Journal Home > Volume 16 , Issue 8

Anisotropic nanoparticles, giving rise to a large number of novel physicochemical properties and functionalities, have provoked increasing attentions in nanoscience and nanotechnology. The remained challenge is to develop synthetic methods for the fabrication of anisotropic nanoparticles with less symmetry under the principle of minimum surface free energy. Here, we established a crystallization-assisted asymmetric assembly method for the synthesis of anisotropic polymer nanocrescents and their carbonaceous analogues by using triblock copolymer F127 and octadecanol in aqueous solution. With the aid of molecular dynamics (MD) simulation, we demonstrate that the observed crescent structure is caused by asymmetry distribution of octadecanol crystal within the hydrophobic core of F127 micelles, via the formation of intermediate elliptic micelles bearing hydrophobic ends that further fuse with each other end-to-end at an angle into curing nanocrescent morphology. The influences of annealing time, annealing temperature, and mole ratios of precursors that govern the kinetics of the assembly and polymerization process were systematically investigated and a series of polymer nanocrescents with tunable length of ~ 85 to ~ 262 nm and aspect ratio of ~ 1.1 to ~ 3.0 were prepared. The ability to create novel crescent-shaped polymer and carbon nanoparticles and the identification of asymmetric assembly process by combining experiment and simulation study will provide a valuable contribution both to theoretical and technological researches.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Crystallization-assisted asymmetric assembly of polymer nanocrescents and fidelity carbon analogues: Experiment and simulation study

Show Author's information Lu Hou1,§Junfeng Wang2,3,§Sijia Wang1Wen-Cui Li1Guohui Li2( )An-Hui Lu1( )
State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory for Catalytic Conversion of Carbon Resources, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
Laboratory of Molecular Modeling and Design, State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
School of physics, Liaoning University, Shenyang 110036, China

§ Lu Hou and Junfeng Wang contributed equally to this work.

Abstract

Anisotropic nanoparticles, giving rise to a large number of novel physicochemical properties and functionalities, have provoked increasing attentions in nanoscience and nanotechnology. The remained challenge is to develop synthetic methods for the fabrication of anisotropic nanoparticles with less symmetry under the principle of minimum surface free energy. Here, we established a crystallization-assisted asymmetric assembly method for the synthesis of anisotropic polymer nanocrescents and their carbonaceous analogues by using triblock copolymer F127 and octadecanol in aqueous solution. With the aid of molecular dynamics (MD) simulation, we demonstrate that the observed crescent structure is caused by asymmetry distribution of octadecanol crystal within the hydrophobic core of F127 micelles, via the formation of intermediate elliptic micelles bearing hydrophobic ends that further fuse with each other end-to-end at an angle into curing nanocrescent morphology. The influences of annealing time, annealing temperature, and mole ratios of precursors that govern the kinetics of the assembly and polymerization process were systematically investigated and a series of polymer nanocrescents with tunable length of ~ 85 to ~ 262 nm and aspect ratio of ~ 1.1 to ~ 3.0 were prepared. The ability to create novel crescent-shaped polymer and carbon nanoparticles and the identification of asymmetric assembly process by combining experiment and simulation study will provide a valuable contribution both to theoretical and technological researches.

Keywords: crystallization, micelle, molecular simulation, polymer nanocrescent, carbon nanocrescent, asymmetric assembly

References(34)

[1]

Wang, T.; Okejiri, F.; Qiao, Z. A.; Dai, S. Tailoring polymer colloids derived porous carbon spheres based on specific chemical reactions. Adv. Mater. 2020, 32, 2002475.

[2]

Zou, L. L.; Hou, C. C.; Wang, Q. J.; Wei, Y. S.; Liu, Z.; Qin, J. S.; Pang, H.; Xu, Q. A honeycomb-like bulk superstructure of carbon nanosheets for electrocatalysis and energy storage. Angew. Chem., Int. Ed. 2020, 59, 19627–19632.

[3]

Xing, Y.; Du, X.; Xu, T. L.; Zhang, X. J. Janus dendritic silica/carbon@Pt nanomotors with multiengines for H2O2, near-infrared light and lipase powered propulsion. Soft Matter 2020, 16, 9553–9558.

[4]

Islam, M.; Lantada, A. D.; Mager, D.; Korvink, J. G. Carbon-based materials for articular tissue engineering: From innovative scaffolding materials toward engineered living carbon. Adv. Healthc. Mater. 2022, 11, 2101834.

[5]

Gawande, M. B.; Fornasiero, P.; Zbořil, R. Carbon-based single-atom catalysts for advanced applications. ACS Catal. 2020, 10, 2231–2259.

[6]

Guan, B. Y.; Zhang, S. L.; Lou, X. W. Realization of walnut-shaped particles with macro-/mesoporous open channels through pore architecture manipulation and their use in electrocatalytic oxygen reduction. Angew. Chem., Int. Ed. 2018, 57, 6176–6180.

[7]

Yuan, Y. F.; Wang, Y. S.; Zhang, X. L.; Li, W. C.; Hao, G. P.; Han, L.; Lu, A. H. Wiggling mesopores kinetically amplify the adsorptive separation of propylene/propane. Angew. Chem., Int. Ed. 2021, 60, 19063–19067.

[8]

Liu, D.; Gu, W. Y.; Zhou, L.; Wang, L. Z.; Zhang, J. L.; Liu, Y. D.; Lei, J. Y. Recent advances in MOF-derived carbon-based nanomaterials for environmental applications in adsorption and catalytic degradation. Chem. Eng. J. 2022, 427, 131503.

[9]

Chen, C. H.; Xie, L.; Wang, Y. Recent advances in the synthesis and applications of anisotropic carbon and silica-based nanoparticles. Nano Res. 2019, 12, 1267–1278.

[10]

Wang, K.; Li, C.; Li, Z.; Li, H. Z.; Li, A.; Li, K. X.; Lai, X. T.; Liao, Q.; Xie, F.; Li, M. Z. et al. A facile fabrication strategy for anisotropic photonic crystals using deformable spherical nanoparticles. Nanoscale 2019, 11, 14147–14154.

[11]

Zhang, C. C.; Wu, Z. Y.; Chen, Z. J.; Pan, L. B.; Li, J.; Xiao, M. Q.; Wang, L. W.; Li, H.; Huang, Z.; Xu, A. B. et al. Photonic nanostructures of nanodiscs with multiple magneto-optical properties. J. Mater. Chem. C 2020, 8, 16067–16072.

[12]

Zhang, X. E.; Chen, X.; Ren, H. J.; Diao, G. W.; Chen, M.; Chen, S. W. Bowl-like C@MoS2 nanocomposites as anode materials for lithium-ion batteries: Enhanced stress buffering and charge/mass transfer. ACS Sustainable Chem. Eng. 2020, 8, 10065–10072.

[13]

Wu, Z.; Yuan, L.; Han, Q. R.; Lan, Y.; Zhou, Y. J.; Jiang, X. H.; Ouyang, X. P.; Zhu, J. W.; Wang, X.; Fu, Y. S. Phosphorous/oxygen co-doped mesoporous carbon bowls as sulfur host for high performance lithium-sulfur batteries. J. Power Sources 2020, 450, 227658.

[14]

Xie, L.; Yan, M.; Liu, T. Y.; Gong, K.; Luo, X.; Qiu, B. L.; Zeng, J.; Liang, Q. R.; Zhou, S.; He, Y. J. et al. Kinetics-controlled super-assembly of asymmetric porous and hollow carbon nanoparticles as light-sensitive smart nanovehicles. J. Am. Chem. Soc. 2022, 144, 1634–1646.

[15]

Zhao, T. C.; Zhang, X. M.; Lin, R. F.; Chen, L.; Sun, C. X.; Chen, Q. W.; Hung, C. T.; Zhou, Q. Y.; Lan, K.; Wang, W. X. et al. Surface-confined winding assembly of mesoporous nanorods. J. Am. Chem. Soc. 2020, 142, 20359–20367.

[16]

Peng, L.; Peng, H. R.; Xu, L.; Wang, B. X.; Lan, K.; Zhao, T. C.; Che, R. C.; Li, W.; Zhao, D. Y. Anisotropic self-assembly of asymmetric mesoporous hemispheres with tunable pore structures at liquid-liquid interfaces. J. Am. Chem. Soc. 2022, 144, 15754–15763.

[17]

Xuan, M. J.; Mestre, R.; Gao, C. Y.; Zhou, C.; He, Q.; Sánchez, S. Noncontinuous super-diffusive dynamics of a light-activated nanobottle motor. Angew. Chem., Int. Ed. 2018, 57, 6838–6842.

[18]

Wang, W. X.; Wang, P. Y.; Chen, L.; Zhao, M. Y.; Hung, C. T.; Yu, C. Z.; Al-Khalaf, A. A.; Hozzein, W. N.; Zhang, F.; Li, X. M. et al. Engine-trailer-structured nanotrucks for efficient Nano-bio interactions and bioimaging-guided drug delivery. Chem 2020, 6, 1097–1112.

[19]

Cai, J. D.; Manners, I.; Qiu, H. B. “Self-adaptive” coassembly of colloidal “saturn-like” host–guest complexes enabled by toroidal micellar rubber bands. J. Am. Chem. Soc. 2022, 144, 5734–5738.

[20]

Avendaño, C.; Jackson, G.; Müller, E. A.; Escobedo, F. A. Assembly of porous smectic structures formed from interlocking high-symmetry planar nanorings. Proc. Natl. Acad. Sci. USA 2016, 113, 9699–9703.

[21]

Luo, Y.; Lei, D. Y.; Maier, S. A.; Pendry, J. B. Broadband light harvesting nanostructures robust to edge bluntness. Phys. Rev. Lett. 2012, 108, 023901.

[22]

Rochholz, H.; Bocchio, N.; Kreiter, M. Tuning resonances on crescent-shaped noble-metal nanoparticles. New J. Phys. 2007, 9, 53.

[23]

Giordano, M. C.; Foti, A.; Messina, E.; Gucciardi, P. G.; Comoretto, D.; de Mongeot, F. B. SERS amplification from self-organized arrays of plasmonic nanocrescents. ACS Appl. Mater. Interfaces 2016, 8, 6629–6638.

[24]

Wu, L. Y.; Ross, B. M.; Lee, L. P. Optical properties of the crescent-shaped nanohole antenna. Nano Lett. 2009, 9, 1956–1961.

[25]

Dostert, K. H.; Álvarez, M.; Koynov, K.; Del Campo, A.; Butt, H. J.; Kreiter, M. Near field guided chemical nanopatterning. Langmuir 2012, 28, 3699–3703.

[26]

Jang, H. J.; Jung, I.; Zhang, L. Q.; Yoo, S.; Lee, S.; Cho, S.; Shuford, K. L.; Park, S. Asymmetric Ag nanocrescents with Pt rims: Wet-chemical synthesis and optical characterization. Chem. Mater. 2017, 29, 5364–5370.

[27]

Wang, Y.; Li, Z.; Shmidov, Y.; Carrazzone, R. J.; Bitton, R.; Matson, J. B. Crescent-shaped supramolecular tetrapeptide nanostructures. J. Am. Chem. Soc. 2020, 142, 20058–20065.

[28]

Hou, L.; Li, W. C.; Liu, C. Y.; Zhang, Y.; Qiao, W. H.; Wang, J.; Wang, D. Q.; Jin, C. H.; Lu, A. H. Selective synthesis of carbon nanorings via asymmetric intramicellar phase-transition-induced tip-to-tip assembly. ACS Cent. Sci. 2021, 7, 1493–1499.

[29]
Plimpton, S.; Crozier, P.; Thompson, A. LAMMPS-large-scale atomic/molecular massively parallel simulator. Sandia Natl. Lab. 2007, 18, 43. https://www.lammps.org/#gsc.tab=0
[30]

Arnarez, C.; Uusitalo, J. J.; Masman, M. F.; Ingólfsson, H. I.; De Jong, D. H.; Melo, M. N.; Periole, X.; De Vries, A. H.; Marrink, S. J. Dry martini, a coarse-grained force field for lipid membrane simulations with implicit solvent. J. Chem. Theory Comput. 2015, 11, 260–275.

[31]

Stukowski, A. Visualization and analysis of atomistic simulation data with OVITO—The open visualization tool. Modelling Simul. Mater. Sci. Eng. 2010, 18, 015012.

[32]

Tang, J.; Yang, M.; Yu, F.; Chen, X. Y.; Tan, L.; Wang, G. 1-Octadecanol@hierarchical porous polymer composite as a novel shape-stability phase change material for latent heat thermal energy storage. Appl. Energy 2017, 187, 514–522.

[33]

Yang, J. X.; Fan, B.; Li, J. H.; Xu, J. T.; Du, B. Y.; Fan, Z. Q. Hydrogen-bonding-mediated fragmentation and reversible self-assembly of crystalline micelles of block copolymer. Macromolecules 2016, 49, 367–372.

[34]

Acquah, C.; Cagnetta, M.; Achenie, L. E. K.; Suib, S. L.; Karunanithi, A. T. Effect of solvent topography and steric hindrance on crystal morphology. Ind. Eng. Chem. Res. 2015, 54, 12108–12113.

File
12274_2023_5932_MOESM1_ESM.pdf (636.8 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 April 2023
Revised: 10 June 2023
Accepted: 14 June 2023
Published: 31 July 2023
Issue date: August 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21875028 and 22288101), Liaoning Revitalization Talents Program (No. XLYC1902045), and the Science and Technology Innovation Fund of Dalian (No. 2020JJ26GX030).

Return