Journal Home > Volume 17 , Issue 3

Lithium-sulfur (Li-S) batteries with advantages of high energy densities (2600 Wh·kg−1/2800 Wh·L−1) and sulfur abundance are regarded as promising candidates for next-generation high-energy batteries. However, the conventional carbon host used in sulfur cathodes suffers from poor chemical adsorption towards Li-polysulfides (LPS) in liquid electrolyte and sluggish redox kinetics, leading to low capacity and rate capability. Besides, carbon host used in Li metal anode with the intrinsic property of poor lithiophilicity and high Li-nucleation barrier gives rise to uncontrollable dendrite growth and further battery failure. Therefore, non-carbon hosts with chemical adsorption toward LPS and catalytic activity for accelerating LPS redox conversion as well as lithiophilic property for guiding uniform Li deposition are proposed and demonstrated a high efficiency in both sulfur cathodes and Li metal anodes. In this review, the principle and challenges of Li-S batteries are first presented, then recent work using non-carbon hosts in Li-S batteries is summarized comprehensively, and the mechanism of non-carbon host in improving sulfur utilization and stabilizing Li metal anode is discussed in detail. Furthermore, remaining challenges and outlook on the implementation of non-carbon host for practical carbon-free Li-S batteries are also provided.


menu
Abstract
Full text
Outline
About this article

From non-carbon host toward carbon-free lithium-sulfur batteries

Show Author's information Yanqi Feng1,Hui Liu1( )Qiongqiong Lu2,3( )
School of Materials Science and Engineering, Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials, Shaanxi University of Science and Technology, Xi’an 710021, China
Institute of Materials, Henan Key Laboratory of Advanced Conductor Materials, Henan Academy of Sciences, Zhengzhou 450046, China
Leibniz Institute for Solid State and Materials Research (IFW) Dresden e.V., Helmholtzstraβe 20, 01069 Dresden, Germany
School of Materials & Environment Engineering, Chengdu Technological University, Chengdu 611730, China

Abstract

Lithium-sulfur (Li-S) batteries with advantages of high energy densities (2600 Wh·kg−1/2800 Wh·L−1) and sulfur abundance are regarded as promising candidates for next-generation high-energy batteries. However, the conventional carbon host used in sulfur cathodes suffers from poor chemical adsorption towards Li-polysulfides (LPS) in liquid electrolyte and sluggish redox kinetics, leading to low capacity and rate capability. Besides, carbon host used in Li metal anode with the intrinsic property of poor lithiophilicity and high Li-nucleation barrier gives rise to uncontrollable dendrite growth and further battery failure. Therefore, non-carbon hosts with chemical adsorption toward LPS and catalytic activity for accelerating LPS redox conversion as well as lithiophilic property for guiding uniform Li deposition are proposed and demonstrated a high efficiency in both sulfur cathodes and Li metal anodes. In this review, the principle and challenges of Li-S batteries are first presented, then recent work using non-carbon hosts in Li-S batteries is summarized comprehensively, and the mechanism of non-carbon host in improving sulfur utilization and stabilizing Li metal anode is discussed in detail. Furthermore, remaining challenges and outlook on the implementation of non-carbon host for practical carbon-free Li-S batteries are also provided.

Keywords: catalytic effect, Li metal anode, Li dendrite, sulfur cathode, polysulfides adsorption, carbon-free lithium-sulfur batteries

References(308)

[1]

Ma, L. B.; Lv, Y. H.; Wu, J. X.; Chen, Y. M.; Jin, Z. Recent advances in emerging non-lithium metal-sulfur batteries: A review. Adv. Energy Mater. 2021, 11, 2100770.

[2]

Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.

[3]

Cao, J.; Chen, C.; Zhao, Q.; Zhang, N.; Lu, Q. Q.; Wang, X. Y.; Niu, Z. Q.; Chen, J. A flexible nanostructured paper of a reduced graphene oxide-sulfur composite for high-performance lithium-sulfur batteries with unconventional configurations. Adv. Mater. 2016, 28, 9629–9636.

[4]

Chen, K. N.; Cao, J.; Lu, Q. Q.; Wang, Q. R.; Yao, M. J.; Han, M. M.; Niu, Z. Q.; Chen, J. Sulfur nanoparticles encapsulated in reduced graphene oxide nanotubes for flexible lithium-sulfur batteries. Nano Res. 2018, 11, 1345–1357.

[5]

Gao, G. P.; Zheng, F.; Pan, F.; Wang, L. W. Theoretical investigation of 2D conductive microporous coordination polymers as Li-S battery cathode with ultrahigh energy density. Adv. Energy Mater. 2018, 8, 1801823.

[6]

Huang, S.; Guan, R. T.; Wang, S. J.; Xiao, M.; Han, D. M.; Sun, L. Y.; Meng, Y. Z. Polymers for high performance Li-S batteries: Material selection and structure design. Prog. Polym. Sci. 2019, 89, 19–60.

[7]

Wang, R.; Yang, J. L.; Chen, X.; Zhao, Y.; Zhao, W. G.; Qian, G. Y.; Li, S. N.; Xiao, Y. G.; Chen, H.; Ye, Y. S. et al. Highly dispersed cobalt clusters in nitrogen-doped porous carbon enable multiple effects for high-performance Li-S battery. Adv. Energy Mater. 2020, 10, 1903550.

[8]

Jiang, Z. P.; Zeng, Z. Q.; Hu, W.; Han, Z. L.; Cheng, S. J.; Xie, J. Diluted high concentration electrolyte with dual effects for practical lithium-sulfur batteries. Energy Storage Mater. 2021, 36, 333–340.

[9]

Zheng, J.; Ji, G. B.; Fan, X. L.; Chen, J.; Li, Q.; Wang, H. Y.; Yang, Y.; DeMella, K. C.; Raghavan, S. R.; Wang, C. S. High-fluorinated electrolytes for Li-S batteries. Adv. Energy Mater. 2019, 9, 1803774.

[10]

Yang, D. Z.; Xiong, X. S.; Zhu, Y. S.; Chen, Y. H.; Fu, L. J.; Zhang, Y.; Wu, Y. P. Modifications of separators for Li-S batteries with improved electrochemical performance. Russ. J. Electrochem. 2020, 56, 365–377.

[11]

Wang, R.; Li, J.; Zhang, Y.; Li, P. Y.; Duan, J. D.; Tang, M. Q.; Yuan, C. Improved Li-S batteries obtained by using multifunctional separators modified with vapor grown carbon fiber/MoS2 composites. Ceram. Int. 2020, 46, 19408–19415.

[12]

Ware, S. D.; Hansen, C. J.; Jones, J. P.; Hennessy, J.; Bugga, R. V.; See, K. A. Fluoride in the SEI stabilizes the Li metal interface in Li-S batteries with solvate electrolytes. ACS Appl. Mater. Interfaces 2021, 13, 18865–18875.

[13]

Zhao, Y. Y.; Ye, Y. S.; Wu, F.; Li, Y. J.; Li, L.; Chen, R. J. Anode interface engineering and architecture design for high-performance lithium-sulfur batteries. Adv. Mater. 2019, 31, 1806532.

[14]

Jiang, G. S.; Qu, C. Z.; Xu, F.; Zhang, E.; Lu, Q. Q.; Cai, X. R.; Hausdorf, S.; Wang, H. Q.; Kaskel, S. Glassy metal-organic-framework-based quasi-solid-state electrolyte for high-performance lithium-metal batteries. Adv. Funct. Mater. 2021, 31, 2104300.

[15]

Peng, H. J.; Huang, J. Q.; Cheng, X. B.; Zhang, Q. Review on high-loading and high-energy lithium-sulfur batteries. Adv. Energy Mater. 2017, 7, 1700260.

[16]

Ma, L.; Zhuang, H. L.; Wei, S. Y.; Hendrickson, K. E.; Kim, M. S.; Cohn, G.; Hennig, R. G.; Archer, L. A. Enhanced Li-S batteries using amine-functionalized carbon nanotubes in the cathode. ACS Nano 2016, 10, 1050–1059.

[17]

Park, G. D.; Kang, Y. C. Aerosol-assisted synthesis of porous and hollow carbon-carbon nanotube composite microspheres as sulfur host materials for high-performance Li-S batteries. Appl. Surf. Sci. 2019, 495, 143637.

[18]

Gao, S. W.; Wang, N.; Li, S.; Li, D. M.; Cui, Z. M.; Yue, G. C.; Liu, J. C.; Zhao, X. X.; Jiang, L.; Zhao, Y. A multi-wall Sn/SnO2@carbon hollow nanofiber anode material for high-rate and long-life lithium-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 2465–2472.

[19]

Zheng, G. Y.; Yang, Y.; Cha, J. J.; Hong, S. S.; Cui, Y. Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 2011, 11, 4462–4467.

[20]

Fu, A.; Wang, C. Z.; Pei, F.; Cui, J. Q.; Fang, X. L.; Zheng, N. F. Recent advances in hollow porous carbon materials for lithium-sulfur batteries. Small 2019, 15, 1804786.

[21]

Fang, R. P.; Chen, K.; Yin, L. C.; Sun, Z. H.; Li, F.; Cheng, H. M. The regulating role of carbon nanotubes and graphene in lithium-ion and lithium-sulfur batteries. Adv. Mater. 2019, 31, 1800863.

[22]

Hu, G. J.; Xu, C.; Sun, Z. H.; Wang, S. G.; Cheng, H. M.; Li, F.; Ren, W. C. 3D graphene-foam-reduced-graphene-oxide hybrid nested hierarchical networks for high-performance Li-S batteries. Adv. Mater. 2016, 28, 1603–1609.

[23]

Zhou, G. M.; Li, L.; Ma, C. Q.; Wang, S. G.; Shi, Y.; Koratkar, N.; Ren, W. C.; Li, F.; Cheng, H. M. A graphene foam electrode with high sulfur loading for flexible and high energy Li-S batteries. Nano Energy 2015, 11, 356–365.

[24]

Wang, Z. Y.; Wang, L.; Liu, S.; Li, G. R.; Gao, X. P. Conductive CoOOH as carbon-free sulfur immobilizer to fabricate sulfur-based composite for lithium-sulfur battery. Adv. Funct. Mater. 2019, 29, 1901051.

[25]

Qu, C.; Chen, Y. Q.; Yang, X. F.; Zhang, H. Z.; Li, X. F.; Zhang, H. M. LiNO3-free electrolyte for Li-S battery: A solvent of choice with low Ksp of polysulfide and low dendrite of lithium. Nano Energy 2017, 39, 262–272.

[26]

Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat. Nanotechnol. 2017, 12, 194–206.

[27]

Guo, Y. P.; Li, H. Q.; Zhai, T. Y. Reviving lithium-metal anodes for next-generation high-energy batteries. Adv. Mater. 2017, 29, 1700007.

[28]

Lu, Q. Q.; Jie, Y. L.; Meng, X. Q.; Omar, A.; Mikhailova, D.; Cao, R. G.; Jiao, S. H.; Lu, Y.; Xu, Y. L. Carbon materials for stable Li metal anodes: Challenges, solutions, and outlook. Carbon Energy 2021, 3, 957–975.

[29]

Zhang, Q.; Huang, N.; Huang, Z.; Cai, L. T.; Wu, J. H.; Yao, X. Y. CNTs@S composite as cathode for all-solid-state lithium-sulfur batteries with ultralong cycle life. J. Energy Chem. 2020, 40, 151–155.

[30]

Song, Y. X; Shi, Y.; Wan, J.; Lang, S. Y.; Hu, X. C.; Yan, H. J.; Liu, B.; Guo, Y. G.; Wen, R.; Wan, L. J. Direct tracking of the polysulfide shuttling and interfacial evolution in all-solid-state lithium–sulfur batteries: A degradation mechanism study. Energy Environ. Sci. 2019, 12, 2496–2506.

[31]

Lou, S. F.; Zhang, F.; Fu, C. K.; Chen, M.; Ma, Y. L.; Yin, G. P.; Wang, J. J. Interface issues and challenges in all-solid-state batteries: Lithium, sodium, and beyond. Adv. Mater. 2021, 33, 2000721.

[32]

Ding, B.; Wang, J.; Fan, Z. J.; Chen, S.; Lin, Q. Y.; Lu, X. J.; Dou, H.; Kumar Nanjundan, A.; Yushin, G.; Zhang, X. G. et al. Solid-state lithium-sulfur batteries: Advances, challenges and perspectives. Mater. Today 2020, 40, 114–131.

[33]

Li, W. H.; Sun, X. L.; Yu, Y. Si-, Ge-, Sn-based anode materials for lithium-ion batteries: From structure design to electrochemical performance. Small Methods 2017, 1, 1600037.

[34]

Chen, W.; Lei, T. Y.; Wu, C. Y.; Deng, M.; Gong, C. H.; Hu, K.; Ma, Y. C.; Dai, L. P.; Lv, W. Q.; He, W. D. et al. Designing safe electrolyte systems for a high-stability lithium-sulfur battery. Adv. Energy Mater. 2018, 8, 1702348.

[35]

Li, M. R.; Frerichs, J. E.; Kolek, M.; Sun, W.; Zhou, D.; Huang, C. J.; Hwang, B. J.; Hansen, M. R.; Winter, M.; Bieker, P. Solid-state lithium-sulfur battery enabled by thio-LiSICON/polymer composite electrolyte and sulfurized polyacrylonitrile cathode. Adv. Funct. Mater. 2020, 30, 1910123.

[36]

Chen, L.; Fan, L. Z. Dendrite-free Li metal deposition in all-solid-state lithium sulfur batteries with polymer-in-salt polysiloxane electrolyte. Energy Storage Mater. 2018, 15, 37–45.

[37]

Wang, J. N.; Yi, S. S.; Liu, J. W.; Sun, S. Y.; Liu, Y. P.; Yang, D. W.; Xi, K.; Gao, G. X.; Abdelkader, A.; Yan, W. et al. Suppressing the shuttle effect and dendrite growth in lithium-sulfur batteries. ACS Nano 2020, 14, 9819–9831.

[38]

Luntz, A. C.; Voss, J.; Reuter, K. Interfacial challenges in solid-state Li ion batteries. J. Phys. Chem. Lett. 2015, 6, 4599–4604.

[39]

Weber, D. A.; Senyshyn, A.; Weldert, K. S.; Wenzel, S.; Zhang, W. B.; Kaiser, R.; Berendts, S.; Janek, J.; Zeier, W. G. Structural insights and 3D diffusion pathways within the lithium superionic conductor Li10GeP2S12. Chem. Mater. 2016, 28, 5905–5915.

[40]

Bron, P.; Johansson, S.; Zick, K.; Schmedt auf der Günne, J.; Dehnen, S.; Roling, B. Li10SnP2S12: An affordable lithium superionic conductor. J. Am. Chem. Soc. 2013, 135, 15694–15697.

[41]

Sharafi, A.; Haslam, C. G.; Kerns, R. D.; Wolfenstine, J.; Sakamoto, J. Controlling and correlating the effect of grain size with the mechanical and electrochemical properties of Li7La3Zr2O12 solid-state electrolyte. J. Mater. Chem. A 2017, 5, 21491–21504.

[42]

Yu, C.; Ganapathy, S.; de Klerk, N. J. J.; Roslon, I.; van Eck, E. R. H.; Kentgens, A. P. M.; Wagemaker, M. Unravelling Li-ion transport from picoseconds to seconds: Bulk versus interfaces in an argyrodite Li6PS5Cl-Li2S all-solid-state Li-ion battery. J. Am. Chem. Soc. 2016, 138, 11192–11201.

[43]

Shi, P.; Zhang, X. Q.; Shen, X.; Zhang, R.; Liu, H.; Zhang, Q. A review of composite lithium metal anode for practical applications. Adv. Mater. Technol. 2020, 5, 1900806.

[44]

Li, Y. T.; Xu, B. Y.; Xu, H. H.; Duan, H. N.; Lü, X. J.; Xin, S.; Zhou, W. D.; Xue, L. G.; Fu, G. T.; Manthiram, A. et al. Hybrid polymer/garnet electrolyte with a small interfacial resistance for lithium-ion batteries. Angew. Chem., Int. Ed. 2017, 56, 753–756.

[45]

Schwietert, T. K.; Arszelewska, V. A.; Wang, C.; Yu, C.; Vasileiadis, A.; de Klerk, N. J. J.; Hageman, J.; Hupfer, T.; Kerkamm, I.; Xu, Y. L. et al. Clarifying the relationship between redox activity and electrochemical stability in solid electrolytes. Nat. Mater. 2020, 19, 428–435.

[46]

Tan, D. H. S.; Wu, E. A.; Nguyen, H.; Chen, Z.; Marple, M. A. T.; Doux, J. M.; Wang, X. F.; Yang, H. D.; Banerjee, A.; Meng, Y. S. Elucidating reversible electrochemical redox of Li6PS5Cl solid electrolyte. ACS Energy Lett. 2019, 4, 2418–2427.

[47]

Tan, D. H. S.; Chen, Y. T.; Yang, H. D.; Bao, W.; Sreenarayanan, B.; Doux, J. M.; Li, W. K.; Lu, B. Y.; Ham, S. Y.; Sayahpour, B. et al. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes. Science 2021, 373, 1494–1499.

[48]

Yue, J. P.; Yan, M.; Yin, Y. X.; Guo, Y. G. Progress of the interface design in all-solid-state Li-S batteries. Adv. Funct. Mater. 2018, 28, 1707533.

[49]

Kang, Q.; Li, Y.; Zhuang, Z. C.; Wang, D. S.; Zhi, C. Y.; Jiang, P. K.; Huang, X. Y. Dielectric polymer based electrolytes for high-performance all-solid-state lithium metal batteries. J. Energy Chem. 2022, 69, 194–204.

[50]

Gope, S.; Bhattacharyya, A. J. Using a metal oxide nanoparticle interlayer to efficiently anchor polysulfides at high mass loading S-cathodes in Li-S rechargeable battery. ACS Appl. Energy Mater. 2018, 1, 2942–2954.

[51]

Feng, Y. Q.; Liu, H.; Lu, Q, Q.; Liu, Y.; Li, J. Q.; He, X. M.; Liu, X. X.; Mikhailova, D. Designing hierarchical MnO/polypyrrole heterostructures to couple polysulfides adsorption and electrocatalysis in lithium-sulfur batteries. J. Power Sources. 2022, 520, 230885.

[52]

Pei, F.; Fu, A.; Ye, W. B.; Peng, J.; Fang, X. L.; Wang, M. S.; Zheng, N. F. Robust lithium metal anodes realized by lithiophilic 3D porous current collectors for constructing high-energy lithium-sulfur batteries. ACS Nano 2019, 13, 8337–8346.

[53]

Wu, Q. P.; Zhou, X. J.; Xu, J.; Cao, F. H.; Li, C. L. Adenine derivative host with interlaced 2D structure and dual lithiophilic-sulfiphilic sites to enable high-loading Li-S batteries. ACS Nano 2019, 13, 9520–9532.

[54]

Lee, J.; Moon, J. H. Polyhedral TiO2 particle-based cathode for Li-S batteries with high volumetric capacity and high performance in lean electrolyte. Chem. Eng. J. 2020, 399, 125670.

[55]

Liu, Y. T.; Liu, S.; Li, G. R.; Gao, X. P. Strategy of enhancing the volumetric energy density for lithium-sulfur batteries. Adv. Mater. 2021, 33, 2003955.

[56]

Xin, S.; Guo, Y. G.; Wan, L. J. Nanocarbon networks for advanced rechargeable lithium batteries. Acc. Chem. Res. 2012, 45, 1759–1769.

[57]

Zhu, Y. F.; Wang, S.; Miao, Z. C.; Liu, Y.; Chou, S. L. Novel non-carbon sulfur hosts based on strong chemisorption for lithium-sulfur batteries. Small 2018, 14, 1801987.

[58]

Tang, H.; Li, W. L.; Pan, L. M.; Cullen, C. P.; Liu, Y.; Pakdel, A.; Long, D. H.; Yang, J.; McEvoy, N.; Duesberg, G. S. et al. In-situ formed protective barrier enabled by sulfur@titanium carbide (MXene) ink for achieving high-capacity, long lifetime Li-S batteries. Adv. Sci. 2018, 5, 1800502.

[59]

Yang, H. J.; Chen, J. H.; Yang, J.; Wang, J. L. Prospect of sulfurized pyrolyzed poly(acrylonitrile) (S@pPAN) cathode materials for rechargeable lithium batteries. Angew. Chem., Int. Ed. 2020, 59, 7306–7318.

[60]

Wang, L.; Wang, Z. Y.; Wu, J. F.; Li, G. R.; Liu, S.; Gao, X. P. To effectively drive the conversion of sulfur with electroactive niobium tungsten oxide microspheres for lithium-sulfur battery. Nano Energy 2020, 77, 105173.

[61]

Liu, R. Q.; Liu, W. H.; Bu, Y. L.; Yang, W. W.; Wang, C.; Priest, C.; Liu, Z. W.; Wang, Y. Z.; Chen, J. Y.; Wang, Y. H. et al. Conductive porous laminated vanadium nitride as carbon-free hosts for high-loading sulfur cathodes in lithium-sulfur batteries. ACS Nano 2020, 14, 17308–17320.

[62]

Fan, L.; Zhuang, H. L.; Zhang, W. D.; Fu, Y.; Liao, Z. H.; Lu, Y. Y. Stable lithium electrodeposition at ultra-high current densities enabled by 3D PMF/Li composite anode. Adv. Energy Mater. 2018, 8, 1703360.

[63]

Zhang, D.; Wang, S.; Li, B.; Gong, Y. J.; Yang, S. B. Horizontal growth of lithium on parallelly aligned MXene layers towards dendrite-free metallic lithium anodes. Adv. Mater. 2019, 31, 1901820.

[64]

Lai, Y. M.; Zhao, Y.; Cai, W. P.; Song, J.; Jia, Y. T.; Ding, B.; Yan, J. H. Constructing ionic gradient and lithiophilic interphase for high-rate Li-metal anode. Small 2019, 15, 1905171.

[65]

Liu, H.; Wang, E. R.; Zhang, Q.; Ren, Y. B.; Guo, X. W.; Wang, L.; Li, G. Y.; Yu, H. J. Unique 3D nanoporous/macroporous structure Cu current collector for dendrite-free lithium deposition. Energy Storage Mater. 2019, 17, 253–259.

[66]

Jeong, Y. C.; Kim, J. H.; Nam, S.; Park, C. R.; Yang, S. J. Rational design of nanostructured functional interlayer/separator for advanced Li-S batteries. Adv. Funct. Mater. 2018, 28, 1707411.

[67]

Song, Y. Z.; Cai, W. L.; Kong, L.; Cai, J. S.; Zhang, Q.; Sun, J. Y. Rationalizing electrocatalysis of Li-S chemistry by mediator design: Progress and prospects. Adv. Energy Mater. 2020, 10, 1901075.

[68]

Zhao, M.; Li, B. Q.; Peng, H. J.; Yuan, H.; Wei, J. Y.; Huang, J. Q. Lithium-sulfur batteries under lean electrolyte conditions: Challenges and opportunities. Angew. Chem., Int. Ed. 2020, 59, 12636–12652.

[69]

Hong, X. D.; Wang, R.; Liu, Y.; Fu, J. W.; Liang, J.; Dou, S. X. Recent advances in chemical adsorption and catalytic conversion materials for Li-S batteries. J. Energy Chem. 2020, 42, 144–168.

[70]

Lim, W. G.; Kim, S.; Jo, C.; Lee, J. A comprehensive review of materials with catalytic effects in Li-S batteries: Enhanced redox kinetics. Angew. Chem., Int. Ed. 2019, 58, 18746–18757.

[71]

Yang, X. F.; Gao, X. J.; Sun, Q.; Jand, S. P.; Yu, Y.; Zhao, Y.; Li, X.; Adair, K.; Kuo, L. Y.; Rohrer, J. et al. Promoting the transformation of Li2S2 to Li2S: Significantly increasing utilization of active materials for high-sulfur-loading Li-S batteries. Adv. Mater. 2019, 31, 1901220.

[72]

Peng, L. L.; Wei, Z. Y.; Wan, C. Z.; Li, J.; Chen, Z.; Baumann, D.; Liu, H. T.; Allen, S. C.; Xu, X.; Kirkland, I. A. et al. A fundamental look at electrocatalytic sulfur reduction reaction. Nat. Catal. 2020, 3, 762–770.

[73]

Wang, P.; Xi, B. J.; Huang, M.; Chen, W. H.; Feng, J. K.; Xiong, S. L. Emerging catalysts to promote kinetics of lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2002893.

[74]

Eshetu, G. G.; Judez, X.; Li, C. M.; Bondarchuk, O.; Rodriguez-Martinez, L. M.; Zhang, H.; Armand, M. Lithium azide as an electrolyte additive for all-solid-state lithium-sulfur batteries. Angew. Chem., Int. Ed. 2017, 56, 15368–15372.

[75]

Yang, X. F.; Luo, J.; Sun, X. L. Towards high-performance solid-state Li-S batteries: From fundamental understanding to engineering design. Chem. Soc. Rev. 2020, 49, 2140–2195.

[76]

Yu, X. W.; Manthiram, A. Electrode–electrolyte interfaces in lithium-sulfur batteries with liquid or inorganic solid electrolytes. Acc. Chem. Res. 2017, 50, 2653–2660.

[77]

Fang, L. Z.; Feng, Z. G.; Cheng, L.; Winans, R. E.; Li, T. Design principles of single atoms on carbons for lithium-sulfur batteries. Small Methods 2020, 4, 2000315.

[78]

Huang, S. Z.; Wang, Z. H.; Von Lim, Y.; Wang, Y.; Li, Y.; Zhang, D. H.; Yang, H. Y. Recent advances in heterostructure engineering for lithium-sulfur batteries. Adv. Energy Mater. 2021, 11, 2003689.

[79]

Hao, J. C.; Zhu, H.; Zhuang, Z. C.; Zhao, Q.; Yu, R. H.; Hao, J. C.; Kang, Q.; Lu, S. L.; Wang, X. F.; Wu, J. S. et al. Competitive trapping of single atoms onto a metal carbide surface. ACS Nano 2023, 17, 6955–6965.

[80]

Liang, Z.; Zheng, G. Y.; Liu, C.; Liu, N.; Li, W. Y.; Yan, K.; Yao, H. B.; Hsu, P. C.; Chu, S.; Cui, Y. Polymer nanofiber-guided uniform lithium deposition for battery electrodes. Nano Lett. 2015, 15, 2910–2916.

[81]

Lee, B.; Paek, E.; Mitlin, D.; Lee, S. W. Sodium metal anodes: Emerging solutions to dendrite growth. Chem. Rev. 2019, 119, 5416–5460.

[82]

Wei, C. L.; Tao, Y.; Fei, H. F.; An, Y. L.; Tian, Y.; Feng, J. K.; Qian, Y. T. Recent advances and perspectives in stable and dendrite-free potassium metal anodes. Energy Storage Mater. 2020, 30, 206–227.

[83]

Sun, X. W.; Zhang, X. Y.; Ma, Q. T.; Guan, X. Z.; Wang, W.; Luo, J. Y. Revisiting the electroplating process for lithium-metal anodes for lithium-metal batteries. Angew. Chem., Int. Ed. 2020, 59, 6665–6674.

[84]

Zhu, Y. Z.; He, X. F.; Mo, Y. F. Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 2015, 7, 23685–23693.

[85]

Li, G. R.; Wang, S.; Zhang, Y. N.; Li, M.; Chen, Z. W.; Lu, J. Revisiting the role of polysulfides in lithium-sulfur batteries. Adv. Mater. 2018, 30, 1705590.

[86]

Angulakshmi, N.; Dhanalakshmi, R. B.; Sathya, S.; Ahn, J. H.; Stephan, A. M. Understanding the electrolytes of lithium-sulfur batteries. Batter. Supercaps 2021, 4, 1064–1095.

[87]

Shin, H.; Baek, M.; Gupta, A.; Char, K.; Manthiram, A.; Choi, J. W. Recent progress in high donor electrolytes for lithium-sulfur batteries. Adv. Energy Mater. 2020, 10, 2001456.

[88]

Liu, S.; Yao, L.; Zhang, Q.; Li, L. L.; Hu, N. T.; Wei, L. M.; Wei, H. Advances in high-performance lithium-sulfur batteries. Acta. Phys. Chim. Sin. 2017, 33, 2339–2358.

[89]

Tao, T.; Lu, S. G.; Fan, Y.; Lei, W. W.; Huang, S. M.; Chen, Y. Anode improvement in rechargeable lithium-sulfur batteries. Adv. Mater. 2017, 29, 1700542.

[90]

Zhang, X. Y.; Wang, A. X.; Liu, X. J.; Luo, J. Y. Dendrites in lithium metal anodes: Suppression, regulation, and elimination. Acc. Chem. Res. 2019, 52, 3223–3232.

[91]

Zhang, C.; Huang, Z. J.; Lv, W.; Yun, Q. B.; Kang, F. Y.; Yang, Q. H. Carbon enables the practical use of lithium metal in a battery. Carbon 2017, 123, 744–755.

[92]

Zhuang, Z. C.; Wang, F. F.; Naidu, R.; Chen, Z. L. Biosynthesis of Pd-Au alloys on carbon fiber paper: Towards an eco-friendly solution for catalysts fabrication. J. Power Sources 2015, 291, 132–137.

[93]

Zhao, Q.; Hu, X. F.; Zhang, K.; Zhang, N.; Hu, Y. X.; Chen, J. Sulfur nanodots electrodeposited on Ni foam as high-performance cathode for Li-S batteries. Nano Lett. 2015, 15, 721–726.

[94]

Liu, X. C.; Zhou, S. P.; Liu, M.; Xu, G. L.; Zhou, X. D.; Huang, L.; Sun, S. G.; Amine, K.; Ke, F. S. Utilizing a metal as a sulfur host for high performance Li-S batteries. Nano Energy 2018, 50, 685–690.

[95]

Li, P. R.; Ma, L.; Wu, T. P.; Ye, H. L.; Zhou, J. H.; Zhao, F. P.; Han, N.; Wang, Y. Y.; Wu, Y. L.; Li, Y. G. et al. Chemical immobilization and conversion of active polysulfides directly by copper current collector: A new approach to enabling stable room-temperature Li-S and Na-S batteries. Adv. Energy Mater. 2018, 8, 1800624.

[96]

Fan, F. Y.; Carter, W. C.; Chiang, Y. M. Mechanism and kinetics of Li2S precipitation in lithium-sulfur batteries. Adv. Mater. 2015, 27, 5203–5209.

[97]

Liang, X.; Kwok, C. Y.; Lodi-Marzano, F.; Pang, Q.; Cuisinier, M.; Huang, H.; Hart, C. J.; Houtarde, D.; Kaup, K.; Sommer, H. et al. Tuning transition metal oxide–sulfur interactions for long life lithium sulfur batteries: The “Goldilocks” principle. Adv. Energy Mater. 2016, 6, 1501636.

[98]

Feng, Y. Q.; Liu, H.; Liu, Y.; Zhao, F. W.; Li, J. Q.; He, X. M. Defective TiO2-graphene heterostructures enabling in-situ electrocatalyst evolution for lithium-sulfur batteries. J. Energy Chem. 2021, 62, 508–515.

[99]

Meng, T.; Qin, J. W.; Yang, Z.; Zheng, L. R.; Cao, M. H. Significantly improved Li-ion diffusion kinetics and reversibility of Li2O in a MoO2 anode: The effects of oxygen vacancy-induced local charge distribution and metal catalysis on lithium storage. J. Mater. Chem. A 2019, 7, 17570–17580.

[100]

Lv, K. Z.; Wang, P. F.; Wang, C.; Shen, Z. H.; Lu, Z. D.; Zhang, H. G.; Zheng, M. B.; He, P.; Zhou, H. S. Oxygen-deficient ferric oxide as an electrochemical cathode catalyst for high-energy lithium-sulfur batteries. Small 2020, 16, 2000870.

[101]

Wang, Y. K.; Zhang, R. F.; Chen, J.; Wu, H.; Lu, S. Y.; Wang, K.; Li, H. L.; Harris, C. J.; Xi, K.; Kumar, R. V. et al. Enhancing catalytic activity of titanium oxide in lithium-sulfur batteries by band engineering. Adv. Energy Mater. 2019, 9, 1900953.

[102]

Chen, S. J.; Ming, Y.; Tan, B. C.; Chen, S. Y. Carbon-free sulfur-based composite cathode for advanced lithium-sulfur batteries: A case study of hierarchical structured CoMn2O4 hollow microspheres as sulfur immobilizer. Electrochim. Acta 2020, 329, 135128.

[103]

Liu, Y. T.; Han, D. D.; Wang, L.; Li, G. R.; Liu, S.; Gao, X. P. NiCo2O4 nanofibers as carbon-free sulfur immobilizer to fabricate sulfur-based composite with high volumetric capacity for lithium-sulfur battery. Adv. Energy Mater. 2019, 9, 1803477.

[104]

Liu, Y. T.; Wang, L.; Liu, S.; Li, G. R.; Gao, X. P. Constructing high gravimetric and volumetric capacity sulfur cathode with LiCoO2 nanofibers as carbon-free sulfur host for lithium-sulfur battery. Sci. China Mater. 2021, 64, 1343–1354.

[105]

Chen, Y.; Li, J. Y.; Kong, X. B.; Zhang, Y. Y.; Zhang, Y. J.; Zhao, J. B. Enhancing catalytic conversion of polysulfides by hollow bimetallic oxide-based heterostructure nanocages for lithium-sulfur batteries. ACS Sustainable Chem. Eng. 2021, 9, 10392–10402.

[106]

Yan, L.; Shu, J.; Li, C. X.; Cheng, X.; Zhu, H. J.; Yu, H. X.; Zhang, C. F.; Zheng, Y.; Xie, Y.; Guo, Z. P. W3Nb14O44 nanowires: Ultrastable lithium storage anode materials for advanced rechargeable batteries. Energy Storage Mater. 2019, 16, 535–544.

[107]

Griffith, K. J.; Wiaderek, K. M.; Cibin, G.; Marbella, L. E.; Grey, C. P. Niobium tungsten oxides for high-rate lithium-ion energy storage. Nature 2018, 559, 556–563.

[108]

Kong, L.; Chen, X.; Li, B. Q.; Peng, H. J.; Huang, J. Q.; Xie, J.; Zhang, Q. A bifunctional perovskite promoter for polysulfide regulation toward stable lithium-sulfur batteries. Adv. Mater. 2018, 30, 1705219.

[109]

Wang, Q. S.; Sarkar, A.; Wang, D.; Velasco, L.; Azmi, R.; Bhattacharya, S. S.; Bergfeldt, T.; Düvel, A.; Heitjans, P.; Brezesinski, T. et al. Multi-anionic and -cationic compounds: New high entropy materials for advanced Li-ion batteries. Energy Environ. Sci. 2019, 12, 2433–2442.

[110]

Wang, T.; Chen, H.; Yang, Z. Z.; Liang, J. Y.; Dai, S. High-entropy perovskite fluorides: A new platform for oxygen evolution catalysis. J. Am. Chem. Soc. 2020, 142, 4550–4554.

[111]

Zhu, H.; Sun, S. H.; Hao, J. C.; Zhuang, Z. C.; Zhang, S. G.; Wang, T. D.; Kang, Q.; Lu, S. L.; Wang, X. F.; Lai, F. L. et al. A high-entropy atomic environment converts inactive to active sites for electrocatalysis. Energy Environ. Sci. 2023, 16, 619–628.

[112]

Tian, L. Y.; Zhang, Z.; Liu, S.; Li, G. R.; Gao, X. P. High-entropy spinel oxide nanofibers as catalytic sulfur hosts promise the high gravimetric and volumetric capacities for lithium-sulfur batteries. Energy Environ. Mater. 2022, 5, 645–654.

[113]

Zhou, G. M.; Tian, H. Z.; Jin, Y.; Tao, X. Y.; Liu, B. F.; Zhang, R. F.; Seh, Z. W.; Zhuo, D.; Liu, Y. Y.; Sun, J. et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries. Proc. Natl. Acad. Sci. USA 2017, 114, 840–845.

[114]

Liang, X.; Hart, C.; Pang, Q.; Garsuch, A.; Weiss, T.; Nazar, L. F. A highly efficient polysulfide mediator for lithium-sulfur batteries. Nat. Commun. 2015, 6, 5682.

[115]

Wang, L.; Song, Y. H.; Zhang, B. H.; Liu, Y. T.; Wang, Z. Y.; Li, G. R.; Liu, S.; Gao, X. P. Spherical metal oxides with high tap density as sulfur host to enhance cathode volumetric capacity for lithium-sulfur battery. ACS Appl. Mater. Interfaces 2020, 12, 5909–5919.

[116]

Liu, Y. T.; Liu, S.; Li, G. R.; Yan, T. Y.; Gao, X. P. High volumetric energy density sulfur cathode with heavy and catalytic metal oxide host for lithium-sulfur battery. Adv. Sci. 2020, 7, 1903693.

[117]

Choi, J.; Jeong, T. G.; Cho, B. W.; Jung, Y.; Oh, S. H.; Kim, Y. T. Tungsten carbide as a highly efficient catalyst for polysulfide fragmentations in Li-S batteries. J. Phys. Chem. C 2018, 122, 7664–7669.

[118]

Long, J. W.; Zhang, H. K.; Ren, J. H.; Li, J. J.; Zhu, M. F.; Han, T. L.; Sun, B.; Zhu, S. G.; Zhang, H. G.; Liu, J. Y. A metal organic foam-derived multi-layered and porous copper sulfide scaffold as sulfur host with multiple shields for preventing shuttle effect in lithium-sulfur batteries. Electrochim. Acta 2020, 356, 136853.

[119]

Xu, H. H.; Manthiram, A. Hollow cobalt sulfide polyhedra-enabled long-life, high areal-capacity lithium-sulfur batteries. Nano Energy 2017, 33, 124–129.

[120]

Deng, J. N.; Guo, J. Q.; Li, J.; Zeng, M.; Gong, D. Y. Improving the electrochemical property of Li-S batteries by using CoS2 as substrate materials. Ceram. Int. 2018, 44, 17340–17344.

[121]

Lao, M. M.; Zhao, G. Q.; Li, X.; Chen, Y. P.; Dou, S. X.; Sun, W. P. Homogeneous sulfur-cobalt sulfide nanocomposites as lithium-sulfur battery cathodes with enhanced reaction kinetics. ACS Appl. Energy Mater. 2018, 1, 167–172.

[122]

Yang, C. S.; Wang, X. L.; Liu, G. X.; Yu, W. S.; Dong, X. T.; Wang, J. X. One-step hydrothermal synthesis of Ni-Co sulfide on Ni foam as a binder-free electrode for lithium-sulfur batteries. J. Colloid Interface Sci. 2020, 565, 378–387.

[123]

Zhang, H. Y.; Liu, G. X.; Li, J.; Cui, H. T.; Liu, Y. Y.; Wang, M. R. Trapping and catalytic conversion of polysulfides by Kirkendall effect built hollow NiCo2S4 nano-prisms for advanced sulfur cathodes in Li-S battery. J. Mater. Sci. 2021, 56, 4328–4340.

[124]

Jin, Z. S.; Liang, Z. M.; Zhao, M.; Zhang, Q.; Liu, B. Q.; Zhang, L. Y.; Chen, L. H.; Li, L.; Wang, C. G. Rational design of MoNi sulfide yolk–shell heterostructure nanospheres as the efficient sulfur hosts for high-performance lithium-sulfur batteries. Chem. Eng. J. 2020, 394, 124983.

[125]

Zhong, Y.; Chao, D. L.; Deng, S. J.; Zhan, J. Y.; Fang, R. Y.; Xia, Y.; Wang, Y. D.; Wang, X. L.; Xia, X. H.; Tu, J. P. Confining sulfur in integrated composite scaffold with highly porous carbon fibers/vanadium nitride arrays for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1706391.

[126]

Sun, Z. H.; Zhang, J. Q.; Yin, L. C.; Hu, G. J.; Fang, R. P.; Cheng, H. M.; Li, F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries. Nat. Commun. 2017, 8, 14627.

[127]

Chen, Z. J.; Lv, W.; Kang, F. Y.; Li, J. Theoretical investigation of the electrochemical performance of transition metal nitrides for lithium-sulfur batteries. J. Phys. Chem. C 2019, 123, 25025–25030.

[128]

Zhang, Q. F.; Wang, Y. P.; Seh, Z. W.; Fu, Z. H.; Zhang, R. F.; Cui, Y. Understanding the anchoring effect of two-dimensional layered materials for lithium-sulfur batteries. Nano Lett. 2015, 15, 3780–3786.

[129]

Chen, X.; Hou, T. Z.; Persson, K. A.; Zhang, Q. Combining theory and experiment in lithium-sulfur batteries: Current progress and future perspectives. Mater. Today 2019, 22, 142–158.

[130]

Chen, X.; Peng, H. J.; Zhang, R.; Hou, T. Z.; Huang, J. Q.; Li, B.; Zhang, Q. An analogous periodic law for strong anchoring of polysulfides on polar hosts in lithium sulfur batteries: S- or Li-binding on first-row transition-metal sulfides. ACS Energy Lett. 2017, 2, 795–801.

[131]

Luo, J. M.; Tian, X. L.; Zeng, J. H.; Li, Y. W.; Song, H. Y.; Liao, S. J. Limitations and improvement strategies for early-transition-metal nitrides as competitive catalysts toward the oxygen reduction reaction. ACS Catal. 2016, 6, 6165–6174.

[132]

Cheng, Z. Z.; Wang, Y. X.; Zhang, W. J.; Xu, M. Boosting polysulfide conversion in lithium-sulfur batteries by cobalt-doped vanadium nitride microflowers. ACS Appl. Energy Mater. 2020, 3, 4523–4530.

[133]

Al Salem, H.; Chitturi, V. R.; Babu, G.; Santana, J. A.; Gopalakrishnan, D.; Reddy Arava, L. M. Stabilizing polysulfide-shuttle in a Li-S battery using transition metal carbide nanostructures. RSC Adv. 2016, 6, 110301–110306.

[134]

Zhong, Y.; Xia, X. H.; Shi, F.; Zhan, J. Y.; Tu, J. P.; Fan, H. J. Transition metal carbides and nitrides in energy storage and conversion. Adv. Sci. 2016, 3, 1500286.

[135]

Ham, D. J.; Lee, J. S. Transition metal carbides and nitrides as electrode materials for low temperature fuel cells. Energies 2009, 2, 873–899.

[136]

Liu, Y. J.; Hong, D. H.; Chen, M. Q.; Su, Z.; Gao, Y. F.; Zhang, Y. Y.; Long, D. H. Pt-NbC composite as a bifunctional catalyst for redox transformation of polysulfides in high-rate-performing lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2021, 13, 35008–35018.

[137]

Wang, S. Y.; Wang, Z. W.; Chen, F. Z.; Peng, B.; Xu, J.; Li, J. Z.; Lv, Y. H.; Kang, Q.; Xia, A. L.; Ma, L. B. Electrocatalysts in lithium-sulfur batteries. Nano Res. 2023, 16, 4438–4467.

[138]

Kwak, W. J.; Lau, K. C.; Shin, C. D.; Amine, K.; Curtiss, L. A.; Sun, Y. K. A Mo2C/carbon nanotube composite cathode for lithium-oxygen batteries with high energy efficiency and long cycle life. ACS Nano 2015, 9, 4129–4137.

[139]

Wang, Z.; Liu, J.; Sun, L. Q.; Zhang, Y. H.; Fu, Q.; Xie, H. M.; Sun, H. Porous molybdenum carbide nanorods as novel “bifunctional” cathode material for Li-S batteries. Chem.—Eur. J. 2018, 24, 14154–14161.

[140]

Ghidiu, M.; Lukatskaya, M. R.; Zhao, M. Q.; Gogotsi, Y.; Barsoum, M. W. Conductive two-dimensional titanium carbide “clay” with high volumetric capacitance. Nature 2014, 516, 78–81.

[141]

Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.

[142]

Jiang, J. Z.; Bai, S. S.; Zou, J.; Liu, S.; Hsu, J. P.; Li, N.; Zhu, G. Y.; Zhuang, Z. C.; Kang, Q.; Zhang, Y. Z. Improving stability of MXenes. Nano Res. 2022, 15, 6551–6567.

[143]

Naguib, M.; Kurtoglu, M.; Presser, V.; Lu, J.; Niu, J. J.; Heon, M.; Hultman, L.; Gogotsi, Y.; Barsoum, M. W. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv. Mater. 2011, 23, 4248–4253.

[144]

Hou, R. H.; Zhang, S. J.; Zhang, P.; Zhang, Y. S.; Zhang, X. L.; Li, N.; Shi, Z. H.; Shao, G. S. Ti3C2 MXene as an “energy band bridge” to regulate the heterointerface mass transfer and electron reversible exchange process for Li-S batteries. J. Mater. Chem. A 2020, 8, 25255–25267.

[145]

Song, Y. Z.; Sun, Z. T.; Fan, Z. D.; Cai, W. L.; Shao, Y. L.; Sheng, G.; Wang, M. L.; Song, L. X.; Liu, Z. F.; Zhang, Q. et al. Rational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Li-S chemistry. Nano Energy 2020, 70, 104555.

[146]

Liang, X.; Rangom, Y.; Kwok, C. Y.; Pang, Q.; Nazar, L. F. Interwoven MXene nanosheet/carbon-nanotube composites as Li-S cathode hosts. Adv. Mater. 2017, 29, 1603040.

[147]

Liang, X.; Garsuch, A.; Nazar, L. F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries. Angew. Chem., Int. Ed. 2015, 54, 3907–3911.

[148]

Liu, Z. H.; Du, Y.; Yu, R. H.; Zheng, M. B.; Hu, R.; Wu, J. S.; Xia, Y. Y.; Zhuang, Z. C.; Wang, D. S. Tuning mass transport in electrocatalysis down to sub-5 nm through nanoscale grade separation. Angew. Chem., Int. Ed. 2023, 62, e202212653.

[149]

Jiao, L.; Zhang, C.; Geng, C. N.; Wu, S. C.; Li, H.; Lv, W.; Tao, Y.; Chen, Z. J.; Zhou, G. M.; Li, J. et al. Capture and catalytic conversion of polysulfides by in situ built TiO2-MXene heterostructures for lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1900219.

[150]

Li, J.; Yuan, X. T.; Lin, C.; Yang, Y. Q.; Xu, L.; Du, X.; Xie, J. L.; Lin, J. H.; Sun, J. L. Achieving high pseudocapacitance of 2D titanium carbide (MXene) by cation intercalation and surface modification. Adv. Energy Mater. 2017, 7, 1602725.

[151]

Li, X. Y.; Zhuang, Z. C.; Chai, J.; Shao, R. W.; Wang, J. H.; Jiang, Z. L.; Zhu, S. W.; Gu, H. F.; Zhang, J.; Ma, Z. T. et al. Atomically strained metal sites for highly efficient and selective photooxidation. Nano Lett. 2023, 23, 2905–2914.

[152]

Lee, Y.; Kim, S. J.; Kim, Y. J.; Lim, Y.; Chae, Y.; Lee, B. J.; Kim, Y. T.; Han, H.; Gogotsi, Y.; Ahn, C. W. Oxidation-resistant titanium carbide MXene films. J. Mater. Chem. A 2020, 8, 573–581.

[153]

Huang, S. H.; Mochalin, V. N. Hydrolysis of 2D transition-metal carbides (MXenes) in colloidal solutions. Inorg. Chem. 2019, 58, 1958–1966.

[154]

Campos, J. W.; Beidaghi, M.; Hatzell, K. B.; Dennison, C. R.; Musci, B.; Presser, V.; Kumbur, E. C.; Gogotsi, Y. Investigation of carbon materials for use as a flowable electrode in electrochemical flow capacitors. Electrochim. Acta 2013, 98, 123–130.

[155]

Zhao, W. L.; Lei, Y. J.; Zhu, Y. P.; Wang, Q.; Zhang, F.; Dong, X. C.; Alshareef, H. N. Hierarchically structured Ti3C2Tx MXene paper for Li-S batteries with high volumetric capacity. Nano Energy 2021, 86, 106120.

[156]

Luo, J. M.; Zhang, W. K.; Yuan, H. D.; Jin, C. B.; Zhang, L. Y.; Huang, H.; Liang, C.; Xia, Y.; Zhang, J.; Gan, Y. P. et al. Pillared structure design of MXene with ultralarge interlayer spacing for high-performance lithium-ion capacitors. ACS Nano 2017, 11, 2459–2469.

[157]

Pan, Y. L.; Gong, L. L.; Cheng, X. D.; Zhou, Y.; Fu, Y. B.; Feng, J.; Ahmed, H.; Zhang, H. P. Layer-spacing-enlarged MoS2 superstructural nanotubes with further enhanced catalysis and immobilization for Li-S batteries. ACS Nano 2020, 14, 5917–5925.

[158]

Lee, D. K.; Chae, Y.; Yun, H.; Ahn, C. W.; Lee, J. W. CO2-oxidized Ti3C2Tx-MXenes components for lithium-sulfur batteries: Suppressing the shuttle phenomenon through physical and chemical adsorption. ACS Nano 2020, 14, 9744–9754.

[159]

Li, H.; Yu, B.; Zhuang, Z. C.; Sun, W. P.; Jia, B. H.; Ma, T. Y. A small change in the local atomic environment for a big improvement in single-atom catalysis. J. Mater. Chem. A 2021, 9, 4184–4192.

[160]

Zhuang, Z. C.; Xia, L. X.; Huang, J. Z.; Zhu, P.; Li, Y.; Ye, C. L.; Xia, M. G.; Yu, R. H.; Lang, Z. Q.; Zhu, J. X. et al. Continuous modulation of electrocatalytic oxygen reduction activities of single-atom catalysts through p–n junction rectification. Angew. Chem., Int. Ed. 2023, 62, e202212335.

[161]

Zhang, D.; Wang, S.; Hu, R. M.; Gu, J. N.; Cui, Y. L. S.; Li, B.; Chen, W. H.; Liu, C. T.; Shang, J. X.; Yang, S. B. Catalytic conversion of polysulfides on single atom zinc implanted MXene toward high-rate lithium-sulfur batteries. Adv. Funct. Mater. 2020, 30, 2002471.

[162]

Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Wang, C.; Lu, S. L.; Duan, F.; Xu, F. P.; Du, M. L.; Zhu, H. Interatomic electronegativity offset dictates selectivity when catalyzing the CO2 reduction reaction. Adv. Energy Mater. 2022, 12, 2200579.

[163]

Chen, J.; Luo, Y. L.; Zhang, W. C.; Qiao, Y.; Cao, X. X.; Xie, X. F.; Zhou, H. S.; Pan, A. Q.; Liang, S. Q. Tuning interface bridging between MoSe2 and three-dimensional carbon framework by incorporation of MoC intermediate to boost lithium storage capability. Nano-Micro Lett. 2020, 12, 171.

[164]

Yuan, H.; Peng, H. J.; Li, B. Q.; Xie, J.; Kong, L.; Zhao, M.; Chen, X.; Huang, J. Q.; Zhang, Q. Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1802768.

[165]

Li, Y. J.; Lin, S. Y.; Wang, D. D.; Gao, T. T.; Song, J. W.; Zhou, P.; Xu, Z. K.; Yang, Z. H.; Xiao, N.; Guo, S. J. Single atom array mimic on ultrathin MOF nanosheets boosts the safety and life of lithium-sulfur batteries. Adv. Mater. 2020, 32, 1906722.

[166]

Shao, A. H.; Zhang, X. X.; Zhang, Q. S.; Li, X.; Wu, Y.; Zhang, Z.; Yu, J.; Yang, Z. Y. Ultrathin nanosheet-assembled flowerlike NiSe2 catalyst boosts sulfur redox reaction kinetics for Li-S batteries. ACS Appl. Energy Mater. 2021, 4, 3431–3438.

[167]

Li, J. Y.; Niu, X. L.; Zeng, P.; Chen, M. F.; Pei, Y.; Li, L. Y.; Luo, Z. G.; Wang, X. Y. Double bond effects induced by iron selenide as immobilized homogenous catalyst for efficient polysulfides capture. Chem. Eng. J. 2021, 421, 129770.

[168]

Feng, T.; Zhao, T.; Zhu, S. F.; Zhang, N. X.; Wei, Z. Z.; Wang, K.; Li, L.; Wu, F.; Chen, R. J. Anion-doped cobalt selenide with porous architecture for high-rate and flexible lithium-sulfur batteries. Small Methods 2021, 5, 2100649.

[169]

Zhuang, Z. C.; Li, Y. H.; Yu, R. H.; Xia, L. X.; Yang, J. R.; Lang, Z. Q.; Zhu, J. X.; Huang, J. Z.; Wang, J. O.; Wang, Y. et al. Reversely trapping atoms from a perovskite surface for high-performance and durable fuel cell cathodes. Nat. Catal. 2022, 5, 300–310.

[170]

Wang, M. X.; Fan, L. S.; Sun, X.; Guan, B.; Jiang, B.; Wu, X.; Tian, D.; Sun, K. N.; Qiu, Y.; Yin, X. J. et al. Nitrogen-doped CoSe2 as a bifunctional catalyst for high areal capacity and lean electrolyte of Li-S battery. ACS Energy Lett. 2020, 5, 3041–3050.

[171]

Yuan, H. D.; Chen, X. L.; Zhou, G. M.; Zhang, W. K.; Luo, J. M.; Huang, H.; Gan, Y. P.; Liang, C.; Xia, Y.; Zhang, J. et al. Efficient activation of Li2S by transition metal phosphides nanoparticles for highly stable lithium-sulfur batteries. ACS Energy Lett. 2017, 2, 1711–1719.

[172]

Chen, Y.; Zhang, W. X.; Zhou, D.; Tian, H. J.; Su, D. W.; Wang, C.; Stockdale, D.; Kang, F. Y.; Li, B. H.; Wang, G. X. Co-Fe mixed metal phosphide nanocubes with highly interconnected-pore architecture as an efficient polysulfide mediator for lithium-sulfur batteries. ACS Nano 2019, 13, 4731–4741.

[173]

Zhang, J. T.; Hu, H.; Li, Z.; Lou, X. W. Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2016, 55, 3982–3986.

[174]

Zhang, J. T.; Li, Z.; Chen, Y.; Gao, S. Y.; Lou, X. W. Nickel-iron layered double hydroxide hollow polyhedrons as a superior sulfur host for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2018, 57, 10944–10948.

[175]

Niu, X. Q.; Wang, X. L.; Wang, D. H.; Li, Y.; Zhang, Y. J.; Zhang, Y. D.; Yang, T.; Yu, T.; Tu, J. P. Metal hydroxide—A new stabilizer for the construction of sulfur/carbon composites as high-performance cathode materials for lithium-sulfur batteries. J. Mater. Chem. A 2015, 3, 17106–17112.

[176]

Jiang, J.; Zhu, J. H.; Ai, W.; Wang, X. L.; Wang, Y. L.; Zou, C. J.; Huang, W.; Yu, T. Encapsulation of sulfur with thin-layered nickel-based hydroxides for long-cyclic lithium-sulfur cells. Nat. Commun. 2015, 6, 8622.

[177]

Wang, Q.; O’Hare, D. Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem. Rev. 2012, 112, 4124–4155.

[178]

Zhao, Y. F.; Zhang, X.; Jia, X. D.; Waterhouse, G. I. N.; Shi, R.; Zhang, X. R.; Zhan, F.; Tao, Y.; Wu, L. Z.; Tung, C. H. et al. Sub-3 nm ultrafine monolayer layered double hydroxide nanosheets for electrochemical water oxidation. Adv. Energy Mater. 2018, 8, 1703585.

[179]

Hwang, J. Y.; Kim, H. M.; Shin, S.; Sun, Y. K. Designing a high-performance lithium-sulfur batteries based on layered double hydroxides-carbon nanotubes composite cathode and a dual-functional graphene-polypropylene-Al2O3 separator. Adv. Funct. Mater. 2018, 28, 1704294.

[180]

Hosono, E.; Fujihara, S.; Honma, I.; Ichihara, M.; Zhou, H. S. Synthesis of the CoOOH fine nanoflake film with the high rate capacitance property. J. Power Sources 2006, 158, 779–783.

[181]

Qiu, W. L.; Li, G. R.; Luo, D.; Zhang, Y. G.; Zhao, Y.; Zhou, G. F.; Shui, L. L.; Wang, X.; Chen, Z. W. Hierarchical micro-nanoclusters of bimetallic layered hydroxide polyhedrons as advanced sulfur reservoir for high-performance lithium-sulfur batteries. Adv. Sci. 2021, 8, 2003400.

[182]

Wang, M. L.; Song, Y. Z.; Sun, Z. T.; Shao, Y. L.; Wei, C. H.; Xia, Z.; Tian, Z. N.; Liu, Z. F.; Sun, J. Y. Conductive and catalytic VTe2@MgO heterostructure as effective polysulfide promotor for lithium-sulfur batteries. ACS Nano 2019, 13, 13235–13243.

[183]

Pan, H.; Huang, X. X.; Zhang, R.; Wang, D.; Chen, Y. T.; Duan, X. M.; Wen, G. W. Titanium oxide-Ti3C2 hybrids as sulfur hosts in lithium-sulfur battery: Fast oxidation treatment and enhanced polysulfide adsorption ability. Chem. Eng. J. 2019, 358, 1253–1261.

[184]

Cai, J. S.; Jin, J.; Fan, Z. D.; Li, C.; Shi, Z. X.; Sun, J. Y.; Liu, Z. F. 3D printing of a V8C7-VO2 bifunctional scaffold as an effective polysulfide immobilizer and lithium stabilizer for Li-S batteries. Adv. Mater. 2020, 32, 2005967.

[185]

Ye, C.; Jiao, Y.; Jin, H. Y.; Slattery, A. D.; Davey, K.; Wang, H. H.; Qiao, S. Z. 2D MoN-VN heterostructure to regulate polysulfides for highly efficient lithium-sulfur batteries. Angew. Chem., Int. Ed. 2018, 57, 16703–16707.

[186]

Li, R. R.; Zhou, X. J.; Shen, H. J.; Yang, M. H.; Li, C. L. Conductive holey MoO2-Mo3N2 heterojunctions as job-synergistic cathode host with low surface area for high-loading Li-S batteries. ACS Nano 2019, 13, 10049–10061.

[187]

Zhang, B.; Luo, C.; Deng, Y. Q.; Huang, Z. J.; Zhou, G. M.; Lv, W.; He, Y. B.; Wan, Y.; Kang, F. Y.; Yang, Q. H. Optimized catalytic WS2-WO3 heterostructure design for accelerated polysulfide conversion in lithium-sulfur batteries. Adv. Energy Mater. 2020, 10, 2000091.

[188]

Zhuang, Z. C.; Li, Y.; Li, Y. H.; Huang, J. Z.; Wei, B.; Sun, R.; Ren, Y. J.; Ding, J.; Zhu, J. X.; Lang, Z. Q. et al. Atomically dispersed nonmagnetic electron traps improve oxygen reduction activity of perovskite oxides. Energy Environ. Sci. 2021, 14, 1016–1028.

[189]

Zhou, T. H.; Lv, W.; Li, J.; Zhou, G. M.; Zhao, Y.; Fan, S. X.; Liu, B. L.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries. Energy Environ. Sci. 2017, 10, 1694–1703.

[190]

Song, Y. Z.; Zhao, W.; Kong, L.; Zhang, L.; Zhu, X. Y.; Shao, Y. L.; Ding, F.; Zhang, Q.; Sun, J. Y.; Liu, Z. F. Synchronous immobilization and conversion of polysulfides on a VO2-VN binary host targeting high sulfur load Li-S batteries. Energy Environ. Sci. 2018, 11, 2620–2630.

[191]

Wen, Y. K.; Zhuang, Z. C.; Zhu, H.; Hao, J. C.; Chu, K. B.; Lai, F. L.; Zong, W.; Wang, C.; Ma, P. M.; Dong, W. F. et al. Isolation of metalloid boron atoms in intermetallic carbide boosts the catalytic selectivity for electrocatalytic N2 fixation. Adv. Energy Mater. 2021, 11, 2102138.

[192]

Liu, T. T.; Zhang, Y.; Li, C. H.; Marquez, M. D.; Tran, H. V.; Robles Hernández, F. C.; Yao, Y.; Lee, T. R. Semihollow core–shell nanoparticles with porous SiO2 shells encapsulating elemental sulfur for lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2020, 12, 47368–47376.

[193]

Voon, L. C. L. Y.; Zhu, J. J.; Schwingenschlögl, U. Silicene: Recent theoretical advances. Appl. Phys. Rev. 2016, 3, 040802.

[194]

Zhuang, Z. C.; Li, Y.; Huang, J. Z.; Li, Z. L.; Zhao, K. N.; Zhao, Y. L.; Xu, L.; Zhou, L.; Moskaleva, L. V.; Mai, L. Sisyphus effects in hydrogen electrochemistry on metal silicides enabled by silicene subunit edge. Sci. Bull. 2019, 64, 617–624.

[195]

Li, F.; Zhao, J. J. Three dimensional porous SiC for lithium polysulfide trapping. Phys. Chem. Chem. Phys. 2018, 20, 4005–4011.

[196]

Wang, M.; Liang, Q. H.; Han, J. W.; Tao, Y.; Liu, D. H.; Zhang, C.; Lv, W.; Yang, Q. H. Catalyzing polysulfide conversion by g-C3N4 in a graphene network for long-life lithium-sulfur batteries. Nano Res. 2018, 11, 3480–3489.

[197]

Wang, Y.; Wang, X. C.; Antonietti, M. Polymeric graphitic carbon nitride as a heterogeneous organocatalyst: From photochemistry to multipurpose catalysis to sustainable chemistry. Angew. Chem., Int. Ed. 2012, 51, 68–89.

[198]

Jia, Z. Y.; Zhang, H. Z.; Yu, Y.; Chen, Y. Q.; Yan, J. W.; Li, X. F.; Zhang, H. M. Trithiocyanuric acid derived g-C3N4 for anchoring the polysulfide in Li-S batteries application. J. Energy Chem. 2020, 43, 71–77.

[199]

Zheng, Y. P.; Li, H. H.; Yuan, H. Y.; Fan, H. H.; Li, W. L.; Zhang, J. P. Understanding the anchoring effect of graphene, BN, C2N and C3N4 monolayers for lithium-polysulfides in Li-S batteries. Appl. Surf. Sci. 2018, 434, 596–603.

[200]

Liu, Z. H.; Du, Y.; Zhang, P. F.; Zhuang, Z. C.; Wang, D. S. Bringing catalytic order out of chaos with nitrogen-doped ordered mesoporous carbon. Matter 2021, 4, 3161–3194.

[201]

Wang, J. L.; Han, W. Q. A review of heteroatom doped materials for advanced lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2107166.

[202]

Dai, C. L.; Lim, J. M.; Wang, M. Q.; Hu, L. Y.; Chen, Y. M.; Chen, Z. Y.; Chen, H.; Bao, S. J.; Shen, B. L.; Li, Y. et al. Honeycomb-like spherical cathode host constructed from hollow metallic and polar Co9S8 tubules for advanced lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1704443.

[203]

Chung, S. H.; Chang, C. H.; Manthiram, A. Progress on the critical parameters for lithium-sulfur batteries to be practically viable. Adv. Funct. Mater. 2018, 28, 1801188.

[204]

Ding, L.; Lu, Q. Q.; Permana, A. D. C.; Oswald, S.; Hantusch, M.; Nielsch, K.; Mikhailova, D. Oxygen-doped carbon nitride tubes for highly stable lithium-sulfur batteries. Energy Technol. 2021, 9, 2001057.

[205]

Liu, J. H.; Li, W. F.; Duan, L. M.; Li, X.; Ji, L.; Geng, Z. B.; Huang, K. K.; Lu, L. H.; Zhou, L. S.; Liu, Z. R. et al. A graphene-like oxygenated carbon nitride material for improved cycle-life lithium/sulfur batteries. Nano Lett. 2015, 15, 5137–5142.

[206]

Puthirath, A. B.; Baburaj, A.; Kato, K.; Salpekar, D.; Chakingal, N.; Cao, Y. F.; Babu, G.; Ajayan, P. M. High sulfur content multifunctional conducting polymer composite electrodes for stable Li-S battery. Electrochim. Acta 2019, 306, 489–497.

[207]

Tong, B.; Song, Z. Y.; Wu, H.; Wang, X. X.; Feng, W. F.; Zhou, Z. B.; Zhang, H. Ion transport and structural design of lithium-ion conductive solid polymer electrolytes: A perspective. Mater. Futures 2022, 1, 042103.

[208]

Chen, K.; Zhang, G. D.; Xiao, L. P.; Li, P. W.; Li, W. L.; Xu, Q. C.; Xu, J. Polyaniline encapsulated amorphous V2O5 nanowire-modified multi-functional separators for lithium-sulfur batteries. Small Methods 2021, 5, 2001056.

[209]

Sovizi, M. R.; Fahimi, Z. Honeycomb polyaniline-dodecyl benzene sulfonic acid (hPANI-DBSA)/sulfur as a new cathode for high performance Li-S batteries. J. Taiwan Inst. Chem. Eng. 2018, 86, 270–280.

[210]

Liu, Y.; Yan, W. J.; Zhang, W.; Kong, W.; Wang, Z. D.; Hao, X. G.; Guan, G. Q. 2D sandwich-like α-zirconium phosphate/polypyrrole: Moderate catalytic activity and true sulfur confinement for high-performance lithium-sulfur batteries. ChemSusChem 2019, 12, 5172–5182.

[211]

Wu, J.; Dai, Y.; Pan, Z. J.; Huo, D. X.; Wang, T.; Zhang, H. P.; Hu, J.; Yan, S. Co3O4 hollow microspheres on polypyrrole nanotubes network enabling long-term cyclability sulfur cathode. Appl. Surf. Sci. 2020, 510, 145529.

[212]

Wang, J. L.; Yang, J.; Xie, J. Y.; Xu, N. X. A novel conductive polymer-sulfur composite cathode material for rechargeable lithium batteries. 3.0.CO;2-P">Adv. Mater. 2002, 14, 963–965.

[213]

Warneke, S.; Zenn, R. K.; Lebherz, T.; Müller, K.; Hintennach, A.; Starke, U.; Dinnebier, R. E.; Buchmeiser, M. R. Hybrid Li/S battery based on dimethyl trisulfide and sulfurized poly(acrylonitrile). Adv. Sustainable Syst. 2018, 2, 1700144.

[214]

Wang, K.; Zhao, T.; Zhang, N. X.; Feng, T.; Li, L.; Wu, F.; Chen, R. J. Powering lithium-sulfur batteries by ultrathin sulfurized polyacrylonitrile nanosheets. Nanoscale 2021, 13, 16690–16695.

[215]

Lei, J. Y.; Chen, J. H.; Naveed, A.; Zhang, H. M.; Yang, J.; Nuli, Y.; Wang, J. L. Sulfurized polyacrylonitrile cathode derived from intermolecular cross-linked polyacrylonitrile for a rechargeable lithium battery. ACS Appl. Energy Mater. 2021, 4, 5706–5712.

[216]

Sang, P. F.; Si, Y. B.; Fu, Y. Z. Polyphenyl polysulfide: A new polymer cathode material for Li-S batteries. Chem. Commun. 2019, 55, 4857–4860.

[217]

Wang, Z. K.; Shen, X. W.; Li, S. J.; Wu, Y. X.; Yang, T. Z.; Liu, J.; Qian, T.; Yan, C. L. Low-temperature Li-S batteries enabled by all amorphous conversion process of organosulfur cathode. J. Energy Chem. 2022, 64, 496–502.

[218]

Zhao, C. X.; Chen, W. J.; Zhao, M.; Song, Y. W.; Liu, J. N.; Li, B. Q.; Yuan, T. Q.; Chen, C. M.; Zhang, Q.; Huang, J. Q. Redox mediator assists electron transfer in lithium-sulfur batteries with sulfurized polyacrylonitrile cathodes. EcoMat 2021, 3, e12066.

[219]

Chen, H. W.; Wang, C. H.; Hu, C. J.; Zhang, J. S.; Gao, S.; Lu, W.; Chen, L. W. Vulcanization accelerator enabled sulfurized carbon materials for high capacity and high stability of lithium-sulfur batteries. J. Mater. Chem. A 2015, 3, 1392–1395.

[220]

Konarov, A.; Gosselink, D.; Doan, T. N. L.; Zhang, Y. G.; Zhao, Y.; Chen, P. Simple, scalable, and economical preparation of sulfur-PAN composite cathodes for Li/S batteries. J. Power Sources 2014, 259, 183–187.

[221]

Liu, J.; Wang, M. F.; Xu, N.; Qian, T.; Yan, C. L. Progress and perspective of organosulfur polymers as cathode materials for advanced lithium-sulfur batteries. Energy Storage Mater. 2018, 15, 53–64.

[222]

Zhou, J. Q.; Zhou, X.; Sun, Y. W.; Shen, X. W.; Qian, T.; Yan, C. L. Insight into the reaction mechanism of sulfur chains adjustable polymer cathode for high-loading lithium-organosulfur batteries. J. Energy Chem. 2021, 56, 238–244.

[223]

Li, X.; Yuan, L. X.; Liu, D. Z.; Li, Z.; Chen, J.; Yuan, K.; Xiang, J. W.; Huang, Y. H. High sulfur-containing organosulfur polymer composite cathode embedded by monoclinic S for lithium sulfur batteries. Energy Storage Mater. 2020, 26, 570–576.

[224]

Zeng, S. B.; Li, L. G.; Yu, J. P.; Wang, N.; Chen, S. W. Highly crosslinked organosulfur copolymer nanosheets with abundant mesopores as cathode materials for efficient lithium-sulfur batteries. Electrochim. Acta 2018, 263, 53–59.

[225]

Zhou, J. Q.; Qian, T.; Xu, N.; Wang, M. F.; Ni, X. Y.; Liu, X. J.; Shen, X. W.; Yan, C. L. Selenium-doped cathodes for lithium-organosulfur batteries with greatly improved volumetric capacity and Coulombic efficiency. Adv. Mater. 2017, 29, 1701294.

[226]

Gu, P. Y.; Zhao, Y.; Xie, J.; Binte Ali, N.; Nie, L. N.; Xu, Z. J.; Zhang, Q. C. Improving the performance of lithium-sulfur batteries by employing polyimide particles as hosting matrixes. ACS Appl. Mater. Interfaces 2016, 8, 7464–7470.

[227]

Zhang, C. F.; Cui, L. F.; Abdolhosseinzadeh, S.; Heier, J. Two-dimensional MXenes for lithium-sulfur batteries. InfoMat 2020, 2, 613–638.

[228]

Weng, W.; Yuan, S. W.; Azimi, N.; Jiang, Z.; Liu, Y. Z.; Ren, Y.; Abouimrane, A.; Zhang, Z. C. Improved cyclability of a lithium-sulfur battery using POP-sulfur composite materials. RSC Adv. 2014, 4, 27518–27521.

[229]

Wang, Q.; Gao, H. Y.; Cui, Q.; Wu, K. K.; Hao, F. Y.; Yu, J. G.; Zhao, Y. N.; Kwon, Y. U. Improving lithium-sulfur battery performances by using conjugative porous polymer as the sulfur support: The case of N-containing porous aromatic framework 41. J. Solid State Electrochem. 2019, 23, 657–666.

[230]

Sun, T.; Xie, J.; Guo, W.; Li, D. S.; Zhang, Q. C. Covalent-organic frameworks: Advanced organic electrode materials for rechargeable batteries. Adv. Energy Mater. 2020, 10, 1904199.

[231]

Hu, B.; Xu, J.; Fan, Z. J.; Xu, C.; Han, S. C.; Zhang, J. X.; Ma, L. B.; Ding, B.; Zhuang, Z. C.; Kang, Q. et al. Covalent organic framework based lithium-sulfur batteries: Materials, interfaces, and solid-state electrolytes. Adv. Energy Mater. 2023, 13, 2203540.

[232]

Liao, H. P.; Wang, H. M.; Ding, H. M.; Meng, X. S.; Xu, H.; Wang, B. S.; Ai, X. P.; Wang, C. A 2D porous porphyrin-based covalent organic framework for sulfur storage in lithium-sulfur batteries. J. Mater. Chem. A 2016, 4, 7416–7421.

[233]

Hu, X. H.; Jian, J. H.; Fang, Z. S.; Zhong, L. F.; Yuan, Z. K.; Yang, M. J.; Ren, S. J.; Zhang, Q.; Chen, X. D.; Yu, D. S. Hierarchical assemblies of conjugated ultrathin COF nanosheets for high-sulfur-loading and long-lifespan lithium-sulfur batteries: Fully-exposed porphyrin matters. Energy Storage Mater. 2019, 22, 40–47.

[234]

Liu, K. F.; Zhao, H. B.; Ye, D. X.; Zhang, J. J. Recent progress in organic polymers-composited sulfur materials as cathodes for lithium-sulfur battery. Chem. Eng. J. 2021, 417, 129309.

[235]

Yaghi, O. M.; Li, H. L. Hydrothermal synthesis of a metal-organic framework containing large rectangular channels. J. Am. Chem. Soc. 1995, 117, 10401–10402.

[236]

Li, W. T.; Guo, X. T.; Geng, P. B.; Du, M.; Jing, Q. L.; Chen, X. D.; Zhang, G. X.; Li, H. P.; Xu, Q.; Braunstein, P. et al. Rational design and general synthesis of multimetallic metal-organic framework nano-octahedra for enhanced Li-S battery. Adv. Mater. 2021, 33, 2105163.

[237]

Furukawa, H.; Ko, N.; Go, Y. B.; Aratani, N.; Choi, S. B.; Choi, E.; Yazaydin, A. Ö.; Snurr, R. Q.; O’Keeffe, M.; Kim, J. et al. Ultrahigh porosity in metal-organic frameworks. Science 2010, 329, 424–428.

[238]

Jiang, Q. Y.; Zhou, C. H.; Meng, H. B.; Han, Y.; Shi, X. F.; Zhan, C. H.; Zhang, R. F. Two-dimensional metal-organic framework nanosheets: Synthetic methodologies and electrocatalytic applications. J. Mater. Chem. A 2020, 8, 15271–15301.

[239]

Qi, F. L.; Sun, Z. H.; Fan, X. L.; Wang, Z. X.; Shi, Y.; Hu, G. J.; Li, F. Tunable interaction between metal-organic frameworks and electroactive components in lithium-sulfur batteries: Status and perspectives. Adv. Energy Mater. 2021, 11, 2100387.

[240]

Zhou, J. W.; Li, R.; Fan, X. X.; Chen, Y. F.; Han, R. D.; Li, W.; Zheng, J.; Wang, B.; Li, X. G. Rational design of a metal-organic framework host for sulfur storage in fast, long-cycle Li-S batteries. Energy Environ. Sci. 2014, 7, 2715–2724.

[241]

Baumann, A. E.; Han, X.; Butala, M. M.; Thoi, V. S. Lithium thiophosphate functionalized zirconium MOFs for Li-S batteries with enhanced rate capabilities. J. Am. Chem. Soc. 2019, 141, 17891–17899.

[242]

Trickett, C. A.; Osborn Popp, T. M.; Su, J.; Yan, C.; Weisberg, J.; Huq, A.; Urban, P.; Jiang, J. C.; Kalmutzki, M. J.; Liu, Q. N. et al. Identification of the strong Brønsted acid site in a metal-organic framework solid acid catalyst. Nat. Chem. 2019, 11, 170–176.

[243]

Shimizu, T.; Wang, H.; Tanifuji, N.; Matsumura, D.; Yoshimura, M.; Nakanishi, K.; Ohta, T.; Yoshikawa, H. Rechargeable batteries based on stable redox reactions of disulfide included in a metal-organic framework as ligands. Chem. Lett. 2018, 47, 678–681.

[244]

Shimizu, T.; Wang, H.; Matsumura, D.; Mitsuhara, K.; Ohta, T.; Yoshikawa, H. Porous metal-organic frameworks containing reversible disulfide linkages as cathode materials for lithium-ion batteries. ChemSusChem 2020, 13, 2256–2263.

[245]

Geng, P. B.; Du, M.; Guo, X. T.; Pang, H.; Tian, Z. Q.; Braunstein, P.; Xu, Q. Bimetallic metal-organic framework with high-adsorption capacity toward lithium polysulfides for lithium-sulfur batteries. Energy Environ. Mater. 2022, 5, 599–607.

[246]

Lu, L. L.; Ge, J.; Yang, J. N.; Chen, S. M.; Yao, H. B.; Zhou, F.; Yu, S. H. Free-standing copper nanowire network current collector for improving lithium anode performance. Nano Lett. 2016, 16, 4431–4437.

[247]

Zhao, H.; Lei, D. N.; He, Y. B.; Yuan, Y. F.; Yun, Q. B.; Ni, B.; Lv, W.; Li, B. H.; Yang, Q. H.; Kang, F. Y. et al. Compact 3D copper with uniform porous structure derived by electrochemical dealloying as dendrite-free lithium metal anode current collector. Adv. Energy Mater. 2018, 8, 1800266.

[248]

Zou, P. C.; Wang, Y.; Chiang, S. W.; Wang, X. Y.; Kang, F. Y.; Yang, C. Directing lateral growth of lithium dendrites in micro-compartmented anode arrays for safe lithium metal batteries. Nat. Commun. 2018, 9, 464.

[249]

Chi, S. S.; Liu, Y. C.; Song, W. L.; Fan, L. Z.; Zhang, Q. Prestoring lithium into stable 3D nickel foam host as dendrite-free lithium metal anode. Adv. Funct. Mater. 2017, 27, 1700348.

[250]

Qin, L. G.; Xu, H.; Wang, D.; Zhu, J. F.; Chen, J.; Zhang, W.; Zhang, P. G.; Zhang, Y.; Tian, W. B.; Sun, Z. M. Fabrication of lithiophilic copper foam with interfacial modulation toward high-rate lithium metal anodes. ACS Appl. Mater. Interfaces 2018, 10, 27764–27770.

[251]

Pu, J.; Li, J. C.; Zhang, K.; Zhang, T.; Li, C. W.; Ma, H. X.; Zhu, J.; Braun, P. V.; Lu, J.; Zhang, H. G. Conductivity and lithiophilicity gradients guide lithium deposition to mitigate short circuits. Nat. Commun. 2019, 10, 1896.

[252]

Lu, Q. Q.; Wang, X. Y.; Omar, A.; Mikhailova, D. 3D Ni/Na metal anode for improved sodium metal batteries. Mater. Lett. 2020, 275, 128206.

[253]

Hao, J. C.; Zhuang, Z. C.; Hao, J. C.; Cao, K. C.; Hu, Y. X.; Wu, W. B.; Lu, S. L.; Wang, C.; Zhang, N.; Wang, D. S. et al. Strain relaxation in metal alloy catalysts steers the product selectivity of electrocatalytic CO2 reduction. ACS Nano 2022, 16, 3251–3263.

[254]

Yang, C. P.; Yin, Y. X.; Zhang, S. F.; Li, N. W.; Guo, Y. G. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes. Nat. Commun. 2015, 6, 8058.

[255]

Yu, L.; Canfield, N. L.; Chen, S. R.; Lee, H.; Ren, X. D.; Engelhard, M. H.; Li, Q. Y.; Liu, J.; Xu, W.; Zhang, J. G. Enhanced stability of lithium metal anode by using a 3D porous nickel substrate. ChemElectroChem 2018, 5, 761–769.

[256]

Phattharasupakun, N.; Wutthiprom, J.; Duangdangchote, S.; Sawangphruk, M. A 3D free-standing lithiophilic silver nanowire aerogel for lithium metal batteries without lithium dendrites and volume expansion: In operando X-ray diffraction. Chem. Commun. 2019, 55, 5689–5692.

[257]

Xu, L.; Zhao, Y. L.; Owusu, K. A.; Zhuang, Z. C.; Liu, Q.; Wang, Z. Y.; Li, Z. H.; Mai, L. Recent advances in nanowire-biosystem interfaces: From chemical conversion, energy production to electrophysiology. Chem 2018, 4, 1538–1559.

[258]

Wang, S. H.; Yin, Y. X.; Zuo, T. T.; Dong, W.; Li, J. Y.; Shi, J. L.; Zhang, C. H.; Li, N. W.; Li, C. J.; Guo, Y. G. Stable Li metal anodes via regulating lithium plating/stripping in vertically aligned microchannels. Adv. Mater. 2017, 29, 1703729.

[259]

Li, Q.; Zhu, S. P.; Lu, Y. Y. 3D porous Cu current collector/Li-metal composite anode for stable lithium-metal batteries. Adv. Funct. Mater. 2017, 27, 1606422.

[260]

Liu, Y.; Huang, S. B.; Meng, Q. Q.; Fan, Y. C.; Wang, B. Y.; Yang, Y. S.; Cao, G. P.; Zhang, H. In-situ growth of Ag particles anchored Cu foam scaffold for dendrite-free lithium metal anode. J. Alloys Compd. 2021, 885, 160882.

[261]

Yue, X. Y.; Wang, W. W.; Wang, Q. C.; Meng, J. K.; Wang, X. X.; Song, Y.; Fu, Z. W.; Wu, X. J.; Zhou, Y. N. Cuprite-coated Cu foam skeleton host enabling lateral growth of lithium dendrites for advanced Li metal batteries. Energy Storage Mater. 2019, 21, 180–189.

[262]

Zhu, J. F.; Chen, J.; Luo, Y.; Sun, S. Q.; Qin, L. G.; Xu, H.; Zhang, P. G.; Zhang, W.; Tian, W. B.; Sun, Z. M. Lithiophilic metallic nitrides modified nickel foam by plasma for stable lithium metal anode. Energy Storage Mater. 2019, 23, 539–546.

[263]

Wang, G.; Xiong, X. H.; Zou, P. J.; Fu, X. X.; Lin, Z. H.; Li, Y. P.; Liu, Y. Z.; Yang, C. H.; Liu, M. L. Lithiated zinc oxide nanorod arrays on copper current collectors for robust Li metal anodes. Chem. Eng. J. 2019, 378, 122243.

[264]

Huang, G. X.; Lou, P.; Xu, G. H.; Zhang, X. F.; Liang, J. Y.; Liu, H. H.; Liu, C.; Tang, S.; Cao, Y. C.; Cheng, S. J. Co3O4 nanosheet decorated nickel foams as advanced lithium host skeletons for dendrite-free lithium metal anode. J. Alloys Compd. 2020, 817, 152753.

[265]

Lu, Z. Y.; Liang, Q. H.; Wang, B.; Tao, Y.; Zhao, Y. F.; Lv, W.; Liu, D. H.; Zhang, C.; Weng, Z.; Liang, J. C. et al. Graphitic carbon nitride induced micro-electric field for dendrite-free lithium metal anodes. Adv. Energy Mater. 2019, 9, 1803186.

[266]

Liu, S.; Zhang, X. Y.; Li, R. S.; Gao, L. B.; Luo, J. Y. Dendrite-free Li metal anode by lowering deposition interface energy with Cu99Zn alloy coating. Energy Storage Mater. 2018, 14, 143–148.

[267]

Liu, B.; Zhang, Y.; Wang, Z. L.; Ai, C. Z.; Liu, S. F.; Liu, P.; Zhong, Y.; Lin, S. W.; Deng, S. J.; Liu, Q. et al. Coupling a sponge metal fibers skeleton with in situ surface engineering to achieve advanced electrodes for flexible lithium-sulfur batteries. Adv. Mater. 2020, 32, 2003657.

[268]

Cheng, X. B.; Hou, T. Z.; Zhang, R.; Peng, H. J.; Zhao, C. Z.; Huang, J. Q.; Zhang, Q. Dendrite-free lithium deposition induced by uniformly distributed lithium ions for efficient lithium metal batteries. Adv. Mater. 2016, 28, 2888–2895.

[269]

Lin, D. C.; Zhao, J.; Sun, J.; Yao, H. B.; Liu, Y. Y.; Yan, K.; Cui, Y. Three-dimensional stable lithium metal anode with nanoscale lithium islands embedded in ionically conductive solid matrix. Proc. Natl. Acad. Sci. USA 2017, 114, 4613–4618.

[270]

Xia, S. H.; Zhao, Y.; Yan, J. H.; Yu, J. Y.; Ding, B. Dynamic regulation of lithium dendrite growth with electromechanical coupling effect of soft BaTiO3 ceramic nanofiber films. ACS Nano 2021, 15, 3161–3170.

[271]

Tantratian, K.; Cao, D. X.; Abdelaziz, A.; Sun, X.; Sheng, J. Z.; Natan, A.; Chen, L.; Zhu, H. L. Stable Li metal anode enabled by space confinement and uniform curvature through lithiophilic nanotube arrays. Adv. Energy Mater. 2020, 10, 1902819.

[272]

Li, B.; Zhang, D.; Liu, Y.; Yu, Y. X.; Li, S. M.; Yang, S. B. Flexible Ti3C2 MXene-lithium film with lamellar structure for ultrastable metallic lithium anodes. Nano Energy 2017, 39, 654–661.

[273]

Zhang, X. Y.; Lv, R. J.; Wang, A. X.; Guo, W. Q.; Liu, X. J.; Luo, J. Y. MXene aerogel scaffolds for high-rate lithium metal anodes. Angew. Chem., Int. Ed. 2018, 57, 15028–15033.

[274]

Ha, S.; Kim, D.; Lim, H. K.; Koo, C. M.; Kim, S. J.; Yun, Y. S. Lithiophilic MXene-guided lithium metal nucleation and growth behavior. Adv. Funct. Mater. 2021, 31, 2101261.

[275]

Zhou, S.; Usman, I.; Wang, Y. J.; Pan, A. Q. 3D printing for rechargeable lithium metal batteries. Energy Storage Mate. 2021, 38, 141–156.

[276]

Shen, K.; Li, B.; Yang, S. B. 3D printing dendrite-free lithium anodes based on the nucleated MXene arrays. Energy Storage Mater. 2020, 24, 670–675.

[277]

Qian, X. J.; Fan, X. Q.; Peng, Y. L.; Xue, P.; Sun, C.; Shi, X. L.; Lai, C.; Liang, J. J. Polysiloxane cross-linked mechanically stable MXene-based lithium host for ultrastable lithium metal anodes with ultrahigh current densities and capacities. Adv. Funct. Mater. 2021, 31, 2008044.

[278]

Wang, C. Y.; Zheng, Z. J.; Feng, Y. Q.; Ye, H.; Cao, F. F.; Guo, Z. P. Topological design of ultrastrong MXene paper hosted Li enables ultrathin and fully flexible lithium metal batteries. Nano Energy 2020, 74, 104817.

[279]

Cao, Z. J.; Zhu, Q.; Wang, S.; Zhang, D.; Chen, H.; Du, Z. G.; Li, B.; Yang, S. B. Perpendicular MXene arrays with periodic interspaces toward dendrite-free lithium metal anodes with high-rate capabilities. Adv. Funct. Mater. 2020, 30, 1908075.

[280]

Wei, C. L.; Fei, H. F.; Tian, Y.; An, Y. L.; Guo, H. H.; Feng, J. K.; Qian, Y. T. Isotropic Li nucleation and growth achieved by an amorphous liquid metal nucleation seed on MXene framework for dendrite-free Li metal anode. Energy Storage Mater. 2020, 26, 223–233.

[281]

Gu, J. N.; Zhu, Q.; Shi, Y. Z.; Chen, H.; Zhang, D.; Du, Z. G.; Yang, S. B. Single zinc atoms immobilized on MXene (Ti3C2Clx) layers toward dendrite-free lithium metal anodes. ACS Nano 2020, 14, 891–898.

[282]

Xiong, C.; Wang, Z. Y.; Peng, X. D.; Guo, Y.; Xu, S. L.; Zhao, T. S. Bifunctional effect of laser-induced nucleation-preferable microchannels and in situ formed LiF SEI in MXenes for stable lithium-metal batteries. J. Mater. Chem. A 2020, 8, 14114–14125.

[283]

An, Y. L.; Tian, Y.; Wei, C. L.; Jiang, H. Y.; Xi, B. J.; Xiong, S. L.; Feng, J. K.; Qian, Y. T. Scalable and physical synthesis of 2D silicon from bulk layered alloy for lithium-ion batteries and lithium metal batteries. ACS Nano 2019, 13, 13690–13701.

[284]

He, J. R.; Manthiram, A. Long-life, high-rate lithium-sulfur cells with a carbon-free VN host as an efficient polysulfide adsorbent and lithium dendrite inhibitor. Adv. Energy Mater. 2020, 10, 1903241.

[285]

Cheng, X. B.; Peng, H. J.; Huang, J. Q.; Wei, F.; Zhang, Q. Dendrite-free nanostructured anode: Entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium-sulfur batteries. Small 2014, 10, 4257–4263.

[286]

Kang, Q.; Zhuang, Z. C.; Li, Y.; Zuo, Y. Z.; Wang, J.; Liu, Y. J.; Shi, C. Q.; Chen, J.; Li, H. F.; Jiang, P. K. et al. Manipulating dielectric property of polymer coatings toward high-retention-rate lithium metal full batteries under harsh critical conditions. Nano Res. 2023, 16, 9240–9249.

[287]

Matsuda, S.; Kubo, Y.; Uosaki, K.; Nakanishi, S. Insulative microfiber 3D matrix as a host material minimizing volume change of the anode of Li metal batteries. ACS Energy Lett. 2017, 2, 924–929.

[288]

Li, G. X.; Liu, Z.; Huang, Q. Q.; Gao, Y.; Regula, M.; Wang, D. W.; Chen, L. Q.; Wang, D. H. Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects. Nat. Energy 2018, 3, 1076–1083.

[289]

Shi, H. D.; Yue, M.; Zhang, C. J.; Dong, Y. E.; Lu, P. F.; Zheng, S. H.; Huang, H. J.; Chen, J.; Wen, P. C.; Xu, Z. C. et al. 3D flexible, conductive, and recyclable Ti3C2Tx MXene-melamine foam for high-areal-capacity and long-lifetime alkali-metal anode. ACS Nano 2020, 14, 8678–8688.

[290]

Liu, Y. Y.; Lin, D. C.; Liang, Z.; Zhao, J.; Yan, K.; Cui, Y. Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode. Nat. Commun. 2016, 7, 10992.

[291]

Li, J.; Zou, P. C.; Chiang, S. W.; Yao, W. T.; Wang, Y.; Liu, P.; Liang, C. W.; Kang, F. Y.; Yang, C. A conductive-dielectric gradient framework for stable lithium metal anode. Energy Storage Mater. 2020, 24, 700–706.

[292]

Kisu, K.; Kim, S.; Yoshida, R.; Oguchi, H.; Toyama, N.; Orimo, S. I. Microstructural analyses of all-solid-state Li-S batteries using LiBH4-based solid electrolyte for prolonged cycle performance. J. Energy Chem. 2020, 50, 424–429.

[293]

Lee, N.; Oh, J.; Choi, J. W. Anode-less all-solid-state batteries: Recent advances and future outlook. Mater. Futures 2023, 2, 013502.

[294]

Li, S. L.; Zhang, W. F.; Zheng, J. F.; Lv, M. Y.; Song, H. Y.; Du, L. Inhibition of polysulfide shuttles in Li-S batteries: Modified separators and solid-state electrolytes. Adv. Energy Mater. 2021, 11, 2000779.

[295]

Zhang, S. G.; Ueno, K.; Dokko, K.; Watanabe, M. Recent advances in electrolytes for lithium-sulfur batteries. Adv. Energy Mater. 2015, 5, 1500117.

[296]

Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy. 2016, 1, 16030.

[297]

Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K. et al. A lithium superionic conductor. Nat. Mater. 2011, 10, 682–686.

[298]

Wang, L.; Yin, X. S.; Jin, C. B.; Lai, C.; Qu, G.; Zheng, G. W. Cathode-supported-electrolyte configuration for high-performance all-solid-state lithium-sulfur batteries. ACS Appl. Energy Mater. 2020, 3, 11540–11547.

[299]

Phuc, N. H. H.; Hikima, K.; Muto, H.; Matsuda, A. Recent developments in materials design for all-solid-state Li-S batteries. Crit. Rev. Solid State Mater. Sci. 2022, 47, 283–308.

[300]

Mizuno, F.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M. New, highly ion-conductive crystals precipitated from Li2S-P2S5 glasses. Adv. Mater. 2005, 17, 918–921.

[301]

Hayashi, A.; Ohtsubo, R.; Nagao, M.; Tatsumisago, M. Characterization of Li2S-P2S5-Cu composite electrode for all-solid-state lithium secondary batteries. J. Mater. Sci. 2010, 45, 377–381.

[302]

Zhou, L.; Tufail, M. K.; Ahmad, N.; Song, T. L.; Chen, R. J.; Yang, W. Strong interfacial adhesion between the Li2S cathode and a functional Li7P2.9Ce0.2S10.9Cl0.3 solid-state electrolyte endowed long-term cycle stability to all-solid-state lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2021, 13, 28270–28280.

[303]

Gao, X.; Zheng, X. L.; Wang, J. Y.; Zhang, Z. W.; Xiao, X.; Wan, J. Y.; Ye, Y. S.; Chou, L. Y.; Lee, H. K.; Wang, J. Y. et al. Incorporating the nanoscale encapsulation concept from liquid electrolytes into solid-state lithium-sulfur batteries. Nano Lett. 2020, 20, 5496–5503.

[304]

Barghamadi, M.; Best, A. S.; Bhatt, A. I.; Hollenkamp, A. F.; Musameh, M.; Rees, R. J.; Rüther, T. Lithium-sulfur batteries—The solution is in the electrolyte, but is the electrolyte a solution. Energy Environ. Sci. 2014, 7, 3902–3920.

[305]

Zhang, Y. G.; Zhao, Y.; Gosselink, D.; Chen, P. Synthesis of poly(ethylene-oxide)/nanoclay solid polymer electrolyte for all solid-state lithium/sulfur battery. Ionics 2015, 21, 381–385.

[306]

Wang, Y.; Wang, G. X.; He, P. G.; Hu, J. K.; Jiang, J. H.; Fan, L. Z. Sandwich structured NASICON-type electrolyte matched with sulfurized polyacrylonitrile cathode for high performance solid-state lithium-sulfur batteries. Chem. Eng. J. 2020, 393, 124705.

[307]

Yang, C. P.; Xie, H.; Ping, W. W.; Fu, K.; Liu, B. Y.; Rao, J. C.; Dai, J. Q.; Wang, C. W.; Pastel, G.; Hu, L. B. An electron/ion dual-conductive alloy framework for high-rate and high-capacity solid-state lithium-metal batteries. Adv. Mater. 2019, 31, 1804815.

[308]

Yang, C. P.; Zhang, L.; Liu, B. Y.; Xu, S. M.; Hamann, T.; McOwen, D.; Dai, J. Q.; Luo, W.; Gong, Y. H.; Wachsman, E. D. et al. Continuous plating/stripping behavior of solid-state lithium metal anode in a 3D ion-conductive framework. Proc. Natl. Acad. Sci. USA 2018, 115, 3770–3775.

Publication history
Copyright
Acknowledgements

Publication history

Received: 16 May 2023
Revised: 19 June 2023
Accepted: 20 June 2023
Published: 14 August 2023
Issue date: March 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The authors thank the financial support from the National Natural Science Foundation of China (No. 51272147), the Natural Science Foundation of Shaanxi Province (No. 2015JM5208), and the Graduate Innovation Found of Shaanxi University of Science and Technology. This work was also supported by the National Key R&D Program of China (No. 2019YFC1520100). Y. Q. F. acknowledges the financial support from the China Scholarship Council (CSC) and scientific research project of Chengdu Technological University (No. 2023RC001). Q. Q. L. acknowledges the financial support by the Startup Research Fund of Henan Academy of Sciences (No. 231817001).

Return