Journal Home > Volume 16 , Issue 12

Compared with monometallic metal-organic frameworks (MOFs) that are synthesized by reacting inorganic metal ions or clusters with bidentate or multidentate ligands via hydrothermal or solvothermal methods, the construction of heterogeneous frameworks like at least two kinds of metal sites in the individual nodes is proved to be an effective way to modulate their properties for advanced catalysis, especially for selective catalysis and multifunctional catalysis. However, it is still very challenging to precisely characterize their microstructures and reveal the relationship among the composition, structure, and their performances. Therefore, it is necessary to summarize the recent progress on bimetallic MOFs for thermal catalysis. First, we summarize the synthesis strategies and characterization methods of bimetallic MOFs and their derivatives. Second, the application of bimetallic MOFs and their derivatives as catalysts in thermal catalysis is discussed, and the relationship among the active components, structures, and their properties is elucidated. Third, the potential challenges and prospects of bimetallic MOF based nanocatalysts are proposed. This review will bring some insights into the design and preparation of bimetallic MOFs based nanocatalysts in the future.


menu
Abstract
Full text
Outline
About this article

Recent advances in bimetallic metal-organic frameworks and their derivatives for thermal catalysis

Show Author's information Fengbin Zheng1,2Tian Lin2,3Kun Wang1,2Yinglong Wang1( )Guodong Li2,4( )
College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Compared with monometallic metal-organic frameworks (MOFs) that are synthesized by reacting inorganic metal ions or clusters with bidentate or multidentate ligands via hydrothermal or solvothermal methods, the construction of heterogeneous frameworks like at least two kinds of metal sites in the individual nodes is proved to be an effective way to modulate their properties for advanced catalysis, especially for selective catalysis and multifunctional catalysis. However, it is still very challenging to precisely characterize their microstructures and reveal the relationship among the composition, structure, and their performances. Therefore, it is necessary to summarize the recent progress on bimetallic MOFs for thermal catalysis. First, we summarize the synthesis strategies and characterization methods of bimetallic MOFs and their derivatives. Second, the application of bimetallic MOFs and their derivatives as catalysts in thermal catalysis is discussed, and the relationship among the active components, structures, and their properties is elucidated. Third, the potential challenges and prospects of bimetallic MOF based nanocatalysts are proposed. This review will bring some insights into the design and preparation of bimetallic MOFs based nanocatalysts in the future.

Keywords: metal-organic frameworks, heterogeneous catalysis, synthesis methods, bimetallic metal nodes, function synergy

References(110)

[1]

Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

[2]

Zhao, M. T.; Yuan, K.; Wang, Y.; Li, G. D.; Guo, J.; Gu, L.; Hu, W. P.; Zhao, H. J.; Tang, Z. Y. Metal-organic frameworks as selectivity regulators for hydrogenation reactions. Nature 2016, 539, 76–80.

[3]

Liu, D.; Wan, J. W.; Pang, G. S.; Tang, Z. Y. Hollow metal-organic-framework micro/nanostructures and their derivatives: Emerging multifunctional materials. Adv. Mater. 2019, 31, 1803291.

[4]

Wang, W. H.; Yan, H. W.; Anand, U.; Mirsaidov, U. Visualizing the conversion of metal-organic framework nanoparticles into hollow layered double hydroxide nanocages. J. Am. Chem. Soc. 2021, 143, 1854–1862.

[5]

Ma, Y. J.; Lu, W. P.; Han, X.; Chen, Y. L.; Da Silva, I.; Lee, D.; Sheveleva, A. M.; Wang, Z.; Li, J. N.; Li, W. Y. et al. Direct observation of ammonia storage in UiO-66 incorporating Cu(II) binding sites. J. Am. Chem. Soc. 2022, 144, 8624–8632.

[6]

Gao, M. L.; Li, L. Y.; Sun, Z. X.; Li, J. R.; Jiang, H. L. Facet engineering of a metal-organic framework support modulates the microenvironment of palladium nanoparticles for selective hydrogenation. Angew. Chem., Int. Ed. 2022, 61, e202211216.

[7]

Zou, Y. H.; Huang, Y. B.; Si, D. H.; Yin, Q.; Wu, Q. J.; Weng, Z. X.; Cao, R. Porous metal-organic framework liquids for enhanced CO2 adsorption and catalytic conversion. Angew. Chem., Int. Ed. 2021, 60, 20915–20920.

[8]

Abednatanzi, S.; Gohari Derakhshandeh, P.; Depauw, H.; Coudert, F. X.; Vrielinck, H.; Van Der Voort, P.; Leus, K. Mixed-metal metal-organic frameworks. Chem. Soc. Rev. 2019, 48, 2535–2565.

[9]

Wang, H. W.; Zheng, F. B.; Xue, G. X.; Wang, Y. L.; Li, G. D.; Tang, Z. Y. Recent advances in hollow metal-organic frameworks and their composites for heterogeneous thermal catalysis. Sci. China Chem. 2021, 64, 1854–1874.

[10]

Yang, Q. H.; Wang, Y. M.; Tang, X.; Zhang, Q. J.; Dai, S.; Peng, H. T.; Lin, Y. C.; Tian, Z. Q.; Lu, Z. Y.; Chen, L. Ligand defect density regulation in metal-organic frameworks by functional group engineering on linkers. Nano Lett. 2022, 22, 838–845.

[11]

Wen, L. L.; Sun, K.; Liu, X. S.; Yang, W. J.; Li, L. Y.; Jiang, H. L. Electronic state and microenvironment modulation of metal nanoparticles stabilized by MOFs for boosting electrocatalytic nitrogen reduction. Adv. Mater. 2023, 35, 2210669.

[12]

Ren, Z.; Zhou, W. Q.; Weng, J. N.; Qin, Z. Y.; Liu, L. W.; Ji, N.; Chen, C.; Shi, H. H.; Shi, W. X.; Zhang, X. L. et al. Phase transition of metal-organic frameworks for the encapsulation of enzymes. J. Mater. Chem. A 2022, 10, 19881–19892.

[13]

Xiao, Y. W.; Chen, C.; Wu, Y. L.; Yin, Y. T.; Wu, H. B.; Li, H. F.; Fan, Y.; Wu, J. S.; Li, S.; Huang, X. et al. Fabrication of two-dimensional metal-organic framework nanosheets through crystal dissolution-growth kinetics. ACS Appl. Mater. Interfaces 2022, 14, 7192–7199.

[14]

Li, Q. X.; Si, D. H.; Lin, W.; Wang, Y. B.; Zhu, H. J.; Huang, Y. B.; Cao, R. Highly efficient electroreduction of CO2 by defect single-atomic Ni-N3 sites anchored on ordered micro-macroporous carbons. Sci. China Chem. 2022, 65, 1584–1593.

[15]

Liu, D.; Lang, J. P.; Abrahams, B. F. Highly efficient separation of a solid mixture of naphthalene and anthracene by a reusable porous metal-organic framework through a single-crystal-to-single-crystal transformation. J. Am. Chem. Soc. 2011, 133, 11042–11045.

[16]

Liu, C. Y.; Chen, X. R.; Chen, H. X.; Niu, Z.; Hirao, H.; Braunstein, P.; Lang, J. P. Ultrafast luminescent light-up guest detection based on the lock of the host molecular vibration. J. Am. Chem. Soc. 2020, 142, 6690–6697.

[17]

Choe, K.; Zheng, F. B.; Wang, H.; Yuan, Y.; Zhao, W. S.; Xue, G. X.; Qiu, X. Y.; Ri, M.; Shi, X. H.; Wang, Y. L. et al. Fast and selective semihydrogenation of alkynes by palladium nanoparticles sandwiched in metal-organic frameworks. Angew. Chem., Int. Ed. 2020, 59, 3650–3657.

[18]

Wang, S. J.; Ly, H. G. T.; Wahiduzzaman, M.; Simms, C.; Dovgaliuk, I.; Tissot, A.; Maurin, G.; Parac-Vogt, T. N.; Serre, C. A zirconium metal-organic framework with SOC topological net for catalytic peptide bond hydrolysis. Nat. Commun. 2022, 13, 1284.

[19]

Wang, Q. Y.; Sun, Z. B.; Zhang, M.; Zhao, S. N.; Luo, P.; Gong, C. H.; Liu, W. X.; Zang, S. Q. Cooperative catalysis between dual copper centers in a metal-organic framework for efficient detoxification of chemical warfare agent simulants. J. Am. Chem. Soc. 2022, 144, 21046–21055.

[20]

Wei, R. J.; You, P. Y.; Duan, H. Y.; Xie, M.; Xia, R. Q.; Chen, X.; Zhao, X. X.; Ning, G. H.; Cooper, A. I.; Li, D. Ultrathin metal-organic framework nanosheets exhibiting exceptional catalytic activity. J. Am. Chem. Soc. 2022, 144, 17487–17495.

[21]

Stanley, P. M.; Haimerl, J.; Shustova, N. B.; Fischer, R. A.; Warnan, J. Merging molecular catalysts and metal-organic frameworks for photocatalytic fuel production. Nat. Chem. 2022, 14, 1342–1356.

[22]

Yi, B.; Wong, Y. L.; Li, K. D.; Hou, C. S.; Ma, T. R.; Xu, Z. T.; Yao, X. Highly catalytic metal-organic framework coating enabled by liquid superwetting and confinement. Nano Res. 2023, 16, 7716–7723.

[23]

He, C.; Liang, J.; Zou, Y. H.; Yi, J. D.; Huang, Y. B.; Cao, R. Metal-organic frameworks bonded with metal N-heterocyclic carbenes for efficient catalysis. Natl. Sci. Rev. 2021, 9, nwab157.

[24]
Zhang, J.; Shen, Y.; Jin, N.; Zhao, X. P.; Li, H. F.; Ji, N.; Li, Y. J.; Zha, B.; Li, L.; Yao, X. K. et al. Chemo-biocascade reactions enabled by metal-organic framework micro-nanoreactor. Research, in press, DOI: 10.34133/2022/9847698.
[25]

Wang, P.; Zhang, P.; Shen, Y.; Wang, L.; Li, H. F.; Zhang, W. L.; Gu, Z. D.; Zhang, X. L.; Fu, Y.; Zhang, W. N. et al. Construction of hierarchical-porous metal-organic frameworks through esterification reaction for efficient catalysis. Chem. Commun. 2021, 57, 10795–10798.

[26]

Wang, M. F.; Mi, Y.; Hu, F. L.; Hirao, H.; Niu, Z.; Braunstein, P.; Lang, J. P. Controllable multiple-step configuration transformations in a thermal/photoinduced reaction. Nat. Commun. 2022, 13, 2847.

[27]

Chen, S. L.; Mi, Y.; Hu, F. L.; Young, D. J.; Lang, J. P. Pore-directed solid-state selective photoinduced E-Z isomerization and dimerization within metal-organic frameworks. CCS Chem. 2023, 5, 1225–1232.

[28]

Li, F. L.; Shao, Q.; Huang, X. Q.; Lang, J. P. Nanoscale trimetallic metal-organic frameworks enable efficient oxygen evolution electrocatalysis. Angew. Chem., Int. Ed. 2018, 57, 1888–1892.

[29]

Xu, R.; Si, D. H.; Zhao, S. S.; Wu, Q. J.; Wang, X. S.; Liu, T. F.; Zhao, H.; Cao, R.; Huang, Y. B. Tandem photocatalysis of CO2 to C2H4 via a synergistic rhenium-(I) bipyridine/copper-porphyrinic triazine framework. J. Am. Chem. Soc. 2023, 145, 8261–8270.

[30]

Wan, L. B.; Liu, H.; Huang, C. X.; Shen, X. T. Enzyme-like MOFs: Synthetic molecular receptors with high binding capacity and their application in selective photocatalysis. J. Mater. Chem. A 2020, 8, 25931–25940.

[31]

Li, D.; Liu, T. T.; Yan, Z. Y.; Zhen, L.; Liu, J.; Wu, J.; Feng, Y. J. MOF-derived Cu2O/Cu nanospheres anchored in nitrogen-doped hollow porous carbon framework for increasing the selectivity and activity of electrochemical CO2-to-formate conversion. ACS Appl. Mater. Interfaces 2020, 12, 7030–7037.

[32]

Liu, S. J.; Chi, D. J.; Zou, Q. C.; Ma, Y.; Chen, R.; Zhang, K. MOFs-derived MoS2/C3N4 composites with highly efficient charge separation for photocatalytic H2 evolution. Inorg. Chim. Acta 2022, 533, 120787.

[33]

He, T.; Kong, X. J.; Li, J. R. Chemically stable metal-organic frameworks: Rational construction and application expansion. Acc. Chem. Res. 2021, 54, 3083–3094.

[34]

Zhang, X. Y.; Zhang, S. T.; Tang, Y. J.; Huang, X.; Pang, H. Recent advances and challenges of metal-organic framework/graphene-based composites. Compos. B Eng. 2022, 230, 109532.

[35]

Zhao, X.; Sun, L.; Zhai, Z. X.; Tian, D.; Wang, Y.; Zou, X. Q.; Min, C. G.; Zhuang, C. F. An ultrastable La-MOF for catalytic hydrogen transfer of furfural: In situ activation of the surface. Nanoscale 2023, 15, 6645–6654.

[36]

Shi, H.; He, Y.; Li, Y. B.; He, T.; Luo, P. Y. Confined ultrasmall MOF nanoparticles anchored on a 3D-graphene network as efficient and broad pH-adaptive photo Fenton-like catalysts. Environ. Sci. Nano 2022, 9, 1091–1105.

[37]

Li, S. S.; Gao, Y. Q.; Li, N.; Ge, L.; Bu, X. H.; Feng, P. Y. Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction. Energy Environ. Sci. 2021, 14, 1897–1927.

[38]

Park, K. S.; Ni, Z.; Côté, A. P.; Choi, J. Y.; Huang, R. D.; Uribe-Romo, F. J.; Chae, H. K.; O’Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl. Acad. Sci. USA 2006, 103, 10186–10191.

[39]

Yang, Y. Z.; Zhao, L. Q.; Gao, X. Y.; Zhao, Y. F. Constructing ultrafine monodispersed Co2P/(0.59-Cu3P) on Cu doped CoZn-ZIF derived porous N-doped carbon for highly efficient dehydrogenation of ammonia borane. Nano Res. 2023, 16, 6687–6700.

[40]

Masoomi, M. Y.; Morsali, A.; Dhakshinamoorthy, A.; Garcia, H. Mixed-metal MOFs: Unique opportunities in metal-organic framework (MOF) functionality and design. Angew. Chem., Int. Ed. 2019, 58, 15188–15205.

[41]

Li, F. L.; Wang, P. T.; Huang, X. Q.; Young, D. J.; Wang, H. F.; Braunstein, P.; Lang, J. P. Large-scale, bottom-up synthesis of binary metal-organic framework nanosheets for efficient water oxidation. Angew. Chem., Int. Ed. 2019, 58, 7051–7056.

[42]

Chen, L. Y.; Wang, H. F.; Li, C. X.; Xu, Q. Bimetallic metal-organic frameworks and their derivatives. Chem. Sci. 2020, 11, 5369–5403.

[43]

Rezki, M.; Septiani, N. L. W.; Iqbal, M.; Adhika, D. R.; Wenten, I. G.; Yuliarto, B. Review—Recent advance in multi-metallic metal organic frameworks (MM-MOFs) and their derivatives for electrochemical biosensor application. J. Electrochem. Soc. 2022, 169, 017504.

[44]

Wang, Y. M.; Tian, Z. Q.; Yang, Q. H.; Tong, K. C.; Tang, X.; Zhang, N.; Zhou, J.; Zhang, L. J.; Zhang, Q. J.; Dai, S. et al. Atomically dispersed dual metal sites boost the efficiency of olefins epoxidation in tandem with CO2 cycloaddition. Nano Lett. 2022, 22, 8381–8388.

[45]

Dang, S.; Zhu, Q. L.; Xu, Q. Nanomaterials derived from metal-organic frameworks. Nat. Rev. Mater. 2017, 3, 17075.

[46]

Wang, H. J.; Wu, X. D.; Liu, G. Y.; Wu, S. Y.; Xu, R. Bimetallic MOF derived nickel nanoclusters supported by nitrogen-doped carbon for efficient electrocatalytic CO2 reduction. Nano Res. 2023, 16, 4546–4553.

[47]

Chen, L.; Chen, Z.; Liu, X. D.; Wang, X. L. Bimetallic metal-organic framework derived doped carbon nanostructures as high-performance electrocatalyst towards oxygen reactions. Nano Res. 2021, 14, 1533–1540.

[48]

Lu, G. P.; Sun, K. K.; Lin, Y. M.; Du, Q. X.; Zhang, J. W.; Wang, K.; Wang, P. C. Single-atomic-site iron on N-doped carbon for chemoselective reduction of nitroarenes. Nano Res. 2022, 15, 603–611.

[49]

Wang, H. Q. Nanostructure@metal-organic frameworks (MOFs) for catalytic carbon dioxide (CO2) conversion in photocatalysis, electrocatalysis, and thermal catalysis. Nano Res. 2022, 15, 2834–2854.

[50]

Shao, S. X.; Cui, C. Q.; Tang, Z. Y.; Li, G. D. Recent advances in metal-organic frameworks for catalytic CO2 hydrogenation to diverse products. Nano Res. 2022, 15, 10110–10133.

[51]

Huang, Y. B.; Liang, J.; Wang, X. S.; Cao, R. Multifunctional metal-organic framework catalysts: Synergistic catalysis and tandem reactions. Chem. Soc. Rev. 2017, 46, 126–157.

[52]

Zhou, Y. T.; Abazari, R.; Chen, J.; Tahir, M.; Kumar, A.; Ikreedeegh, R. R.; Rani, E.; Singh, H.; Kirillov, A. M. Bimetallic metal-organic frameworks and MOF-derived composites: Recent progress on electro- and photoelectrocatalytic applications. Coord. Chem. Rev. 2022, 451, 214264.

[53]

Liu, S.; Qiu, Y. Z.; Liu, Y. F.; Zhang, W. F.; Dai, Z.; Srivastava, D.; Kumar, A.; Pan, Y.; Liu, J. Q. Recent advances in bimetallic metal-organic frameworks (BMOFs): Synthesis, applications and challenges. New J. Chem. 2022, 46, 13818–13837.

[54]

Unnikrishnan, V.; Zabihi, O.; Ahmadi, M.; Li, Q. X.; Blanchard, P.; Kiziltas, A.; Naebe, M. Metal-organic framework structure–property relationships for high-performance multifunctional polymer nanocomposite applications. J. Mater. Chem. A 2021, 9, 4348–4378.

[55]

Gu, L.; Deng, G. Z.; Huang, R. T.; Shi, X. Y. Optimization of Fe/Ni organic frameworks with core–shell structures for efficient visible-light-driven reduction of carbon dioxide to carbon monoxide. Nanoscale 2022, 14, 15821–15831.

[56]

Huo, L. M.; Wang, L.; Li, J. J.; Pu, Y. F.; Xuan, K.; Qiao, C. Z.; Yang, H. Cerium doped Zr-based metal-organic framework as catalyst for direct synthesis of dimethyl carbonate from CO2 and methanol. J. CO2 Util. 2023, 68, 102352.

[57]

Ma, D.; Huang, X.; Zhang, Y.; Wang, L.; Wang, B. Metal-organic frameworks: Synthetic methods for industrial production. Nano Res. 2023, 16, 7906–7925.

[58]

Yusuf, V. F.; Malek, N. I.; Kailasa, S. K. Review on metal-organic framework classification, synthetic approaches, and influencing factors: Applications in energy, drug delivery, and wastewater treatment. ACS Omega 2022, 7, 44507–44531.

[59]

Bedia, J.; Muelas-Ramos, V.; Peñas-Garzón, M.; Gómez-Avilés, A.; Rodríguez, J. J.; Belver, C. A review on the synthesis and characterization of metal organic frameworks for photocatalytic water purification. Catalysts 2019, 9, 52.

[60]

Zhang, X. L.; Han, X.; Zhu, F. Y.; Zhou, C. Y.; Cao, X. Q.; Lang, J. P.; Gu, H. W. Route to the structure-controlled synthesis of Fe nanobelts and their oxygen evolution reaction application. Inorg. Chem. 2022, 61, 3024–3028.

[61]

Rehman, A.; Farrukh, S.; Hussain, A.; Pervaiz, E. Synthesis and effect of metal-organic frame works on CO2 adsorption capacity at various pressures: A contemplating review. Energy Environ. 2020, 31, 367–388.

[62]

Safaei, M.; Foroughi, M. M.; Ebrahimpoor, N.; Jahani, S.; Omidi, A.; Khatami, M. A review on metal-organic frameworks: Synthesis and applications. Trends Analyt. Chem. 2019, 118, 401–425.

[63]

Annamalai, J.; Murugan, P.; Ganapathy, D.; Nallaswamy, D.; Atchudan, R.; Arya, S.; Khosla, A.; Barathi, S.; Sundramoorthy, A. K. Synthesis of various dimensional metal organic frameworks (MOFs) and their hybrid composites for emerging applications—A review. Chemosphere 2022, 298, 134184.

[64]

Li, Y.; Wen, G. L.; Li, J. Z.; Li, Q. R.; Zhang, H. X.; Tao, B.; Zhang, J. Z. Synthesis and shaping of metal-organic frameworks: A review. Chem. Commun. 2022, 58, 11488–11506.

[65]

Alizadeh, S.; Nematollahi, D. Electrochemically assisted self-assembly technique for the fabrication of mesoporous metal-organic framework thin films: Composition of 3D hexagonally packed crystals with 2D honeycomb-like mesopores. J. Am. Chem. Soc. 2017, 139, 4753–4761.

[66]

Zhou, S.; Shekhah, O.; Jia, J. T.; Czaban-Jóźwiak, J.; Bhatt, P. M.; Ramírez, A.; Gascon, J.; Eddaoudi, M. Electrochemical synthesis of continuous metal-organic framework membranes for separation of hydrocarbons. Nat. Energy 2021, 6, 882–891.

[67]

Vaitsis, C.; Kanellou, E.; Pandis, P. K.; Papamichael, I.; Sourkouni, G.; Zorpas, A. A.; Argirusis, C. Sonochemical synthesis of zinc adipate metal-organic framework (MOF) for the electrochemical reduction of CO2: MOF and circular economy potential. Sustainable Chem. Pharm. 2022, 29, 100786.

[68]

Dadashi, J.; Khaleghian, M.; Hanifehpour, Y.; Mirtamizdoust, B.; Joo, S. W. Lead(II)-azido metal-organic coordination polymers: Synthesis, structure and application in PbO nanomaterials preparation. Nanomaterials 2022, 12, 2257.

[69]

Vaitsis, C.; Sourkouni, G.; Argirusis, C. Metal organic frameworks (MOFs) and ultrasound: A review. Ultrason. Sonochem. 2019, 52, 106–119.

[70]

Zorainy, M. Y.; Titi, H. M.; Kaliaguine, S.; Boffito, D. C. Multivariate metal-organic framework MTV-MIL-101 via post-synthetic cation exchange: Is it truly achievable. Dalton Trans. 2022, 51, 3280–3294.

[71]

Sheta, S. M.; Salem, S. R.; El-Sheikh, S. M. A novel iron(III)-based MOF: Synthesis, characterization, biological, and antimicrobial activity study. J. Mater. Res. 2022, 37, 2356–2367.

[72]

Waitschat, S.; Fröhlich, D.; Reinsch, H.; Terraschke, H.; Lomachenko, K. A.; Lamberti, C.; Kummer, H.; Helling, T.; Baumgartner, M.; Henninger, S. et al. Synthesis of M-UiO-66 (M = Zr, Ce or Hf) employing 2, 5-pyridinedicarboxylic acid as a linker: Defect chemistry, framework hydrophilisation and sorption properties. Dalton Trans. 2018, 47, 1062–1070.

[73]

Qin, J. H.; Zhang, J. R.; Xiao, Z.; Wu, Y. P.; Xu, H. M.; Yang, X. G.; Ma, L. F.; Li, D. S. Topology- and guest-dependent photoelectric conversion of 2D anionic pyrene-based metal-organic framework. Cryst. Growth Des. 2022, 22, 4018–4024.

[74]

Ling, J.; Zhou, A. N.; Wang, W. Z.; Jia, X. Y.; Ma, M. D.; Li, Y. Z. One-pot method synthesis of bimetallic MgCu-MOF-74 and its CO2 adsorption under visible light. ACS Omega 2022, 7, 19920–19929.

[75]

Gao, Z. Y.; Liang, L.; Zhang, X.; Xu, P.; Sun, J. M. Facile one-pot synthesis of Zn/Mg-MOF-74 with unsaturated coordination metal centers for efficient CO2 adsorption and conversion to cyclic carbonates. ACS Appl. Mater. Interfaces 2021, 13, 61334–61345.

[76]

Lammert, M.; Glißmann, C.; Stock, N. Tuning the stability of bimetallic Ce(IV)/Zr(IV)-based MOFs with UiO-66 and MOF-808 structures. Dalton Trans. 2017, 46, 2425–2429.

[77]

Zhai, Q. G.; Bu, X. H.; Mao, C. Y.; Zhao, X.; Feng, P. Y. Systematic and dramatic tuning on gas sorption performance in heterometallic metal-organic frameworks. J. Am. Chem. Soc. 2016, 138, 2524–2527.

[78]

Khosravi, F.; Gholinejad, M.; Sansano, J. M.; Luque, R. Bimetallic Fe-Cu metal organic frameworks for room temperature catalysis. Appl. Organomet. Chem. 2022, 36, e6749.

[79]

Wang, D. K.; Suo, M. J.; Lai, S. Q.; Deng, L. Q.; Liu, J. Y.; Yang, J.; Chen, S. Q.; Wu, M. F.; Zou, J. P. Photoinduced acceleration of Fe3+/Fe2+ cycle in heterogeneous FeNi-MOFs to boost peroxodisulfate activation for organic pollutant degradation. Appl. Catal. B Environ. 2023, 321, 122054.

[80]

Das, S.; Kim, H.; Kim, K. Metathesis in single crystal: Complete and reversible exchange of metal ions constituting the frameworks of metal-organic frameworks. J. Am. Chem. Soc. 2009, 131, 3814–3815.

[81]

Zhang, Z. X.; Xiao, Y.; Cui, M. F.; Tang, J. H.; Fei, Z. Y.; Liu, Q.; Chen, X.; Qiao, X. Modulating the basicity of Zn-MOF-74 via cation exchange with calcium ions. Dalton Trans. 2019, 48, 14971–14974.

[82]

Tu, B. B.; Pang, Q. Q.; Wu, D. F.; Song, Y. N.; Weng, L. H.; Li, Q. W. Ordered vacancies and their chemistry in metal-organic frameworks. J. Am. Chem. Soc. 2014, 136, 14465–14471.

[83]

Shultz, A. M.; Sarjeant, A. A.; Farha, O. K.; Hupp, J. T.; Nguyen, S. T. Post-synthesis modification of a metal-organic framework to form metallosalen-containing MOF materials. J. Am. Chem. Soc. 2011, 133, 13252–13255.

[84]

Wu, X.; Meng, G.; Liu, W. X.; Li, T.; Yang, Q.; Sun, X. M.; Liu, J. F. Metal-organic framework-derived, Zn-doped porous carbon polyhedra with enhanced activity as bifunctional catalysts for rechargeable zinc-air batteries. Nano Res. 2018, 11, 163–173.

[85]

Yusuf, M.; Hira, S. A.; Lim, H.; Song, S.; Park, S.; Park, K. H. Core–shell Cu2S: NiS2@C hybrid nanostructure derived from a metal-organic framework with graphene oxide for photocatalytic synthesis of N-substituted derivatives. J. Mater. Chem. A 2021, 9, 9018–9027.

[86]

Xiong, D. K.; Gu, M. L.; Chen, C. X.; Lu, C.; Yi, F. Y.; Ma, X. H. Rational design of bimetallic metal-organic framework composites and their derived sulfides with superior electrochemical performance to remarkably boost oxygen evolution and supercapacitors. Chem. Eng. J. 2021, 404, 127111.

[87]
Li, X.; Wang, B. Atomic regulations of single atom from metal-organic framework derived carbon for advanced water treatment. Nano Res., in press, DOI: 10.1007/s12274-023-5616-z.
[88]

Xu, H.; Hu, D.; Lin, L.; Zhang, M.; Li, X.; Zeng, Y. J.; Amer, M.; Luo, W. H.; Yan, K. MOF-derived bimetallic NiCo nanoalloys for the hydrogenation of biomass-derived levulinic acid to γ-valerolactone. AIChE J. 2023, 69, e17973.

[89]

Shin, S.; Yoon, Y.; Shin, M. W. Co/Zn-based bimetallic MOF-derived hierarchical porous Co/C composite as cathode material for high-performance lithium-air batteries. Int. J. Energy Res. 2022, 46, 9900–9910.

[90]

Li, X.; Zhang, Y. Z.; Cheng, Y.; Chen, X. J.; Tan, W. H. MOF-derived porous hierarchical ZnCo2O4 microflowers for enhanced performance gas sensor. Ceram. Int. 2021, 47, 9214–9224.

[91]

Wu, R. B.; Qian, X. K.; Zhou, K.; Wei, J.; Lou, J.; Ajayan, P. M. Porous spinel ZnxCo3−xO4 hollow polyhedra templated for high-rate lithium-ion batteries. ACS Nano 2014, 8, 6297–6303.

[92]

Li, J. F.; Wang, J. Z.; Wexler, D.; Shi, D. Q.; Liang, J. W.; Liu, H. K.; Xiong, S. L.; Qian, Y. T. Simple synthesis of yolk–shelled ZnCo2O4 microspheres towards enhancing the electrochemical performance of lithium-ion batteries in conjunction with a sodium carboxymethyl cellulose binder. J. Mater. Chem. A 2013, 1, 15292–15299.

[93]

Acharya, D.; Pathak, I.; Dahal, B.; Lohani, P. C.; Bhattarai, R. M.; Muthurasu, A.; Kim, T.; Ko, T. H.; Chhetri, K.; Kim, H. Y. Immoderate nanoarchitectures of bimetallic MOF derived Ni-Fe-O/NPC on porous carbon nanofibers as freestanding electrode for asymmetric supercapacitors. Carbon 2023, 201, 12–23.

[94]

Xiao, S. N.; Pan, D. L.; Liang, R.; Dai, W. R.; Zhang, Q. T.; Zhang, G. Q.; Su, C. L.; Li, H. X.; Chen, W. Bimetal MOF derived mesocrystal ZnCo2O4 on rGO with high performance in visible-light photocatalytic NO oxidization. Appl. Catal. B Environ. 2018, 236, 304–313.

[95]

Zurrer, T.; Wong, K.; Horlyck, J.; Lovell, E. C.; Wright, J.; Bedford, N. M.; Han, Z. J.; Liang, K.; Scott, J.; Amal, R. Mixed-metal MOF-74 templated catalysts for efficient carbon dioxide capture and methanation. Adv. Funct. Mater. 2021, 31, 2007624.

[96]

Wang, Q.; Lu, J. H.; Jiang, Y.; Yang, S. R.; Yang, Y.; Wang, Z. H. FeCo bimetallic metal organic framework nanosheets as peroxymonosulfate activator for selective oxidation of organic pollutants. Chem. Eng. J. 2022, 443, 136483.

[97]

Huang, K.; Yu, S. B.; Li, X. X.; Cai, Z. Y. One-pot synthesis of bimetal MOFs as highly efficient catalysts for selective oxidation of styrene. J. Chem. Sci. 2020, 132, 139.

[98]

Fu, Y. H.; Xu, L.; Shen, H. M.; Yang, H.; Zhang, F. M.; Zhu, W. D.; Fan, M. H. Tunable catalytic properties of multi-metal-organic frameworks for aerobic styrene oxidation. Chem. Eng. J. 2016, 299, 135–141.

[99]

Liu, H. L.; Liu, W.; Xue, G. X.; Tan, T.; Yang, C. Y.; An, P. F.; Chen, W. X.; Zhao, W. S.; Fan, T.; Cui, C. Q. et al. Modulating charges of dual sites in multivariate metal-organic frameworks for boosting selective aerobic epoxidation of alkenes. J. Am. Chem. Soc. 2023, 145, 11085–11096.

[100]

Li, H. X.; Yang, Z. X.; Lu, S.; Su, L. Y.; Wang, C. H.; Huang, J. G.; Zhou, J.; Tang, J. H.; Huang, M. Z. Nano-porous bimetallic CuCo-MOF-74 with coordinatively unsaturated metal sites for peroxymonosulfate activation to eliminate organic pollutants: Performance and mechanism. Chemosphere 2021, 273, 129643.

[101]

Hu, Y. J.; Zhang, J.; Huo, H.; Wang, Z.; Xu, X. Z.; Yang, Y. L.; Lin, K. F.; Fan, R. Q. One-pot synthesis of bimetallic metal-organic frameworks (MOFs) as acid-base bifunctional catalysts for tandem reaction. Catal. Sci. Technol. 2020, 10, 315–322.

[102]

Mitchell, L.; Williamson, P.; Ehrlichová, B.; Anderson, A. E.; Seymour, V. R.; Ashbrook, S. E.; Acerbi, N.; Daniels, L. M.; Walton, R. I.; Clarke, M. L. et al. Mixed-metal MIL-100(Sc, M) (M = Al, Cr, Fe) for Lewis acid catalysis and tandem C–C bond formation and alcohol oxidation. Chem.—Eur. J. 2014, 20, 17185–17197.

[103]

Shi, Z. L.; Niu, G. Q.; Han, Q. X.; Shi, X. Y.; Li, M. X. A molybdate-incorporated cooperative catalyst: High efficiency in the assisted tandem catalytic synthesis of cyclic carbonates from CO2 and olefins. Mol. Catal. 2018, 461, 10–18.

[104]

Zhou, M. H.; Xue, Y. Q.; Ge, F.; Li, J.; Xia, H. H.; Xu, J. M.; Zhao, J.; Chen, C. Z.; Jiang, J. C. MOF-derived NiM@C catalysts (M = Co, Mo, La) for in-situ hydrogenation/hydrodeoxygenation of lignin-derived phenols to cycloalkanes/cyclohexanol. Fuel 2022, 329, 125446.

[105]

Huang, L.; Hao, F.; Lv, Y.; Liu, Y.; Liu, P. L.; Xiong, W.; Luo, H. A. MOF-derived well-structured bimetallic catalyst for highly selective conversion of furfural. Fuel 2021, 289, 119910.

[106]

Cui, W. G.; Li, Y. T.; Zhang, H. B.; Wei, Z. C.; Gao, B. H.; Dai, J. J.; Hu, T. L. In situ encapsulated Co/MnOx nanoparticles inside quasi-MOF-74 for the higher alcohols synthesis from syngas. Appl. Catal. B Environ. 2020, 278, 119262.

[107]

Shen, Y.; Bao, L. W.; Sun, F. Z.; Hu, T. L. A novel Cu-nanowire@Quasi-MOF via mild pyrolysis of a bimetal-MOF for the selective oxidation of benzyl alcohol in air. Mater. Chem. Front. 2019, 3, 2363–2373.

[108]

Wang, Q. Y.; Li, Z. M.; Bañares, M. A.; Weng, L. T.; Gu, Q. F.; Price, J.; Han, W.; Yeung, K. L. A novel approach to high-performance aliovalent-substituted catalysts—2D bimetallic MOF-derived CeCuOx microsheets. Small 2019, 15, 1903525.

[109]

Iqbal, B.; Laybourn, A.; Ul-Hamid, A.; Zaheer, M. Size-controlled synthesis of spinel nickel ferrite nanorods by thermal decomposition of a bimetallic Fe/Ni-MOF. Ceram. Int. 2021, 47, 12433–12441.

[110]

Zhang, X. P.; Han, X. K.; Gao, C.; Wang, X. X.; Wei, Y. Y.; Zhang, N.; Bao, J. J.; Xu, N.; He, G. H. In-situ growth of Co/Zn bimetallic MOF on GO surface to prepare GO supporting Co@C single-atom catalyst for Hg0 oxidation. Fuel 2023, 333, 126135.

Publication history
Copyright
Acknowledgements

Publication history

Received: 04 May 2023
Revised: 13 June 2023
Accepted: 14 June 2023
Published: 08 August 2023
Issue date: December 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

The authors acknowledge financial support from the National Key Research and Development Program of China (No. 2021YFA1500403), Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB36000000), the National Natural Science Foundation of China (Nos. 22173024 and 21722102), and Youth Innovation Promotion Association CAS (G. D. L.).

Return