Journal Home > Volume 17 , Issue 3

Electrolytic water splitting by renewable energy is a technology with great potential for producing hydrogen (H2) without carbon emission, but this technical route is hindered by its huge energy (electricity) cost, which is mainly wasted by the anode oxygen evolution reaction (OER) while the value of the anode product (oxygen) is very limited. Replacing the high-energy-cost OER with a selective organic compound electrooxidation carried out at a relatively lower potential can reduce the electricity cost while producing value-added chemicals. Currently, H2 generation coupled with synthesis of value-added organic compounds faces the challenge of low selectivity and slow generation rate of the anodic products. One-dimensional (1D) nanocatalysts with a unique morphology, well-defined active sites, and good electron conductivity have shown excellent performance in many electrocatalytic reactions. The rational design and regulation of 1D nanocatalysts through surface engineering can optimize the adsorption energy of intermediate molecules and improve the selectivity of organic electrooxidation reactions. Herein, we summarized the recent research progress of 1D nanocatalysts applied in different organic electrooxidation reactions and introduced several different fabrication strategies for surface engineering of 1D nanocatalysts. Then, we focused on the relationship between surface engineering and the selectivity of organic electrooxidation reaction products. Finally, future challenges and development prospects of 1D nanocatalysts in the coupled system consisting of organic electrooxidation and hydrogen evolution reactions are briefly outlined.


menu
Abstract
Full text
Outline
About this article

Surface engineering of 1D nanocatalysts for value-added selective electrooxidation of organic chemicals

Show Author's information Yongping Yang1Chuhao Liu2Tinglu Song1Mufan Li2( )Zipeng Zhao1( )
Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

Abstract

Electrolytic water splitting by renewable energy is a technology with great potential for producing hydrogen (H2) without carbon emission, but this technical route is hindered by its huge energy (electricity) cost, which is mainly wasted by the anode oxygen evolution reaction (OER) while the value of the anode product (oxygen) is very limited. Replacing the high-energy-cost OER with a selective organic compound electrooxidation carried out at a relatively lower potential can reduce the electricity cost while producing value-added chemicals. Currently, H2 generation coupled with synthesis of value-added organic compounds faces the challenge of low selectivity and slow generation rate of the anodic products. One-dimensional (1D) nanocatalysts with a unique morphology, well-defined active sites, and good electron conductivity have shown excellent performance in many electrocatalytic reactions. The rational design and regulation of 1D nanocatalysts through surface engineering can optimize the adsorption energy of intermediate molecules and improve the selectivity of organic electrooxidation reactions. Herein, we summarized the recent research progress of 1D nanocatalysts applied in different organic electrooxidation reactions and introduced several different fabrication strategies for surface engineering of 1D nanocatalysts. Then, we focused on the relationship between surface engineering and the selectivity of organic electrooxidation reaction products. Finally, future challenges and development prospects of 1D nanocatalysts in the coupled system consisting of organic electrooxidation and hydrogen evolution reactions are briefly outlined.

Keywords: selectivity, surface engineering, hydrogen generation, organic compound electrooxidation, one-dimensional (1D) nanocatalysts

References(58)

[1]

Kibsgaard, J.; Chorkendorff, I. Considerations for the scaling-up of water splitting catalysts. Nat. Energy 2019, 4, 430–433.

[2]

Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S. Z. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions. Chem. Soc. Rev. 2015, 44, 2060–2086.

[3]

Jang, D.; Kim, J.; Kim, D.; Han, W. B.; Kang, S. Techno-economic analysis and Monte Carlo simulation of green hydrogen production technology through various water electrolysis technologies. Energy Convers. Manage. 2022, 258, 115499.

[4]

Lee, B.; Cho, H. S.; Kim, H.; Lim, D.; Cho, W.; Kim, C. H.; Lim, H. Integrative techno-economic and environmental assessment for green H2 production by alkaline water electrolysis based on experimental data. J. Environ. Chem. Eng. 2021, 9, 106349.

[5]

You, B.; Sun, Y. J. Innovative strategies for electrocatalytic water splitting. Acc. Chem. Res. 2018, 51, 1571–1580.

[6]

Li, Y.; Wei, X. F.; Chen, L. S.; Shi, J. L. Electrocatalytic hydrogen production trilogy. Angew. Chem., Int. Ed. 2021, 60, 19550–19571.

[7]

Chen, L. S.; Shi, J. L. Chemical-assisted hydrogen electrocatalytic evolution reaction (CAHER). J. Mater. Chem. A 2018, 6, 13538–13548.

[8]

Chen, G. B.; Li, X. D.; Feng, X. L. Upgrading organic compounds through the coupling of electrooxidation with hydrogen evolution. Angew. Chem., Int. Ed. 2022, 61, e202209014.

[9]

Garlyyev, B.; Xue, S.; Fichtner, J.; Bandarenka, A. S.; Andronescu, C. Prospects of value-added chemicals and hydrogen via electrolysis. ChemSusChem 2020, 13, 2513–2521.

[10]

You, B.; Liu, X.; Jiang, N.; Sun, Y. J. A general strategy for decoupled hydrogen production from water splitting by integrating oxidative biomass valorization. J. Am. Chem. Soc. 2016, 138, 13639–13646.

[11]

Liu, X.; Fang, Z. Y.; Teng, X.; Niu, Y. L.; Gong, S. Q.; Chen, W.; Meyer, T. J.; Chen, Z. F. Paired formate and H2 productions via efficient bifunctional Ni-Mo nitride nanowire electrocatalysts. J. Energy Chem. 2022, 72, 432–441.

[12]

Yin, K.; Chao, Y. G.; Lv, F.; Tao, L.; Zhang, W. Y.; Lu, S. Y.; Li, M. G.; Zhang, Q. H.; Gu, L.; Li, H. B. et al. One nanometer PtIr nanowires as high-efficiency bifunctional catalysts for electrosynthesis of ethanol into high value-added multicarbon compound coupled with hydrogen production. J. Am. Chem. Soc. 2021, 143, 10822–10827.

[13]

Song, Y. J.; Li, Z. H.; Fan, K.; Ren, Z.; Xie, W. F.; Yang, Y. S.; Shao, M. F.; Wei, M. Ultrathin layered double hydroxides nanosheets array towards efficient electrooxidation of 5-hydroxymethylfurfural coupled with hydrogen generation. Appl. Catal. B Environ. 2021, 299, 120669.

[14]

Li, Y.; Wei, X. F.; Chen, L. S.; Shi, J. L.; He, M. Y. Nickel-molybdenum nitride nanoplate electrocatalysts for concurrent electrolytic hydrogen and formate productions. Nat. Commun. 2019, 10, 5335.

[15]

Huang, H. L.; Yu, C.; Han, X. T.; Huang, H. W.; Wei, Q. B.; Guo, W.; Wang, Z.; Qiu, J. S. Ni, Co hydroxide triggers electrocatalytic production of high-purity benzoic acid over 400 mA·cm−2. Energy Environ. Sci. 2020, 13, 4990–4999.

[16]

Gu, K. Z.; Wang, D. D.; Xie, C.; Wang, T. H.; Huang, G.; Liu, Y. B.; Zou, Y. Q.; Tao, L.; Wang, S. Y. Defect-rich high-entropy oxide nanosheets for efficient 5-hydroxymethylfurfural electrooxidation. Angew. Chem., Int. Ed. 2021, 60, 20253–20258.

[17]

Sun, Y. X.; Shin, H.; Wang, F. Y.; Tian, B. L.; Chiang, C. W.; Liu, S. T.; Li, X. S.; Wang, Y. Q.; Tang, L. Y.; Goddard III, W. A. et al. Highly selective electrocatalytic oxidation of amines to nitriles assisted by water oxidation on metal-doped α-Ni(OH)2. J. Am. Chem. Soc. 2022, 144, 15185–15192.

[18]
Qian, Q. Z.; He, X. Y.; Li, Z. Y.; Chen, Y. X.; Feng, Y. F.; Cheng, M. Y.; Zhang, H. K.; Wang, W. T.; Xiao, C.; Zhang, G. Q. et al. Electrochemical biomass upgrading coupled with hydrogen production under industrial-level current density. Adv. Mater., in press, https://doi.org/10.1002/adma.202300935.
DOI
[19]

Yang, S. W.; Guo, Y.; Zhao, Y. K.; Zhang, L.; Shen, H. D.; Wang, J. H.; Li, J. J.; Wu, C.; Wang, W. B.; Cao, Y. L. et al. Construction of synergistic Ni3S2-MoS2 nanoheterojunctions on Ni foam as bifunctional electrocatalyst for hydrogen evolution integrated with biomass valorization. Small 2022, 18, 2201306.

[20]

Wang, T. H.; Tao, L.; Zhu, X. R.; Chen, C.; Chen, W.; Du, S. Q.; Zhou, Y. Y.; Zhou, B.; Wang, D. D.; Xie, C. et al. Combined anodic and cathodic hydrogen production from aldehyde oxidation and hydrogen evolution reaction. Nat. Catal. 2022, 5, 66–73.

[21]

Deng, C.; Toe, C. Y.; Li, X.; Tan, J. J.; Yang, H. P.; Hu, Q.; He, C. X. Earth-abundant metal-based electrocatalysts promoted anodic reaction in hybrid water electrolysis for efficient hydrogen production: Recent progress and perspectives. Adv. Energy Mater. 2022, 12, 2201047.

[22]

Liu, W. J.; Xu, Z. R.; Zhao, D. T.; Pan, X. Q.; Li, H. C.; Hu, X.; Fan, Z. Y.; Wang, W. K.; Zhao, G. H.; Jin, S. et al. Efficient electrochemical production of glucaric acid and H2 via glucose electrolysis. Nat. Commun. 2020, 11, 265.

[23]

Zhu, D. D.; Guo, C. X.; Liu, J. L.; Wang, L.; Du, Y.; Qiao, S. Z. Two-dimensional metal-organic frameworks with high oxidation states for efficient electrocatalytic urea oxidation. Chem. Commun. 2017, 53, 10906–10909.

[24]

Wang, Q. X.; Liu, J. F.; Li, T.; Zhang, T.; Arbiol, J.; Yan, S. X.; Wang, Y.; Li, H. M.; Cabot, A. Pd2Ga nanorods as highly active bifunctional catalysts for electrosynthesis of acetic acid coupled with hydrogen production. Chem. Eng. J. 2022, 446, 136878.

[25]

Xiang, K.; Wu, D.; Deng, X. H.; Li, M.; Chen, S. Y.; Hao, P. P.; Guo, X. F.; Luo, J. L.; Fu, X. Z. Boosting H2 generation coupled with selective oxidation of methanol into value-added chemical over cobalt hydroxide@hydroxysulfide nanosheets electrocatalysts. Adv. Funct. Mater. 2020, 30, 1909610.

[26]

Huang, Y.; Chong, X. D.; Liu, C. B.; Liang, Y.; Zhang, B. Boosting hydrogen production by anodic oxidation of primary amines over a NiSe nanorod electrode. Angew. Chem., Int. Ed. 2018, 57, 13163–13166.

[27]

Zhao, B.; Liu, J. W.; Wang, X. W.; Xu, C. Y.; Sui, P. F.; Feng, R. F.; Wang, L.; Zhang, J. J.; Luo, J. L.; Fu, X. Z. CO2-emission-free electrocatalytic CH3OH selective upgrading with high productivity at large current densities for energy saved hydrogen co-generation. Nano Energy 2021, 81, 105530.

[28]

Li, L. G.; Wang, P. T.; Shao, Q.; Huang, X. Q. Metallic nanostructures with low dimensionality for electrochemical water splitting. Chem. Soc. Rev. 2020, 49, 3072–3106.

[29]

Li, J.; Zheng, G. F. One-dimensional earth-abundant nanomaterials for water-splitting electrocatalysts. Adv. Sci. 2017, 4, 1600380.

[30]

Li, H. Y.; Chen, S. M.; Zhang, Y.; Zhang, Q. H.; Jia, X. F.; Zhang, Q.; Gu, L.; Sun, X. M.; Song, L.; Wang, X. Systematic design of superaerophobic nanotube-array electrode comprised of transition-metal sulfides for overall water splitting. Nat. Commun. 2018, 9, 2452.

[31]

Liang, C. W.; Zou, P. C.; Nairan, A.; Zhang, Y. Q.; Liu, J. X.; Liu, K. W.; Hu, S. Y.; Kang, F. Y.; Fan, H. J.; Yang, C. Exceptional performance of hierarchical Ni-Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy Environ. Sci. 2020, 13, 86–95.

[32]

Jiao, S. L.; Yao, Z. Y.; Xue, F.; Lu, Y. F.; Liu, M. C.; Deng, H. Q.; Ma, X. F.; Liu, Z. X.; Ma, C.; Huang, H. W. et al. Defect-rich one-dimensional MoS2 hierarchical architecture for efficient hydrogen evolution: Coupling of multiple advantages into one catalyst. Appl. Catal. B Environ. 2019, 258, 117964.

[33]

Xie, Y. F.; Cai, J. Y.; Wu, Y. S.; Zang, Y. P.; Zheng, X. S.; Ye, J.; Cui, P. X.; Niu, S. W.; Liu, Y.; Zhu, J. F. et al. Boosting water dissociation kinetics on Pt-Ni nanowires by N-induced orbital tuning. Adv. Mater. 2019, 31, 1807780.

[34]

Wang, C. M.; Bai, S.; Xiong, Y. J. Recent advances in surface and interface engineering for electrocatalysis. Chin. J. Catal. 2015, 36, 1476–1493.

[35]

Li, M. F.; Duanmu, K. N.; Wan, C. Z.; Cheng, T.; Zhang, L.; Dai, S.; Chen, W. X.; Zhao, Z. P.; Li, P.; Fei, H. L. et al. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat. Catal. 2019, 2, 495–503.

[36]

Zhu, Y. M.; Zhu, X. R.; Bu, L. Z.; Shao, Q.; Li, Y. F.; Hu, Z. W.; Chen, C. T.; Pao, C. W.; Yang, S. Z.; Huang, X. Q. Single-atom In-doped subnanometer Pt nanowires for simultaneous hydrogen generation and biomass upgrading. Adv. Funct. Mater. 2020, 30, 2004310.

[37]

Deng, X. H.; Kang, X. M.; Li, M.; Xiang, K.; Wang, C.; Guo, Z. P.; Zhang, J. J.; Fu, X. Z.; Luo, J. L. Coupling efficient biomass upgrading with H2 production via bifunctional CuxS@NiCo-LDH core-shell nanoarray electrocatalysts. J. Mater. Chem. A 2020, 8, 1138–1146.

[38]

Yang, G. C.; Jiao, Y. Q.; Yan, H. J.; Xie, Y.; Wu, A. P.; Dong, X.; Guo, D. Z.; Tian, C. G.; Fu, H. G. Interfacial engineering of MoO2-FeP heterojunction for highly efficient hydrogen evolution coupled with biomass electrooxidation. Adv. Mater. 2020, 32, 2000455.

[39]

Zhao, B.; Liu, J. W.; Yin, Y. R.; Wu, D.; Luo, J. L.; Fu, X. Z. Carbon nanofibers@NiSe core/sheath nanostructures as efficient electrocatalysts for integrating highly selective methanol conversion and less-energy intensive hydrogen production. J. Mater. Chem. A 2019, 7, 25878–25886.

[40]

Peng, D. Q.; Hu, C.; Luo, X. F.; Huang, J. L.; Ding, Y.; Zhou, W. D.; Zhou, H.; Yang, Y.; Yu, T.; Lei, W. et al. Electrochemical reconstruction of NiFe/NiFeOOH superparamagnetic core/catalytic shell heterostructure for magnetic heating enhancement of oxygen evolution reaction. Small 2023, 19, 2205665.

[41]

Zhao, B.; Liu, J. W.; Xu, C. Y.; Feng, R. F.; Sui, P. F.; Wang, L.; Zhang, J. J.; Luo, J. L.; Fu, X. Z. Hollow NiSe nanocrystals heterogenized with carbon nanotubes for efficient electrocatalytic methanol upgrading to boost hydrogen co-production. Adv. Funct. Mater. 2021, 31, 2008812.

[42]

Zhong, Y.; Ren, R. Q.; Wang, J. B.; Peng, Y. Y.; Li, Q.; Fan, Y. M. Grass-like NixSey nanowire arrays shelled with NiFe LDH nanosheets as a 3D hierarchical core-shell electrocatalyst for efficient upgrading of biomass-derived 5-hydroxymethylfurfural and furfural. Catal. Sci. Technol. 2022, 12, 201–211.

[43]

Li, D. R.; Wan, W. J.; Wang, Z. W.; Wu, H. Y.; Wu, S. X.; Jiang, T.; Cai, G. X.; Jiang, C. Z.; Ren, F. Self-derivation and surface reconstruction of Fe-doped Ni3S2 electrode realizing high-efficient and stable overall water and urea electrolysis. Adv. Energy Mater. 2022, 12, 2201913.

[44]

Xu, Y.; Liu, M. Y.; Wang, S. Q.; Ren, K. L.; Wang, M. Z.; Wang, Z. Q.; Li, X. N.; Wang, L.; Wang, H. J. Integrating electrocatalytic hydrogen generation with selective oxidation of glycerol to formate over bifunctional nitrogen-doped carbon coated nickel-molybdenum-nitrogen nanowire arrays. Appl. Catal. B Environ. 2021, 298, 120493.

[45]

Spurgeon, J. M.; Kumar, B. A comparative technoeconomic analysis of pathways for commercial electrochemical CO2 reduction to liquid products. Energy Environ. Sci. 2018, 11, 1536–1551.

[46]

Bulushev, D. A.; Ross, J. R. H. Towards sustainable production of formic acid. ChemSusChem 2018, 11, 821–836.

[47]

Luo, Y. T.; Zhang, Z. Y.; Chhowalla, M.; Liu, B. L. Recent advances in design of electrocatalysts for high-current-density water splitting. Adv. Mater. 2022, 34, 2108133.

[48]

Huang, W. J.; Ma, X. Y.; Wang, H.; Feng, R. F.; Zhou, J. G.; Duchesne, P. N.; Zhang, P.; Chen, F. J.; Han, N.; Zhao, F. P. et al. Promoting effect of Ni(OH)2 on palladium nanocrystals leads to greatly improved operation durability for electrocatalytic ethanol oxidation in alkaline solution. Adv. Mater. 2017, 29, 1703057.

[49]

Wu, X. H.; Wang, Y.; Wu, Z. S. Design principle of electrocatalysts for the electrooxidation of organics. Chem 2022, 8, 2594–2629.

[50]

Fan, L. F.; Liu, B. W.; Liu, X.; Senthilkumar, N.; Wang, G. X.; Wen, Z. H. Recent progress in electrocatalytic glycerol oxidation. Energy Technol. 2021, 9, 2000804.

[51]

Li, T. Y.; Harrington, D. A. An overview of glycerol electrooxidation mechanisms on Pt, Pd and Au. ChemSusChem 2021, 14, 1472–1495.

[52]

Dodekatos, G.; Schünemann, S.; Tüysüz, H. Recent advances in thermo-, photo-, and electrocatalytic glycerol oxidation. ACS Catal. 2018, 8, 6301–6333.

[53]

Zhou, Z. Q.; Chen, C. L.; Gao, M. R.; Xia, B. W.; Zhang, J. In situ anchoring of a Co3O4 nanowire on nickel foam: An outstanding bifunctional catalyst for energy-saving simultaneous reactions. Green Chem. 2019, 21.

[54]

Pham, H. M.; Kang, M. J.; Kim, K. A.; Im, C. G.; Hwang, S. Y.; Cha, H. G. Which electrode is better for biomass valorization: Cu(OH)2 or CuO nanowire. Korean J. Chem. Eng. 2020, 37, 556–562.

[55]

Zheng, R. J.; Zhao, C. H.; Xiong, J. H.; Teng, X.; Chen, W. H.; Hu, Z. B.; Chen, Z. F. Construction of a hierarchically structured, NiCo-Cu-based trifunctional electrocatalyst for efficient overall water splitting and 5-hydroxymethylfurfural oxidation. Sustainable Energy Fuels 2021, 5, 4023–4031.

[56]

Wu, J. C.; Kong, Z. J.; Li, Y. Y.; Lu, Y. X.; Zhou, P.; Wang, H. F.; Xu, L. T.; Wang, S. Y.; Zou, Y. Q. Unveiling the adsorption behavior and redox properties of PtNi nanowire for biomass-derived molecules electrooxidation. ACS Nano 2022, 16, 21518–21526.

[57]

Van Putten, R. J.; Van Der Waal, J. C.; De Jong, E.; Rasrendra, C. B.; Heeres, H. J.; De Vries, J. G. Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem. Rev. 2013, 113, 1499–1597.

[58]

Chong, X. D.; Liu, C. B.; Wang, C. H.; Yang, R.; Zhang, B. Integrating hydrogen production and transfer hydrogenation with selenite promoted electrooxidation of α-nitrotoluenes to E-nitroethenes. Angew. Chem., Int. Ed. 2021, 60, 22010–22016.

Publication history
Copyright
Acknowledgements

Publication history

Received: 15 May 2023
Revised: 17 June 2023
Accepted: 20 June 2023
Published: 08 August 2023
Issue date: March 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

We acknowledge the support of Experimental Center of Advanced Materials at Beijing Institute of Technology. Financial support was provided by the startup fund from College of Chemistry and Molecular Engineering, Peking University and Beijing National Laboratory for Molecular Sciences (BNLMS).

Return