-electric generation. Chem. Eng. J. 2021, 414, 128726.

[12]

Xin, Y.; Liang, J. H.; Ren, L. T.; Gao, W. S.; Qiu, W. C.; Li, Z. H.; Qu, B. L.; Peng, A. J.; Ye, Z. X.; Fu, J. et al. Tough, healable, and sensitive strain sensor based on multiphysically cross-linked hydrogel for ionic skin. Biomacromolecules 2023, 24, 1287–1298.

[13]

Chen, G. Q.; Huang, J. R.; Gu, J. F.; Peng, S. J.; Xiang, X. T.; Chen, K.; Yang, X. X.; Guan, L. H.; Jiang, X. C.; Hou, L. X. Highly tough supramolecular double network hydrogel electrolytes for an artificial flexible and low-temperature tolerant sensor. J. Mater. Chem. A 2020, 8, 6776–6784.

[14]

Wang, Z. F.; Mo, F. N.; Ma, L. T.; Yang, Q.; Liang, G. J.; Liu, Z. X.; Li, H. F.; Li, N.; Zhang, H. Y.; Zhi, C. Y. Highly compressible cross-linked polyacrylamide hydrogel-enabled compressible Zn-MnO2 battery and a flexible battery-sensor system. ACS Appl. Mater. Interfaces 2018, 10, 44527–44534.

[15]

Wu, T. L.; Ji, C. C.; Mi, H. Y.; Guo, F. J.; Guo, G. Z.; Zhang, B.; Wu, M. Z. Construction of zwitterionic osmolyte-based hydrogel electrolytes towards stable zinc anode for durable aqueous zinc ion storage and integrated electronics. J. Mater. Chem. A 2022, 10, 25701–25713.

[16]

Li, H. F.; Han, C. P.; Huang, Y.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Xue, Q.; Wang, Z. F.; Liu, Z. X.; Tang, Z. J. et al. An extremely safe and wearable solid-state zinc ion battery based on a hierarchical structured polymer electrolyte. Energy Environ. Sci. 2018, 11, 941–951.

[17]

Ge, H. Y.; Feng, X. L.; Liu, D. P.; Zhang, Y. Recent advances and perspectives for Zn-based batteries: Zn anode and electrolyte. Nano Res. Energy 2023, 2, e9120039.

[18]

Tian, Y. D.; Chen, S.; He, Y. L.; Chen, Q. W.; Zhang, L. L.; Zhang, J. T. A highly reversible dendrite-free Zn anode via spontaneous galvanic replacement reaction for advanced zinc-iodine batteries. Nano Res. Energy 2022, 1, e9120025.

[19]

Zhang, W. T.; Guo, F. J.; Mi, H. Y.; Wu, Z. S.; Ji, C. C.; Yang, C. C.; Qiu, J. S. Kinetics-boosted effect enabled by zwitterionic hydrogel electrolyte for highly reversible zinc anode in zinc-ion hybrid micro-supercapacitors. Adv. Energy Mater. 2022, 12, 2202219.

[20]

Pan, H. L.; Shao, Y. Y.; Yan, P. F.; Cheng, Y. W.; Han, K. S.; Nie, Z. M.; Wang, C. M.; Yang, J. H.; Li, X. L.; Bhattacharya, P. et al. Reversible aqueous zinc/manganese oxide energy storage from conversion reactions. Nat. Energy 2016, 1, 16039.

[21]

Pang, Q.; Hu, H. T.; Zhang, H. Q.; Qiao, B. B.; Ma, L. Temperature-responsive ionic conductive hydrogel for strain and temperature sensors. ACS Appl. Mater. Interfaces 2022, 14, 26536–26547.

[22]

Ren, J. Y.; Liu, Y. H.; Wang, Z. Q.; Chen, S. Q.; Ma, Y. F.; Wei, H.; Lü, S. Y. An anti-swellable hydrogel strain sensor for underwater motion detection. Adv. Funct. Mater. 2022, 32, 2107404.

[23]

Zhang, J. Y.; Wu, C.; Xu, Y. Y.; Chen, J. L.; Ning, N.; Yang, Z. Y.; Guo, Y.; Hu, X. F.; Wang, Y. B. Highly stretchable and conductive self-healing hydrogels for temperature and strain sensing and chronic wound treatment. ACS Appl. Mater. Interfaces 2020, 12, 40990–40999.

[24]

Lu, Y. Y.; Zhu, T. Y.; Xu, N. S.; Huang, K. A semisolid electrolyte for flexible Zn-ion batteries. ACS Appl. Energy Mater. 2019, 2, 6904–6910.

[25]

Fu, C. Y.; Wang, Y. P.; Lu, C. G.; Zhou, S.; He, Q.; Hu, Y. Z.; Feng, M. Y.; Wan, Y. L.; Lin, J. D.; Zhang, Y. F. et al. Modulation of hydrogel electrolyte enabling stable zinc metal anode. Energy Storage Mater. 2022, 51, 588–598.

[26]

He, Q.; Fang, G. Z.; Chang, Z.; Zhang, Y. F.; Zhou, S.; Zhou, M.; Chai, S. M.; Zhong, Y.; Cao, G. Z.; Liang, S. Q. et al. Building ultra-stable and low-polarization composite Zn anode interface via hydrated polyzwitterionic electrolyte construction. Nano-Micro Lett. 2022, 14, 93.

[27]

Sun, J. Y.; Zhao, X. H.; Illeperuma, W. R. K.; Chaudhuri, O.; Oh, K. H.; Mooney, D. J.; Vlassak, J. J.; Suo, Z. G. Highly stretchable and tough hydrogels. Nature 2012, 489, 133–136.

[28]

Wu, J. T.; Xia, G. J.; Li, S. B.; Wang, L. P.; Ma, J. J. A flexible and self-healable gelled polymer electrolyte based on a dynamically cross-linked PVA ionogel for high-performance supercapacitors. Ind. Eng. Chem. Res. 2020, 59, 22509–22519.

[29]

Zhuang, Z. Z.; Wu, L. L.; Ma, X. F.; Diao, W. J.; Fang, Y. High-strength, tough, rapidly self-recoverable, and fatigue-resistant hydrogels based on multi-network and multi-bond toughening mechanism. J. Appl. Polym. Sci. 2018, 135, 46847.

[30]

Ai, J. Y.; Li, K.; Li, J. B.; Yu, F.; Ma, J. Super flexible, fatigue resistant, self-healing PVA/xylan/borax hydrogel with dual-crosslinked network. Int. J. Biol. Macromol. 2021, 172, 66–73.

[31]

Han, L.; Huang, H. L.; Fu, X. B.; Li, J. F.; Yang, Z. L.; Liu, X. J.; Pan, L. K.; Xu, M. A flexible, high-voltage and safe zwitterionic natural polymer hydrogel electrolyte for high-energy-density zinc-ion hybrid supercapacitor. Chem. Eng. J. 2020, 392, 123733.

[32]

Huang, Q. Q.; Liu, S. L.; Li, K. W.; Hussain, I.; Yao, F.; Fu, G. D. Sodium alginate/carboxyl-functionalized graphene composite hydrogel via neodymium ions coordination. J. Mater. Sci. Technol. 2017, 33, 821–826.

[33]

Ye, Y. H.; Zhang, Y. F.; Chen, Y.; Han, X. S.; Jiang, F. Cellulose nanofibrils enhanced, strong, stretchable, freezing-tolerant ionic conductive organohydrogel for multi-functional sensors. Adv. Funct. Mater. 2020, 30, 2003430.

[34]

Yang, Y. Y.; Wang, X.; Yang, F.; Wang, L. N.; Wu, D. C. Highly elastic and ultratough hybrid ionic-covalent hydrogels with tunable structures and mechanics. Adv. Mater. 2018, 30, 1707071.

[35]

Deng, W. J.; Zhou, Z. Q.; Li, Y. B.; Zhang, M.; Yuan, X. R.; Hu, J.; Li, Z. G.; Li, C.; Li, R. High-capacity layered magnesium vanadate with concentrated gel electrolyte toward high-performance and wide-temperature zinc-ion battery. ACS Nano 2020, 14, 15776–15785.

[36]

Nie, Y.; Yue, D. Q.; Xiao, W. M.; Wang, W. X.; Chen, H.; Bai, L. J.; Yang, L. X.; Yang, H. W.; Wei, D. L. Anti-freezing and self-healing nanocomposite hydrogels based on poly(vinyl alcohol) for highly sensitive and durable flexible sensors. Chem. Eng. J. 2022, 436, 135243.

[37]

Wu, Z. X.; Yang, X.; Wu, J. Conductive hydrogel- and organohydrogel-based stretchable sensors. ACS Appl. Mater. Interfaces 2021, 13, 2128–2144.

[38]

Sun, H. L.; Zhao, Y.; Wang, C. F.; Zhou, K. K.; Yan, C.; Zheng, G. Q.; Huang, J. J.; Dai, K.; Liu, C. T.; Shen, C. Y. Ultra-stretchable, durable and conductive hydrogel with hybrid double network as high performance strain sensor and stretchable triboelectric nanogenerator. Nano Energy 2020, 76, 105035.

[39]

Feng, Y. F.; Yu, J.; Sun, D.; Ren, W. F.; Shao, C. Y.; Sun, R. C. Solvent-induced in-situ self-assembly lignin nanoparticles to reinforce conductive nanocomposite organogels as anti-freezing and anti-dehydration flexible strain sensors. Chem. Eng. J. 2022, 433, 133202.

[40]

Leng, K. T.; Li, G. J.; Guo, J. J.; Zhang, X. Y.; Wang, A. X.; Liu, X. J.; Luo, J. Y. A safe polyzwitterionic hydrogel electrolyte for long-life quasi-solid state zinc metal batteries. Adv. Funct. Mater. 2020, 30, 2001317.

[41]

Zhu, X. Q.; Guo, F. J.; Yang, Q.; Mi, H. Y.; Yang, C. C.; Qiu, J. S. Boosting zinc-ion storage capability by engineering hierarchically porous nitrogen-doped carbon nanocage framework. J. Power Sources 2021, 506, 230224.

[42]

Sun, T. J.; Nian, Q. S.; Zheng, S. B.; Shi, J. Q.; Tao, Z. L. Layered Ca0.28MnO2·0.5H2O as a high performance cathode for aqueous zinc-ion battery. Small 2020, 16, 2000597.

[43]

Zeng, Y. X.; Zhang, X. Y.; Meng, Y.; Yu, M. H.; Yi, J. N.; Wu, Y. Q.; Lu, X. H.; Tong, Y. X. Achieving ultrahigh energy density and long durability in a flexible rechargeable quasi-solid-state Zn-MnO2 battery. Adv. Mater. 2017, 29, 1700274.

[44]

Wu, D. D.; Ji, C. C.; Mi, H. Y.; Guo, F. J.; Cui, H. N.; Qiu, P. T.; Yang, N. J. A safe and robust dual-network hydrogel electrolyte coupled with multi-heteroatom doped carbon nanosheets for flexible quasi-solid-state zinc ion hybrid supercapacitors. Nanoscale 2021, 13, 15869–15881.

[45]

Zhu, M. S.; Wang, X. J.; Tang, H. M.; Wang, J. W.; Hao, Q.; Liu, L. X.; Li, Y.; Zhang, K.; Schmidt, O. G. Antifreezing hydrogel with high zinc reversibility for flexible and durable aqueous batteries by cooperative hydrated cations. Adv. Funct. Mater. 2020, 30, 1907218.

[46]

Li, X. X.; Ji, C. C.; Shen, J. K.; Feng, J. Z.; Mi, H. Y.; Xu, Y. T.; Guo, F. J.; Yan, X. B. Amorphous heterostructure derived from divalent manganese borate for ultrastable and ultrafast aqueous zinc ion storage. Adv. Sci. 2023, 10, 2205794.

[47]

Zhao, Q. H.; Chen, X.; Wang, Z. Q.; Yang, L. Y.; Qin, R. Z.; Yang, J. L.; Song, Y. L.; Ding, S. X.; Weng, M. Y.; Huang, W. Y. et al. Unravelling H+/Zn2+ synergistic intercalation in a novel phase of manganese oxide for high-performance aqueous rechargeable battery. Small 2019, 15, 1904545.

[48]

Zhang, Y.; Deng, S. J.; Li, Y. H.; Liu, B.; Pan, G. X.; Liu, Q.; Wang, X. L.; Xia, X. H.; Tu, J. P. Anchoring MnO2 on nitrogen-doped porous carbon nanosheets as flexible arrays cathodes for advanced rechargeable Zn-MnO2 batteries. Energy Storage Mater. 2020, 29, 52–59.

[49]

Zhang, N.; Cheng, F. Y.; Liu, J. X.; Wang, L. B.; Long, X. H.; Liu, X. S.; Li, F. J.; Chen, J. Rechargeable aqueous zinc-manganese dioxide batteries with high energy and power densities. Nat. Commun. 2017, 8, 405.

[50]

Wang, H. L.; Xu, Z. W.; Li, Z.; Cui, K.; Ding, J.; Kohandehghan, A.; Tan, X. H.; Zahiri, B.; Olsen, B. C.; Holt, C. M. B. et al. Hybrid device employing three-dimensional arrays of MnO in carbon nanosheets bridges battery-supercapacitor divide. Nano Lett. 2014, 14, 1987–1994.

[51]

Trócoli, R.; La Mantia, F. An aqueous zinc-ion battery based on copper hexacyanoferrate. ChemSusChem 2015, 8, 481–485.

[52]

Yang, M.; Zhong, Y. R.; Ren, J. J.; Zhou, X. L.; Wei, J. P.; Zhou, Z. Fabrication of high-power Li-ion hybrid supercapacitors by enhancing the exterior surface charge storage. Adv. Energy Mater. 2015, 5, 1500550.

[53]

Zhang, L. Y.; Chen, L.; Zhou, X. F.; Liu, Z. P. Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: The zinc/zinc hexacyanoferrate system. Adv. Energy Mater. 2015, 5, 1400930.

[54]

Cheng, F. Y.; Chen, J.; Gou, X. L.; Shen, P. W. High-power alkaline Zn-MnO2 batteries using γ-MnO2 nanowires/nanotubes and electrolytic zinc powder. Adv. Mater. 2005, 17, 2753–2756.

[55]

Wan, Y. B.; Qiu, Z. G.; Huang, J.; Yang, J. Y.; Wang, Q.; Lu, P.; Yang, J. L.; Zhang, J. M.; Huang, S. Y.; Wu, Z. G. et al. Natural plant materials as dielectric layer for highly sensitive flexible electronic skin. Small 2018, 14, 1801657.

File
12274_2023_5951_MOESM1_ESM.pdf (1 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 26 April 2023
Revised: 14 June 2023
Accepted: 20 June 2023
Published: 11 August 2023
Issue date: January 2024

Copyright

© The Author(s) 2023

Acknowledgements

Acknowledgements

The experiments involving human subjects have been performed with the full informed consent of the volunteer. The authors would gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 21965033, U2003216, 22269023, and U2003132), the Key Research and Development Task Special Program of Xinjiang Uygur Autonomous Region (No. 2022B01040-3), the Special Projects on Regional Collaborative Innovation-SCO Science and Technology Partnership Program, and the International Science and Technology Cooperation Program (Nos. 2022E01020 and 2022E01056). Natural Science Foundation of Xinjiang Uygur Autonomous Region (No. 2022D01C25) is gratefully acknowledged. Z. C. W. acknowledges the European Research Executive Agency (Project 101079184-FUNLAYERS). The authors would like to thank Rehab (Qingdao) Energy Technology Co., Ltd. for providing the MnO2 sample.

Rights and permissions

Copyright: © 2023 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return