Journal Home > Volume 17 , Issue 3

Modulating electronic structure of metal nanoparticles via metal–support interaction has attracted intense interest in the field of catalytic science. However, the roles of supporting substrates in regulating catalytic properties of nanozymes remain elusive. In this study, we find that the use of graphdiyne oxide (GDYO) as the substrate for self-terminating growth of Ru nanoparticles (Ru@GDYO) endows the peroxidase-like activity of Ru nanoparticles with intrinsic physiological pH preference and natural horseradish peroxidase (HRP) comparable performance. Ru nanoparticles electrolessly deposited onto GDYO possess a partially oxidized electronic structure owing to limited charge transfer between Ru and GDYO, contributing to the intrinsic physiological pH preference of the peroxidase-mimicking nanozyme. More importantly, the substrate GDYO plays an influential factor in enhancing catalytic activity, that is, the activity of Ru@GDYO is much higher than that of Ru nanoparticles deposited on other carbon substrates including graphene oxides and graphdiyne. To demonstrate the application of Ru@GDYO nanozyme in neutral solutions, we employ Ru@GDYO with nicotinamide adenine dinucleotide (NAD+)-dependent dehydrogenases in physiological conditions to realize a sustainable cascade reaction by means of forming continuous NAD+/dihydronicotiamide adenine dinucleotide (NADH) recycling. Our finding represents a promising perspective on designing high-performance peroxidase-mimicking nanozymes with broader applicability, raising fundamental understanding of structure–activity relationship, and investigating new applications of nanozymes in biological systems.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Graphdiyne oxide substrate-enhanced peroxidase-mimicking performance of Ru nanoparticles with physiological pH preference

Show Author's information Cong Xu1,2Wenjie Ma1,2Haozhi Wang3Leihou Shao1Weiqi Li1,2Ping Yu1,2( )Lanqun Mao1,4( )
Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
University of Chinese Academy of Sciences, Beijing 100049, China
State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou 570228, China
College of Chemistry, Beijing Normal University, Beijing 100875, China

Abstract

Modulating electronic structure of metal nanoparticles via metal–support interaction has attracted intense interest in the field of catalytic science. However, the roles of supporting substrates in regulating catalytic properties of nanozymes remain elusive. In this study, we find that the use of graphdiyne oxide (GDYO) as the substrate for self-terminating growth of Ru nanoparticles (Ru@GDYO) endows the peroxidase-like activity of Ru nanoparticles with intrinsic physiological pH preference and natural horseradish peroxidase (HRP) comparable performance. Ru nanoparticles electrolessly deposited onto GDYO possess a partially oxidized electronic structure owing to limited charge transfer between Ru and GDYO, contributing to the intrinsic physiological pH preference of the peroxidase-mimicking nanozyme. More importantly, the substrate GDYO plays an influential factor in enhancing catalytic activity, that is, the activity of Ru@GDYO is much higher than that of Ru nanoparticles deposited on other carbon substrates including graphene oxides and graphdiyne. To demonstrate the application of Ru@GDYO nanozyme in neutral solutions, we employ Ru@GDYO with nicotinamide adenine dinucleotide (NAD+)-dependent dehydrogenases in physiological conditions to realize a sustainable cascade reaction by means of forming continuous NAD+/dihydronicotiamide adenine dinucleotide (NADH) recycling. Our finding represents a promising perspective on designing high-performance peroxidase-mimicking nanozymes with broader applicability, raising fundamental understanding of structure–activity relationship, and investigating new applications of nanozymes in biological systems.

Keywords: metal–support interaction, nanozyme, graphdiyne, reactive oxygen species, electroless deposition

References(70)

[1]

Li, G. X.; Li, Y. L.; Liu, H. B.; Guo, Y. B.; Li, Y. J.; Zhu, D. B. Architecture of graphdiyne nanoscale films. Chem. Commun. 2010, 46, 3256–3258.

[2]

Li, C.; Lu, X. L.; Han, Y. Y.; Tang, S. F.; Ding, Y.; Liu, R. R.; Bao, H. H.; Li, Y. L.; Luo, J.; Lu, T. B. Direct imaging and determination of the crystal structure of six-layered graphdiyne. Nano Res. 2018, 11, 1714–1721.

[3]

Gao, X.; Liu, H. B.; Wang, D.; Zhang, J. Graphdiyne: Synthesis, properties, and applications. Chem. Soc. Rev. 2019, 48, 908–936.

[4]

Fang, Y.; Liu, Y. X.; Qi, L.; Xue, Y. R.; Li, Y. L. 2D graphdiyne: An emerging carbon material. Chem. Soc. Rev. 2022, 51, 2681–2709.

[5]

Lu, C.; Yang, Y.; Wang, J.; Fu, R. P.; Zhao, X. X.; Zhao, L.; Ming, Y.; Hu, Y.; Lin, H. Z.; Tao, X. M. et al. High-performance graphdiyne-based electrochemical actuators. Nat. Commun. 2018, 9, 752.

[6]

Zhang, Z. C.; Li, Y.; Wang, J. J.; Qi, D. H.; Yao, B. W.; Yu, M. X.; Chen, X. D.; Lu, T. B. Synthesis of wafer-scale graphdiyne/graphene heterostructure for scalable neuromorphic computing and artificial visual systems. Nano Res. 2021, 14, 4591–4600.

[7]

Sun, Y. N.; Nian, L.; Kan, Y. Y.; Ren, Y.; Chen, Z. H.; Zhu, L.; Zhang, M.; Yin, H.; Xu, H. J.; Li, J. F. et al. Rational control of sequential morphology evolution and vertical distribution toward 17.18% efficiency all-small-molecule organic solar cells. Joule 2022, 6, 2835–2848.

[8]

Li, X. Y.; Zhao, C. X.; Li, B. Q.; Huang, J. Q.; Zhang, Q. Advances on composite cathodes for lithium-sulfur batteries. J. Electrochem. 2022, 28, 2219013.

[9]

Pan, H. H.; Jiang, Z. Q.; Zuo, Z. C.; He, F.; Wang, F.; Li, L.; Chang, Q.; Guan, B.; Li, Y. L. Proton selective anode nanochannel for efficient methanol utilization. Nano Today 2021, 39, 101213.

[10]

Li, W. Q.; Xu, C.; Xiong, T. Y.; Jiang, Y. N.; Ma, W. J.; Yu, P.; Mao, L. Q. Giant water uptake enabled ultrahigh proton conductivity of graphdiyne oxide. Angew. Chem., Int. Ed. 2023, 62, e202216530.

[11]

Li, J.; Gao, X.; Jiang, X.; Li, X. B.; Liu, Z. F.; Zhang, J.; Tung, C. H.; Wu, L. Z. Graphdiyne: A promising catalyst-support to stabilize cobalt nanoparticles for oxygen evolution. ACS Catal. 2017, 7, 5209–5213.

[12]

Rong, W. F.; Zou, H. Y.; Zang, W. J.; Xi, S. B.; Wei, S. T.; Long, B. H.; Hu, J. H.; Ji, Y. F.; Duan, L. L. Size-dependent activity and selectivity of atomic-level copper nanoclusters during CO/CO2 electroreduction. Angew. Chem., Int. Ed. 2021, 60, 466–472.

[13]

Gao, Y.; Xue, Y. R.; Qi, L.; Xing, C. Y.; Zheng, X. C.; He, F.; Li, Y. L. Rhodium nanocrystals on porous graphdiyne for electrocatalytic hydrogen evolution from saline water. Nat. Commun. 2022, 13, 5227.

[14]

Parvin, N.; Jin, Q.; Wei, Y. Z.; Yu, R. B.; Zheng, B.; Huang, L.; Zhang, Y.; Wang, L. H.; Zhang, H.; Gao, M. Y. et al. Few-layer graphdiyne nanosheets applied for multiplexed real-time DNA detection. Adv. Mater. 2017, 29, 1606755.

[15]

Yan, H. L.; Guo, S. Y.; Wu, F.; Yu, P.; Liu, H. B.; Li, Y. L.; Mao, L. Q. Carbon atom hybridization matters: Ultrafast humidity response of graphdiyne oxides. Angew. Chem., Int. Ed. 2018, 57, 3922–3926.

[16]

Guo, S. Y.; Yu, P.; Li, W. Q.; Yi, Y. P.; Wu, F.; Mao, L. Q. Electron hopping by interfacing semiconducting graphdiyne nanosheets and redox molecules for selective electrocatalysis. J. Am. Chem. Soc. 2020, 142, 2074–2082.

[17]

Xu, C.; Jiang, Y.; Yu, P.; Mao, L. Q. Brain electrochemistry. J. Electrochem. 2022, 28, 2108551.

[18]

Xue, Y. R.; Huang, B. L.; Yi, Y. P.; Guo, Y.; Zuo, Z. C.; Li, Y. J.; Jia, Z. Y.; Liu, H. B.; Li, Y. L. Anchoring zero valence single atoms of nickel and iron on graphdiyne for hydrogen evolution. Nat. Commun. 2018, 9, 1460.

[19]

Yin, X. P.; Wang, H. J.; Tang, S. F.; Lu, X. L.; Shu, M.; Si, R.; Lu, T. B. Engineering the coordination environment of single-atom platinum anchored on graphdiyne for optimizing electrocatalytic hydrogen evolution. Angew. Chem., Int. Ed. 2018, 57, 9382–9386.

[20]

Zou, H. Y.; Rong, W. F.; Wei, S. T.; Ji, Y. F.; Duan, L. L. Regulating kinetics and thermodynamics of electrochemical nitrogen reduction with metal single-atom catalysts in a pressurized electrolyser. Proc. Natl. Acad. Sci. USA 2020, 117, 29462–29468.

[21]

Liu, H.; Zou, H. Y.; Wang, D.; Wang, C. C.; Li, F.; Dai, H.; Song, T.; Wang, M.; Ji, Y. F.; Duan, L. L. Second sphere effects promote formic acid dehydrogenation by a single-atom gold catalyst supported on amino-substituted graphdiyne. Angew. Chem., Int. Ed. 2023, 62, e202216739.

[22]

Qi, H. T.; Yu, P.; Wang, Y. X.; Han, G. C.; Liu, H. B.; Yi, Y. P.; Li, Y. L.; Mao, L. Q. Graphdiyne oxides as excellent substrate for electroless deposition of Pd clusters with high catalytic activity. J. Am. Chem. Soc. 2015, 137, 5260–5263.

[23]

Pan, C. Q.; Wang, C. Y.; Zhao, X. Y.; Xu, P. Y.; Mao, F. H.; Yang, J.; Zhu, Y. H.; Yu, R. H.; Xiao, S. Y.; Fang, Y. R. et al. Neighboring sp-hybridized carbon participated molecular oxygen activation on the interface of sub-nanocluster CuO/graphdiyne. J. Am. Chem. Soc. 2022, 144, 4942–4951.

[24]

Yu, J.; Chen, W. M.; He, F.; Song, W. G.; Cao, C. Y. Electronic oxide–support strong interactions in the graphdiyne-supported cuprous oxide nanocluster catalyst. J. Am. Chem. Soc. 2023, 145, 1803–1810.

[25]

Chang, Y. B.; Zhang, C.; Lu, X. L.; Zhang, W.; Lu, T. B. Graphdiyene enables ultrafine Cu nanoparticles to selectively reduce CO2 to C2+ products. Nano Res. 2022, 15, 195–201.

[26]

Li, J.; Han, X.; Wang, D. M.; Zhu, L.; Ha-Thi, M. H.; Pino, T.; Arbiol, J.; Wu, L. Z.; Ghazzal, M. N. A deprotection-free method for high-yield synthesis of graphdiyne powder with in situ formed CuO nanoparticles. Angew. Chem., Int. Ed. 2022, 61, e202210242.

[27]

Hui, L.; Zhang, X. T.; Xue, Y. R.; Chen, X.; Fang, Y.; Xing, C. Y.; Liu, Y. X.; Zheng, X. C.; Du, Y. C.; Zhang, C. et al. Highly dispersed platinum chlorine atoms anchored on gold quantum dots for a highly efficient electrocatalyst. J. Am. Chem. Soc. 2022, 144, 1921–1928.

[28]

Jiang, W.; Zhang, Z.; Wang, Q.; Dou, J. X.; Zhao, Y. Y.; Ma, Y. C.; Liu, H. R.; Xu, H. X.; Wang, Y. C. Tumor reoxygenation and blood perfusion enhanced photodynamic therapy using ultrathin graphdiyne oxide nanosheets. Nano Lett. 2019, 19, 4060–4067.

[29]

Min, H.; Qi, Y. Q.; Zhang, Y. L.; Han, X. X.; Cheng, K. M.; Liu, Y.; Liu, H. B.; Hu, J. S.; Nie, G. J.; Li, Y. Y. A graphdiyne oxide-based iron sponge with photothermally enhanced tumor-specific Fenton chemistry. Adv. Mater. 2020, 32, 2000038.

[30]

Wang, F. H.; Xiong, Z. C.; Jin, W. Y.; Liu, H. Y.; Liu, H. B. Graphdiyne oxide for aqueous zinc ion full battery with ultra-long cycling stability. Nano Today 2022, 44, 101463.

[31]

Wang, Q. W.; Liu, Y.; Wang, H.; Jiang, P. L.; Qian, W. C.; You, M.; Han, Y. L.; Zeng, X.; Li, J. X.; Lu, H. et al. Graphdiyne oxide nanosheets display selective anti-leukemia efficacy against DNMT3A-mutant AML cells. Nat. Commun. 2022, 13, 5657.

[32]

Liu, J. M.; Shen, X. M.; Baimanov, D.; Wang, L. M.; Xiao, Y. T.; Liu, H. B.; Li, Y. L.; Gao, X. F.; Zhao, Y. L.; Chen, C. Y. Immobilized ferrous ion and glucose oxidase on graphdiyne and its application on one-step glucose detection. ACS Appl. Mater. Interfaces 2019, 11, 2647–2654.

[33]

Zhu, Q. Q.; Yuan, Y. H.; Yan, B.; Zhou, J.; Zuo, J. L.; Bai, L. J. A new biomimetic nanozyme of hemin/graphdiyne oxide with superior peroxidase-like activity for colorimetric bioassays. Analyst 2021, 146, 7284–7293.

[34]

Zhu, Z. L.; Luo, H. Y.; Wang, T.; Zhang, C. H.; Liang, M. M.; Yang, D. Q.; Liu, M. H.; Yu, W. W.; Bai, Q.; Wang, L. N. et al. Plasmon-enhanced peroxidase-like activity of nitrogen-doped graphdiyne oxide quantum dots/gold-silver nanocage heterostructures for antimicrobial applications. Chem. Mater. 2022, 34, 1356–1368.

[35]

Wei, H.; Wang, E. K. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes. Chem. Soc. Rev. 2013, 42, 6060–6093.

[36]

Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076.

[37]

Wei, H.; Gao, L. Z.; Fan, K. L.; Liu, J. W.; He, J. Y.; Qu, X. G.; Dong, S. J.; Wang, E. K.; Yan, X. Y. Nanozymes: A clear definition with fuzzy edges. Nano Today 2021, 40, 101269.

[38]

Jin, C. Y.; Fan, S. J.; Zhuang, Z. C.; Zhou, Y. S. Single-atom nanozymes: From bench to bedside. Nano Res. 2023, 16, 1992–2002.

[39]

Bi, X. L.; Bai, Q.; Wang, L. N.; Du, F. L.; Liu, M. H.; Yu, W. W.; Li, S. H.; Li, J. Q.; Zhu, Z. L.; Sui, N. et al. Boron doped graphdiyne: A metal-free peroxidase mimetic nanozyme for antibacterial application. Nano Res. 2022, 15, 1446–1454.

[40]

Peng, Y. W.; Huang, M. C.; Chen, L. J.; Gong, C. T.; Li, N. J.; Huang, Y.; Cheng, C. M. Ultrathin covalent organic framework nanosheet-based photoregulated metal-free oxidase-like nanozyme. Nano Res. 2022, 15, 8783–8790.

[41]

Huo, M. F.; Wang, L. Y.; Chen, Y.; Shi, J. L. Tumor-selective catalytic nanomedicine by nanocatalyst delivery. Nat. Commun. 2017, 8, 357.

[42]

Liu, Y. F.; Cheng, Y.; Zhang, H.; Zhou, M.; Yu, Y. J.; Lin, S. C.; Jiang, B.; Zhao, X. Z.; Miao, L. Y.; Wei, C. W. et al. Integrated cascade nanozyme catalyzes in vivo ROS scavenging for anti-inflammatory therapy. Sci. Adv. 2020, 6, eabb2695.

[43]

Ma, M. M.; Liu, Z. Q.; Gao, N.; Pi, Z. F.; Du, X. B.; Ren, J. S.; Qu, X. G. Self-protecting biomimetic nanozyme for selective and synergistic clearance of peripheral amyloid-β in an Alzheimer’s disease model. J. Am. Chem. Soc. 2020, 142, 21702–21711.

[44]

Zhang, L.; Liu, Z. W.; Deng, Q. Q.; Sang, Y. J.; Dong, K.; Ren, J. S.; Qu, X. G. Nature-inspired construction of MOF@COF nanozyme with active sites in tailored microenvironment and pseudopodia-like surface for enhanced bacterial inhibition. Angew. Chem., Int. Ed. 2021, 60, 3469–3474.

[45]

Ren, G. Y.; Dong, F. D.; Zhao, Z. Q.; Li, K.; Lin, Y. Q. Structure defect tuning of metal-organic frameworks as a nanozyme regulatory strategy for selective online electrochemical analysis of uric acid. ACS Appl. Mater. Interfaces 2021, 13, 52987–52997.

[46]

Li, S. R.; Zhou, Z. J.; Tie, Z. X.; Wang, B.; Ye, M.; Du, L.; Cui, R.; Liu, W.; Wan, C. H.; Liu, Q. Y. et al. Data-informed discovery of hydrolytic nanozymes. Nat. Commun. 2022, 13, 827.

[47]

Ma, C. B.; Xu, Y. P.; Wu, L. X.; Wang, Q.; Zheng, J. J.; Ren, G. X.; Wang, X. Y.; Gao, X. F.; Zhou, M.; Wang, M. et al. Guided synthesis of a Mo/Zn dual single-atom nanozyme with synergistic effect and peroxidase-like activity. Angew. Chem., Int. Ed. 2022, 61, e202116170.

[48]

Ma, W. J.; Mao, J. J.; Yang, X. T.; Pan, C.; Chen, W. X.; Wang, M.; Yu, P.; Mao, L. Q.; Li, Y. D. A single-atom Fe-N4 catalytic site mimicking bifunctional antioxidative enzymes for oxidative stress cytoprotection. Chem. Commun. 2019, 55, 159–162.

[49]

Huang, L.; Chen, J. X.; Gan, L. F.; Wang, J.; Dong, S. J. Single-atom nanozymes. Sci. Adv. 2019, 5, eaav5490.

[50]

Wu, W. W.; Huang, L.; Wang, E. K.; Dong, S. J. Atomic engineering of single-atom nanozymes for enzyme-like catalysis. Chem. Sci. 2020, 11, 9741–9756.

[51]

Zhang, X. L.; Li, G. L.; Chen, G.; Wu, D.; Zhou, X. X.; Wu, Y. N. Single-atom nanozymes: A rising star for biosensing and biomedicine. Coord. Chem. Rev. 2020, 418, 213376.

[52]

Ji, S. F.; Jiang, B.; Hao, H. G.; Chen, Y. J.; Dong, J. C.; Mao, Y.; Zhang, Z. D.; Gao, R.; Chen, W. X.; Zhang, R. F. et al. Matching the kinetics of natural enzymes with a single-atom iron nanozyme. Nat. Catal. 2021, 4, 407–417.

[53]

Wang, Y.; Jia, G. R.; Cui, X. Q.; Zhao, X.; Zhang, Q. H.; Gu, L.; Zheng, L. R.; Li, L. H.; Wu, Q.; Singh, D. J. et al. Coordination number regulation of molybdenum single-atom nanozyme peroxidase-like specificity. Chem 2021, 7, 436–449.

[54]

Chen, L. F.; Xing, S. H.; Lei, Y. L.; Chen, Q. S.; Zou, Z.; Quan, K.; Qing, Z. H.; Liu, J. W.; Yang, R. H. A glucose-powered activatable nanozyme breaking pH and H2O2 limitations for treating diabetic infections. Angew. Chem., Int. Ed. 2021, 60, 23534–23539.

[55]

Fan, K. L.; Xi, J. Q.; Fan, L.; Wang, P. X.; Zhu, C. H.; Tang, Y.; Xu, X. D.; Liang, M. M.; Jiang, B.; Yan, X. Y. et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 2018, 9, 1440.

[56]

Zhen, W. Y.; Liu, Y.; Wang, W.; Zhang, M. C.; Hu, W. X.; Jia, X. D.; Wang, C.; Jiang, X. Specific “unlocking” of a nanozyme-based butterfly effect to break the evolutionary fitness of chaotic tumors. Angew. Chem., Int. Ed. 2020, 59, 9491–9497.

[57]

Han, L.; Li, C. C.; Zhang, T.; Lang, Q. L.; Liu, A. H. Au@Ag heterogeneous nanorods as nanozyme interfaces with peroxidase-like activity and their application for one-pot analysis of glucose at nearly neutral pH. ACS Appl. Mater. Interfaces 2015, 7, 14463–14470.

[58]

Niu, X. H.; Xu, X. C.; Li, X.; Pan, J. M.; Qiu, F. X.; Zhao, H. L.; Lan, M. B. Surface charge engineering of nanosized CuS via acidic amino acid modification enables high peroxidase-mimicking activity at neutral pH for one-pot detection of glucose. Chem. Commun. 2018, 54, 13443–13446.

[59]

Zhang, J. Y.; Wu, S. H.; Lu, X. M.; Wu, P.; Liu, J. W. Manganese as a catalytic mediator for photo-oxidation and breaking the pH limitation of nanozymes. Nano Lett. 2019, 19, 3214–3220.

[60]

Maity, S.; Bain, D.; Chakraborty, S.; Kolay, S.; Patra, A. Copper nanocluster (Cu23 NC)-based biomimetic system with peroxidase activity. ACS Sustainable Chem. Eng. 2020, 8, 18335–18344.

[61]

Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814.

[62]

Mahmood, J.; Li, F.; Jung, S. M.; Okyay, M. S.; Ahmad, I.; Kim, S. J.; Park, N.; Jeong, H. Y.; Baek, J. B. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat. Nanotechnol. 2017, 12, 441–446.

[63]

Kweon, D. H.; Okyay, M. S.; Kim, S. J.; Jeon, J. P.; Noh, H. J.; Park, N.; Mahmood, J.; Baek, J. B. Ruthenium anchored on carbon nanotube electrocatalyst for hydrogen production with enhanced Faradaic efficiency. Nat. Commun. 2020, 11, 1278.

[64]

Cheng, Q. Q.; Hu, C. G.; Wang, G. L.; Zou, Z. Q.; Yang, H.; Dai, L. M. Carbon-defect-driven electroless deposition of Pt atomic clusters for highly efficient hydrogen evolution. J. Am. Chem. Soc. 2020, 142, 5594–5601.

[65]

Ma, W. J.; Xue, Y. F.; Guo, S. Y.; Jiang, Y. N.; Wu, F.; Yu, P.; Mao, L. Q. Graphdiyne oxide: A new carbon nanozyme. Chem. Commun. 2020, 56, 5115–5118.

[66]

Jiang, B.; Duan, D. M.; Gao, L. Z.; Zhou, M. J.; Fan, K. L.; Tang, Y.; Xi, J. Q.; Bi, Y. H.; Tong, Z.; Gao, G. F. et al. Standardized assays for determining the catalytic activity and kinetics of peroxidase-like nanozymes. Nat. Protoc. 2018, 13, 1506–1520.

[67]

Keoingthong, P.; Hao, Q.; Li, S. K.; Zhang, L.; Xu, J. Q.; Wang, S.; Chen, L.; Tan, W. H.; Chen, Z. Graphene encapsuled Ru nanocrystal with highly-efficient peroxidase-like activity for glutathione detection at near-physiological pH. Chem. Commun. 2021, 57, 7669–7672.

[68]

Nguyen, P. T.; Lee, J.; Cho, A.; Kim, M. S.; Choi, D.; Han, J. W.; Kim, M. I.; Lee, J. Rational development of Co-doped mesoporous ceria with high peroxidase-mimicking activity at neutral pH for paper-based colorimetric detection of multiple biomarkers. Adv. Funct. Mater. 2022, 32, 2112428.

[69]

Verdin, E. NAD+ in aging, metabolism, and neurodegeneration. Science 2015, 350, 1208–1213.

[70]

Li, Y. Z.; Wang, Z. G.; Li, H. R.; Ding, B. Q. NAD+ cofactor regeneration by TMB-mediated horseradish-peroxidase-catalyzed reactions. ChemistrySelect 2018, 3, 10900–10904.

File
12274_2023_5931_MOESM1_ESM.pdf (2.4 MB)
12274_2023_5931_MOESM2_ESM.pdf (617.8 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 April 2023
Revised: 31 May 2023
Accepted: 14 June 2023
Published: 27 July 2023
Issue date: March 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 22134002 to L. M., 22125406, 22074149, and 21790053 to P. Y.), the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB30000000), and the National Basic Research Program of China (No. 2018YFA0703501).

Return