Journal Home > Volume 17 , Issue 3

Oxygen vacancies in oxygen evolution cocatalysts (OECs) can significantly improve the photoelectrochemical (PEC) water splitting performance of photoanodes. However, OECs with abundant oxygen vacancies have a poor stability when exposing to the highly-oxidizing photogenerated holes. Herein, we partly fill oxygen vacancies in a MnCo2Ox OEC with N atoms by a combined electrodeposition and sol-gel method, which dramatically improves both photocurrent density and stability of a BiVO4 photoanode. The optimized N filled oxygen vacancy-rich MnCo2Ox/BiVO4 photoanode (3 at.% of N) exhibits an outstanding photocurrent density of 6.5 mA·cm−2 at 1.23 VRHE under AM 1.5 G illumination (100 mW·cm−2), and an excellent stability of over 150 h. Systematic characterizations and theoretical calculations demonstrate that N atoms stabilize the defect structure and modulate the surface electron distribution, which significantly enhances the stability and further increases the photocurrent density. Meanwhile, other heteroatoms such as carbon, phosphorus, and sulfur are confirmed to have similar effects on improving PEC water splitting performance of photoanodes.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Nitrogen incorporated oxygen vacancy enriched MnCo2Ox/BiVO4 photoanodes for efficient and stable photoelectrochemical water splitting

Show Author's information Liangcheng Xu1Yingjuan Zhang1Boyan Liu1Xin Wang1Gangqiang Zhu2( )Lianzhou Wang3( )Songcan Wang1,4( )Wei Huang1( )
Frontiers Science Center for Flexible Electronics, Xi’an Institute of Flexible Electronics (IFE), Northwestern Polytechnical University, 127 West Youyi Road, Xi’an 710072, China
School of Physics and Information Technology, Shaanxi Normal University, Xi’an 710062, China
Nanomaterials Centre, Australian Institute for Bioengineering and Nanotechnology and School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia
Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Sanhang Science & Technology Building, No. 45th, Gaoxin South 9th Road, Nanshan District, Shenzhen 518063, China

Abstract

Oxygen vacancies in oxygen evolution cocatalysts (OECs) can significantly improve the photoelectrochemical (PEC) water splitting performance of photoanodes. However, OECs with abundant oxygen vacancies have a poor stability when exposing to the highly-oxidizing photogenerated holes. Herein, we partly fill oxygen vacancies in a MnCo2Ox OEC with N atoms by a combined electrodeposition and sol-gel method, which dramatically improves both photocurrent density and stability of a BiVO4 photoanode. The optimized N filled oxygen vacancy-rich MnCo2Ox/BiVO4 photoanode (3 at.% of N) exhibits an outstanding photocurrent density of 6.5 mA·cm−2 at 1.23 VRHE under AM 1.5 G illumination (100 mW·cm−2), and an excellent stability of over 150 h. Systematic characterizations and theoretical calculations demonstrate that N atoms stabilize the defect structure and modulate the surface electron distribution, which significantly enhances the stability and further increases the photocurrent density. Meanwhile, other heteroatoms such as carbon, phosphorus, and sulfur are confirmed to have similar effects on improving PEC water splitting performance of photoanodes.

Keywords: water splitting, oxygen evolution, cocatalysts, filling oxygen vacancies, bismuth vanadate (BiVO4)

References(57)

[1]

Yang, W.; Prabhakar, R. R.; Tan, J.; Tilley, S. D.; Moon, J. Strategies for enhancing the photocurrent, photovoltage, and stability of photoelectrodes for photoelectrochemical water splitting. Chem. Soc. Rev. 2019, 48, 4979–5015.

[2]

Sun, K.; Kuang, Y. J.; Verlage, E.; Brunschwig, B. S.; Tu, C. W.; Lewis, N. S. Sputtered NiOx films for stabilization of p+n-InP photoanodes for solar-driven water oxidation. Adv. Energy Mater. 2015, 5, 1402276.

[3]

Park, H. J.; Lee, H. J.; Kim, T. K.; Hong, S. H.; Wang, W. M.; Choi, T. J.; Kim, K. B. Formation of photo-reactive heterostructure from a multicomponent amorphous alloy with atomically random distribution. J. Mater. Sci. Technol. 2022, 109, 245–253.

[4]

Kim, J. H.; Lee, J. S. Elaborately modified BiVO4 photoanodes for solar water splitting. Adv. Mater. 2019, 31, 1806938.

[5]

Wang, F.; Zhang, J. T.; Jin, C. C.; Ke, X. C.; Wang, F. F.; Liu, D. M. Unveiling the effect of crystal facets on piezo-photocatalytic activity of BiVO4. Nano Energy 2022, 101, 107573.

[6]

Lei, W. Y.; Zhou, T.; Pang, X.; Xue, S. X.; Xu, Q. L. Low-dimensional MXenes as noble metal-free co-catalyst for solar-to-fuel production: Progress and prospects. J. Mater. Sci. Technol. 2022, 114, 143–164.

[7]

Lamers, M.; Li, W. J.; Favaro, M.; Starr, D. E.; Friedrich, D.; Lardhi, S.; Cavallo, L.; Harb, M.; Van De Krol, R.; Wong, L. H. et al. Enhanced carrier transport and bandgap reduction in sulfur-modified BiVO4 photoanodes. Chem. Mater. 2018, 30, 8630–8638.

[8]

Wang, S. C.; He, T. W.; Chen, P.; Du, A. J.; Ostrikov, K.; Huang, W.; Wang, L. Z. In situ formation of oxygen vacancies achieving near-complete charge separation in planar BiVO4 photoanodes. Adv. Mater. 2020, 32, 2001385.

[9]

Park, Y.; McDonald, K. J.; Choi, K. S. Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev. 2013, 42, 2321–2337.

[10]

Liang, X. Z.; Wang, P.; Tong, F. X.; Liu, X. L.; Wang, C.; Wang, M. R.; Zhang, Q. Q.; Wang, Z. Y.; Liu, Y. Y.; Zheng, Z. K. et al. Bias-free solar water splitting by tetragonal zircon BiVO4 nanocrystal photocathode and monoclinic scheelite BiVO4 nanoporous photoanode. Adv. Funct. Mater. 2021, 31, 2008656.

[11]

Jin, B. J.; Cho, Y.; Park, C.; Jeong, J.; Kim, S.; Jin, J.; Kim, W.; Wang, L. Y.; Lu, S. Y.; Zhang, S. L. et al. A two-photon tandem black phosphorus quantum dot-sensitized BiVO4 photoanode for solar water splitting. Energy Environ. Sci. 2022, 15, 672–679.

[12]

Gao, G. D.; Chen, R.; Wang, Q. J.; Cheung, D. W. F.; Zhao, J.; Luo, J. S. NdCo3 molecular catalyst coupled with a BiVO4 photoanode for photoelectrochemical water splitting. ACS Appl. Energy Mater. 2023, 6, 4027–4034.

[13]

Gao, L. L.; Long, X. F.; Wei, S. Q.; Wang, C. L.; Wang, T.; Li, F.; Hu, Y. P.; Ma, J. T.; Jin, J. Facile growth of AgVO3 nanoparticles on Mo-doped BiVO4 film for enhanced photoelectrochemical water oxidation. Chem. Eng. J. 2019, 378, 122193.

[14]

Xiong, B.; Wu, Y. T.; Du, J. Y.; Li, J.; Liu, B. Y.; Ke, G. L.; He, H. C.; Zhou, Y. Cu3Mo2O9/BiVO4 heterojunction films with integrated thermodynamic and kinetic advantages for solar water oxidation. ACS Sustainable Chem. Eng. 2020, 8, 14082–14090.

[15]

Ta, C. X. M.; Akamoto, C.; Furusho, Y.; Amano, F. A macroporous-structured WO3/Mo-doped BiVO4 photoanode for vapor-fed water splitting under visible light irradiation. ACS Sustainable Chem. Eng. 2020, 8, 9456–9463.

[16]

Zhang, W.; Tian, M.; Jiao, H. M.; Jiang, H. Y.; Tang, J. W. Conformal BiVO4/WO3 nanobowl array photoanode for efficient photoelectrochemical water splitting. Chin. J. Catal. 2022, 43, 2321–2331.

[17]

Yang, L. Q.; Song, X.; Yu, J. S.; Wang, H. T.; Zhang, Z. H.; Geng, R. Y.; Cao, J. R.; Baran, D.; Tang, W. H. Tuning of the conformation of asymmetric nonfullerene acceptors for efficient organic solar cells. J. Mater. Chem. A 2019, 7, 22279–22286.

[18]

Mohamed, N. A.; Arzaee, N. A.; Mohamad Noh, M. F.; Ismail, A. F.; Safaei, J.; Sagu, J. S.; Johan, M. R.; Mat Teridi, M. A. Electrodeposition of BiVO4 with needle-like flower architecture for high performance photoelectrochemical splitting of water. Ceram. Int. 2021, 47, 24227–24239.

[19]

Liu, B. Y.; Wang, X.; Zhang, Y. J.; Xu, L. C.; Wang, T. S.; Xiao, X.; Wang, S. C.; Wang, L. Z.; Huang, W. A BiVO4 photoanode with a VOx layer bearing oxygen vacancies offers improved charge transfer and oxygen evolution kinetics in photoelectrochemical water splitting. Angew. Chem., Int. Ed. 2023, 62, e202217346.

[20]

Gao, R. T.; Nguyen, N. T.; Nakajima, T.; He, J. L.; Liu, X. H.; Zhang, X. Y.; Wang, L.; Wu, L. M. Dynamic semiconductor-electrolyte interface for sustainable solar water splitting over 600 hours under neutral conditions. Sci. Adv. 2023, 9, eade4589.

[21]

Gao, R. T.; He, D.; Wu, L. J.; Hu, K.; Liu, X. H.; Su, Y. G.; Wang, L. Towards long-term photostability of nickel hydroxide/BiVO4 photoanodes for oxygen evolution catalysts via in situ catalyst tuning. Angew. Chem., Int. Ed. 2020, 59, 6213–6218.

[22]

Gao, R. T.; Wang, L. Stable cocatalyst-free BiVO4 photoanodes with passivated surface states for photocorrosion inhibition. Angew. Chem., Int. Ed. 2020, 59, 23094–23099.

[23]

Zhang, Y. J.; Xu, L. C.; Liu, B. Y.; Wang, X.; Wang, T. S.; Xiao, X.; Wang, S. C.; Huang, W. Engineering BiVO4 and oxygen evolution cocatalyst interfaces with rapid hole extraction for photoelectrochemical water splitting. ACS Catal. 2023, 13, 5938–5948.

[24]

Wang, S. C.; He, T. W.; Yun, J. H.; Hu, Y. X.; Xiao, M.; Du, A. J.; Wang, L. Z. New Iron-cobalt oxide catalysts promoting BiVO4 films for photoelectrochemical water splitting. Adv. Funct. Mater. 2018, 28, 1802685.

[25]

Wang, S. C.; Liu, B. Y.; Wang, X.; Zhang, Y. J.; Huang, W. Nanoporous MoO3−x/BiVO4 photoanodes promoting charge separation for efficient photoelectrochemical water splitting. Nano Res. 2022, 15, 7026–7033.

[26]

Wang, Q. J.; Wu, L. X.; Zhang, Z.; Cheng, J. S.; Chen, R.; Liu, Y.; Luo, J. S. Elucidating the role of hypophosphite treatment in enhancing the performance of BiVO4 photoanode for photoelectrochemical Water Oxidation. ACS Appl. Mater. Interfaces 2022, 14, 26642–26652.

[27]

Zhang, B. B.; Wang, L.; Zhang, Y. J.; Ding, Y.; Bi, Y. P. Ultrathin FeOOH nanolayers with abundant oxygen vacancies on BiVO4 photoanodes for efficient water oxidation. Angew. Chem., Int. Ed. 2018, 57, 2248–2252.

[28]

Dong, G. J.; Hu, H. Y.; Huang, X. J.; Zhang, Y. J.; Bi, Y. P. Rapid activation of Co3O4 cocatalysts with oxygen vacancies on TiO2 photoanodes for efficient water splitting. J. Mater. Chem. A 2018, 6, 21003–21009.

[29]

Wei, Y.; Liao, A.; Zhou, Y.; Zou, Z. Enhancing the water splitting performance via decorating Fe2O3 nanoarrays with oxygen-vacancy-rich Ni1−xFexS electrocatalyst. Mater. Today Phys. 2021, 16, 100317.

[30]

Wei, A. M.; Deng, J. J.; Lu, C.; Wang, H.; Yang, B.; Zhong, J. Fe2(MoO4)3 modified hematite with oxygen vacancies for high-efficient water oxidation. Chem. Eng. J. 2020, 395, 125127.

[31]

Xiao, Z. H.; Wang, Y.; Huang, Y. C.; Wei, Z. X.; Dong, C. L.; Ma, J. M.; Shen, S. H.; Li, Y. F.; Wang, S. Y. Filling the oxygen vacancies in Co3O4 with phosphorus: An ultra-efficient electrocatalyst for overall water splitting. Energy Environ. Sci. 2017, 10, 2563–2569.

[32]

Kim, T. W.; Choi, K. S. Nanoporous BiVO4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 2014, 343, 990–994.

[33]

Zhao, L.; Wei, J. D.; Li, Y. T.; Han, C.; Pan, L.; Liu, Z. F. Photoelectrochemical performance of W-doped BiVO4 photoanode. J. Mater. Sci. :Mater. Electron. 2019, 30, 21425–21434.

[34]

Cheng, J.; Yan, X. L.; Mo, Q. H.; Liu, B. T.; Wang, J.; Yang, X.; Li, L. Facile synthesis of g-C3N4/BiVO4 heterojunctions with enhanced visible light photocatalytic performance. Ceram. Int. 2017, 43, 301–307.

[35]

Zheng, G. W.; Wang, J. S.; Zu, G. N.; Che, H. B.; Lai, C.; Li, H. Y.; Murugadoss, V.; Yan, C.; Fan, J. C.; Guo, Z. H. Sandwich structured WO3 nanoplatelets for highly efficient photoelectrochemical water splitting. J. Mater. Chem. A 2019, 7, 26077–26088.

[36]

Zhou, T. S.; Wang, J. C.; Chen, S.; Bai, J.; Li, J. H.; Zhang, Y.; Li, L. S.; Xia, L. G.; Rahim, M.; Xu, Q. J. et al. Bird-nest structured ZnO/TiO2 as a direct Z-scheme photoanode with enhanced light harvesting and carriers kinetics for highly efficient and stable photoelectrochemical water splitting. Appl. Catal. B Environ. 2020, 267, 118599.

[37]

Sheng, S.; Ye, K.; Gao, Y. Y.; Zhu, K.; Yan, J.; Wang, G. L.; Cao, D. X. Simultaneously boosting hydrogen production and ethanol upgrading using a highly-efficient hollow needle-like copper cobalt sulfide as a bifunctional electrocatalyst. J. Colloid Interface Sci. 2021, 602, 325–333.

[38]

Kahraman, A.; Barzgar Vishlaghi, M.; Baylam, I.; Sennaroglu, A.; Kaya, S. Roles of charge carriers in the excited state dynamics of BiVO4 photoanodes. J. Phys. Chem. C 2019, 123, 28576–28583.

[39]

Abdi, F. F.; Savenije, T. J.; May, M. M.; Dam, B.; Van De Krol, R. The origin of slow carrier transport in BiVO4 thin film photoanodes: A time-resolved microwave conductivity study. J. Phys. Chem. Lett. 2013, 4, 2752–2757.

[40]

Soltani, T.; Tayyebi, A.; Lee, B. K. BiFeO3/BiVO4 p-n heterojunction for efficient and stable photocatalytic and photoelectrochemical water splitting under visible-light irradiation. Catal. Today 2020, 340, 188–196.

[41]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[42]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[43]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[44]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[45]

Zhou, Z. M.; Chen, J. J.; Wang, Q. L.; Jiang, X. X.; Shen, Y. Enhanced photoelectrochemical water splitting using a cobalt-sulfide-decorated BiVO4 photoanode. Chin. J. Catal. 2022, 43, 433–441.

[46]

Zhang, Y.; Bai, J.; Wang, J. C.; Chen, S.; Zhu, H.; Li, J. H.; Li, L. S.; Zhou, T. S.; Zhou, B. X. In-situ and synchronous generation of oxygen vacancies and FeOx OECs on BiVO4 for ultrafast electron transfer and excellent photoelectrochemical performance. Chem. Eng. J. 2020, 401, 126134.

[47]

Wang, Y. L.; Yu, D.; Wang, W.; Gao, P.; Zhong, S.; Zhang, L. S.; Zhao, Q. Q. Synthesizing Co3O4-BiVO4/g-C3N4 heterojunction composites for superior photocatalytic redox activity. Sep. Purif. Technol. 2020, 239, 116562.

[48]

He, B.; Zhao, F. F.; Yi, P.; Huang, J.; Wang, Y.; Zhao, S. Q.; Li, Z.; Zhao, Y. L.; Liu, X. Q. Spinel-oxide-integrated BiVO4 photoanodes with photothermal effect for efficient solar water oxidation. ACS Appl. Mater. Interfaces 2021, 13, 48901–48912.

[49]

Lin, Y. C.; Hsu, L. C.; Lin, C. Y.; Chiang, C. L.; Chou, C. M.; Wu, W. W.; Chen, S. Y.; Lin, Y. G. Sandwich-nanostructured n-Cu2O/AuAg/p-Cu2O photocathode with highly positive onset potential for improved water reduction. ACS Appl. Mater. Interfaces 2019, 11, 38625–38632.

[50]

Di, T. M.; Deng, Q. R.; Wang, G. M.; Wang, S. G.; Wang, L. X.; Ma, Y. H. Photodeposition of CoOx and MoS2 on CdS as dual cocatalysts for photocatalytic H2 production. J. Mater. Sci. Technol. 2022, 124, 209–216.

[51]

Omar, M. M.; Fawzy, S. M.; El-Shabasy, A. B.; Allam, N. K. Large-diameter light-scattering complex multipodal nanotubes with graded refractive index: Insights into their Formation mechanism and photoelectrochemical performance. J. Mater. Chem. A 2017, 5, 23600–23611.

[52]

Ouyang, T.; Wang, X. T.; Mai, X. Q.; Chen, A. N.; Tang, Z. Y.; Liu, Z. Q. Coupling magnetic single-crystal Co2Mo3O8 with ultrathin nitrogen-rich carbon layer for oxygen evolution reaction. Angew. Chem., Int. Ed. 2020, 59, 11948–11957.

[53]

Wang, S. C.; Li, Y. L.; Wang, X.; Zi, G. H.; Zhou, C. Y.; Liu, B. Y.; Liu, G.; Wang, L. Z.; Huang, W. One-step supramolecular preorganization constructed crinkly graphitic carbon nitride nanosheets with enhanced photocatalytic activity. J. Mater. Sci. Technol. 2022, 104, 155–162.

[54]

Gu, S. N.; Li, W. J.; Wang, F. Z.; Wang, S. Y.; Zhou, H. L.; Li, H. D. Synthesis of buckhorn-like BiVO4 with a shell of CeOx nanodots: Effect of heterojunction structure on the enhancement of photocatalytic activity. Appl. Catal. B Environ. 2015, 170–171, 186–194.

[55]

Huang, S. F.; Tie, D.; Wang, M.; Wang, B.; Jia, P.; Wang, Q. J.; Chang, G. L.; Zhang, J. J.; Zhao, Y. F. Largely increased lithium storage ability of mangnese oxide through a continuous electronic structure modulation and elevated capacitive contribution. ACS Sustainable Chem. Eng. 2019, 7, 740–747.

[56]

Wang, X. R.; Liu, J. Y.; Liu, Z. W.; Wang, W. C.; Luo, J.; Han, X. P.; Du, X. W.; Qiao, S. Z.; Yang, J. Identifying the key role of pyridinic-N-Co bonding in synergistic electrocatalysis for reversible ORR/OER. Adv. Mater. 2018, 30, 1800005.

[57]

Zhang, C. Y.; Kong, J. F.; Wang, F. C.; Zou, J.; Huang, Y. Q. Preparation of ferromagnetic N-Mn codoped ZnO thin films by ultrasonic spray pyrolysis. J. Mater. Sci. :Mater. Electron. 2017, 28, 426–434.

File
12274_2023_5939_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 14 May 2023
Revised: 14 June 2023
Accepted: 18 June 2023
Published: 26 July 2023
Issue date: March 2024

Copyright

© The Author(s) 2023

Acknowledgements

Acknowledgements

The authors would like to acknowledge the financial support from National Natural Science Foundation of China (No. 52002328), Shenzhen Science and Technology Program (No. JCYJ20220530161615035), the Practice and Innovation Funds for Graduate Students of Northwestern Polytechnical University (No. PF2023151), the Fundamental Research Funds for the Central Universities, and material characterizations from the Analytical & Testing Center of Northwestern Polytechnical University. L. Z. W. thanks the financial support of Australian Research Council through its Discovery Project (DP) and Laureate Fellowship.

Rights and permissions

Copyright: © 2023 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return