Journal Home > Volume 17 , Issue 3

Charge density wave (CDW) is a phenomenon that occurs in materials, accompanied by changes in their intrinsic electronic properties. The study of CDW and its modulation in materials holds tremendous significance in materials research, as it provides a unique approach to controlling the electronic properties of materials. TiSe2 is a typical layered material with a CDW phase at low temperatures. Through V substitution for Ti in TiSe2, we tuned the carrier concentration in VxTi1−xSe2 to study how its electronic structures evolve. Angle-resolved photoemission spectroscopy (ARPES) shows that the band-folding effect is sustained with the doping level up to 10%, indicating the persistence of the CDW phase, even though the band structure is strikingly different from that of the parent compound TiSe2. Though CDW can induce the band fold effect with a driving force from the perspective of electronic systems, our studies suggest that this behavior could be maintained by lattice distortion of the CDW phase, even if band structures deviate from the electron-driven CDW scenario. Our work provides a constraint for understanding the CDW mechanism in TiSe2, and highlights the role of lattice distortion in the band-folding effect.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Persistence of charge density wave against variation of band structures in VxTi1−xSe2 (x = 0–0.1)

Show Author's information Zhanfeng Liu1,§Tongrui Li1,§Wen Zhu1Hongwei Shou5Mukhtar Lawan Adam1Qilong Cui1Yuliang Li1Sheng Wang1Yunbo Wu1Hongen Zhu1Yi Liu1Shuangming Chen1Xiaojun Wu5Shengtao Cui1( )Li Song1,4,6( )Zhe Sun1,2,3( )
National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230029, China
CAS Key Laboratory of Strongly-coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China
Collaborative Innovation Center of Advanced Microstructures, Nanjing 210093, China
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
School of Chemistry and Materials Sciences, CAS Key Laboratory of Materials for Energy Conversion, and CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230026, China
School Zhejiang Institute of Photonelectronics, Jinhua 321004, China

§ Zhanfeng Liu and Tongrui Li contributed equally to this work.

Abstract

Charge density wave (CDW) is a phenomenon that occurs in materials, accompanied by changes in their intrinsic electronic properties. The study of CDW and its modulation in materials holds tremendous significance in materials research, as it provides a unique approach to controlling the electronic properties of materials. TiSe2 is a typical layered material with a CDW phase at low temperatures. Through V substitution for Ti in TiSe2, we tuned the carrier concentration in VxTi1−xSe2 to study how its electronic structures evolve. Angle-resolved photoemission spectroscopy (ARPES) shows that the band-folding effect is sustained with the doping level up to 10%, indicating the persistence of the CDW phase, even though the band structure is strikingly different from that of the parent compound TiSe2. Though CDW can induce the band fold effect with a driving force from the perspective of electronic systems, our studies suggest that this behavior could be maintained by lattice distortion of the CDW phase, even if band structures deviate from the electron-driven CDW scenario. Our work provides a constraint for understanding the CDW mechanism in TiSe2, and highlights the role of lattice distortion in the band-folding effect.

Keywords: band structure, charge density wave, lattice distortion

References(42)

[1]

Di Salvo, F. J.; Waszczak, J. V. Transport properties and the phase transition in Ti1−xMxSe2 (M = Ta or V). Phys. Rev. B 1978, 17, 3801–3807.

[2]

Mottas, M. L.; Jaouen, T.; Hildebrand, B.; Rumo, M.; Vanini, F.; Razzoli, E.; Giannini, E.; Barreteau, C.; Bowler, D. R.; Monney, C. et al. Semimetal-to-semiconductor transition and charge-density-wave suppression in 1T-TiSe2−xSx single crystals. Phys. Rev. B 2019, 99, 155103.

[3]

Lee, K.; Choe, J.; Iaia, D.; Li, J. Q.; Zhao, J. J.; Shi, M.; Ma, J. Z.; Yao, M. Y.; Wang, Z. Y.; Huang, C. L. et al. Metal-to-insulator transition in Pt-doped TiSe2 driven by emergent network of narrow transport channels. npj Quantum Mater. 2021, 6, 8.

[4]

Morosan, E.; Zandbergen, H. W.; Dennis, B. S.; Bos, J. W. G.; Onose, Y.; Klimczuk, T.; Ramirez, A. P.; Ong, N. P.; Cava, R. J. Superconductivity in CuxTiSe2. Nat. Phys. 2006, 2, 544–550.

[5]

Qian, D.; Hsieh, D.; Wray, L.; Morosan, E.; Wang, N. L.; Xia, Y.; Cava, R. J.; Hasan, M. Z. Emergence of fermi pockets in a new excitonic charge-density-wave melted superconductor. Phys. Rev. Lett. 2007, 98, 117007.

[6]

Liao, M. H.; Wang, H.; Zhu, Y. Y.; Shang, R. N.; Rafique, M.; Yang, L. X.; Zhang, H.; Zhang, D.; Xue, Q. K. Coexistence of resistance oscillations and the anomalous metal phase in a lithium intercalated TiSe2 superconductor. Nat. Commun. 2021, 12, 5342.

[7]

Li, L. J.; O’Farrell, E. C. T.; Loh, K. P.; Eda, G.; Özyilmaz, B.; Castro Neto, A. H. Controlling many-body states by the electric-field effect in a two-dimensional material. Nature 2016, 529, 185–189.

[8]

Liu, M. Z.; Wu, C. W.; Liu, Z. Z.; Wang, Z. Q.; Yao, D. X.; Zhong, D. Y. Multimorphism and gap opening of charge-density-wave phases in monolayer VTe2. Nano Res. 2020, 13, 1733–1738.

[9]

Mitsuishi, N.; Sugita, Y.; Bahramy, M. S.; Kamitani, M.; Sonobe, T.; Sakano, M.; Shimojima, T.; Takahashi, H.; Sakai, H.; Horiba, K. et al. Switching of band inversion and topological surface states by charge density wave. Nat. Commun. 2020, 11, 2466.

[10]

Zhao, W. M.; Zhu, L.; Nie, Z. W.; Li, Q. Y.; Wang, Q. W.; Dou, L. G.; Hu, J. G.; Xian, L. D.; Meng, S.; Li, S. C. Moiré enhanced charge density wave state in twisted 1T-TiTe2/1T-TiSe2 heterostructures. Nat. Mater. 2022, 21, 284–289.

[11]

Feng, J. J.; Susilo, R. A.; Lin, B. C.; Deng, W.; Wang, Y. J.; Li, B.; Jiang, K.; Chen, Z. Q.; Xing, X. Z.; Shi, Z. X. et al. Achieving room-temperature charge density wave in transition metal dichalcogenide 1T-VSe2. Adv. Electron. Mater. 2020, 6, 1901427.

[12]

Xi, X. X.; Zhao, L.; Wang, Z. F.; Berger, H.; Forró, L.; Shan, J.; Mak, K. F. Strongly enhanced charge-density-wave order in monolayer NbSe2. Nat. Nanotechnol. 2015, 10, 765–769.

[13]

Chen, P.; Chan, Y. H.; Wong, M. H.; Fang, X. Y.; Chou, M. Y.; Mo, S. K.; Hussain, Z.; Fedorov, A. V.; Chiang, T. C. Dimensional effects on the charge density waves in ultrathin films of TiSe2. Nano Lett. 2016, 16, 6331–6336.

[14]

Ishiguro, Y.; Bogdanov, K.; Kodama, N.; Ogiba, M.; Ohno, T.; Baranov, A.; Takai, K. Layer number dependence of charge density wave phase transition between nearly-commensurate and incommensurate phases in 1T-TaS2. J. Phys. Chem. C 2020, 124, 27176–27184.

[15]

Kidd, T. E.; Miller, T.; Chou, M. Y.; Chiang, T. C. Electron–hole coupling and the charge density wave transition in TiSe2. Phys. Rev. Lett. 2002, 88, 226402.

[16]

Zhao, J. F.; Ou, H. W.; Wu, G.; Xie, B. P.; Zhang, Y.; Shen, D. W.; Wei, J.; Yang, L. X.; Dong, J. K.; Arita, M. et al. Evolution of the Electronic Structure of 1T-CuxTiSe2. Phys. Rev. Lett. 2007, 99, 146401.

[17]

Kohn, W. Excitonic phases. Phys. Rev. Lett. 1967, 19, 439–442.

[18]

Watanabe, H.; Seki, K.; Yunoki, S. Charge-density wave induced by combined electron–electron and electron–phonon interactions in 1T-TiSe2: A variational Monte Carlo study. Phys. Rev. B 2015, 91, 205135.

[19]

Kogar, A.; Rak, M. S.; Vig, S.; Husain, A. A.; Flicker, F.; Joe, Y. I.; Venema, L.; MacDougall, G. J.; Chiang, T. C.; Fradkin, E. et al. Signatures of exciton condensation in a transition metal dichalcogenide. Science 2017, 358, 1314–1317.

[20]

Chen, C.; Singh, B.; Lin, H.; Pereira, V. M. Reproduction of the charge density wave phase diagram in 1T-TiSe2 exposes its excitonic character. Phys. Rev. Lett. 2018, 121, 226602.

[21]

Rossnagel, K.; Kipp, L.; Skibowski, M. Charge-density-wave phase transition in 1T-TiSe2: Excitonic insulator versus band-type Jahn-Teller mechanism. Phys. Rev. B 2002, 65, 235101.

[22]

Wegner, A.; Zhao, J.; Li, J.; Yang, J.; Anikin, A. A.; Karapetrov, G.; Esfarjani, K.; Louca, D.; Chatterjee, U. Evidence for pseudo-Jahn-Teller distortions in the charge density wave phase of 1T-TiSe2. Phys. Rev. B 2020, 101, 195145.

[23]

Cercellier, H.; Monney, C.; Clerc, F.; Battaglia, C.; Despont, L.; Garnier, M. G.; Beck, H.; Aebi, P.; Patthey, L.; Berger, H. et al. Evidence for an excitonic insulator phase in 1T-TiSe2. Phys. Rev. Lett. 2007, 99, 146403.

[24]

Friend, R. H.; Parkin, S. S. P.; Jerome, D. The transport properties of vanadium-doped TiSe2 under pressure. J. Phys. C:Solid state Phys. 1982, 15, L871–L874.

[25]

Watson, M. D.; Rajan, A.; Antonelli, T.; Underwood, K.; Marković, I.; Mazzola, F.; Clark, O. J.; Siemann, G.-R.; Biswas, D.; Hunter, A.; Jandura, S.; Reichstetter, J.; McLaren, M.; Le Fèvre, P.; Vinai, G.; King, P. D. C. Strong-coupling charge density wave in monolayer TiSe2. 2D Materials 2020, 8, 015004.

[26]

Chuang, C. W.; Tanaka, Y.; Oura, M.; Rossnagel, K.; Chainani, A. Attractive Coulomb interaction, temperature-dependent hybridization, and natural circular dichroism in 1T-TiSe2. Phys. Rev. B 2020, 102, 195102.

[27]

Song, Z. P.; Huang, J. R.; Zhang, S.; Cao, Y.; Liu, C.; Zhang, R. Z.; Zheng, Q.; Cao, L.; Huang, L.; Wang, J. O. et al. Observation of an incommensurate charge density wave in monolayer TiSe2/CuSe/Cu(111) heterostructure. Phys. Rev. Lett. 2022, 128, 026401.

[28]

Watson, M. D.; Beales, A. M.; King, P. D. C. On the origin of the anomalous peak in the resistivity of TiSe2. Phys. Rev. B 2019, 99, 195142.

[29]

Gao, Q.; Chan, Y. H.; Wang, Y. Z.; Zhang, H. T.; Pu, J. X.; Cui, S. T.; Yang, Y. C.; Liu, Z. T.; Shen, D. W.; Sun, Z. et al. Evidence of high-temperature exciton condensation in a two-dimensional semimetal. Nat. Commun. 2023, 14, 994.

[30]

Adam, M. L.; Zhu, H. E.; Liu, Z. F.; Cui, S. T.; Zhang, P. J.; Liu, Y.; Zhang, G. B.; Wu, X. J.; Sun, Z.; Song, L. Charge density wave phase suppression in 1T-TiSe2 through Sn intercalation. Nano Res. 2022, 15, 2643–2649.

[31]

Hughes, H. P. Structural distortion in TiSe2 and related materials—A possible Jahn-Teller effect. J. Phys. C Solid State Phys. 1977, 10, L319–L323.

[32]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[33]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[34]

Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561.

[35]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[36]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[37]

Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 1998, 57, 1505–1509.

[38]

Bianco, R.; Calandra, M.; Mauri, F. Electronic and vibrational properties of TiSe2 in the charge-density-wave phase from first principles. Phys. Rev. B 2015, 92, 094107.

[39]

Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1–5.

[40]

Mostofi, A. A.; Yates, J. R.; Lee, Y. S.; Souza, I.; Vanderbilt, D.; Marzari, N. wannier90: A tool for obtaining maximally-localised Wannier functions. Comput. Phys. Commun. 2008, 178, 685–699.

[41]

Wang, V.; Xu, N.; Liu, J. C.; Tang, G.; Geng, W. T. VASPKIT:A user-friendly interface facilitating high-throughput computing and analysis using VASP code. Comput. Phys. Commun. 2021, 267, 108033.

[42]

Wu, Q. S.; Zhang, S. N.; Song, H. F.; Troyer, M.; Soluyanov, A. A. WannierTools: An open-source software package for novel topological materials. Comput. Phys. Commun. 2018, 224, 405–416.

File
12274_2023_5936_MOESM1_ESM.pdf (802.4 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 February 2023
Revised: 15 June 2023
Accepted: 15 June 2023
Published: 14 August 2023
Issue date: March 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

We acknowledge the financial support from the National Key R&D Program of China (No. 2017YFA0402901), the National Natural Science Foundation of China (Nos. U2032153, 21727801, and 11621063), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB25000000), the International Partnership Program of Chinese Academy of Sciences (CAS)(No. 211134KYSB20190063), the Collaborative Innovation Program of Hefei Science Center of CAS (No. 2019HSC-CIP007). We thank the Hefei Synchrotron Radiation Facility (ARPES Endstation at the NSRL), and the University of Science and Technology of China (USTC) Center for Micro and Nanoscale Research and Fabrication for help in characterizations.

Return