Journal Home > Volume 17 , Issue 3

The chirality structure of a single-walled carbon nanotube (SWNT) strongly depends on the composition of catalyst used in the chemical vapor deposition process. In this study, we develop a porous magnesia supported manganese-rhenium (MnRe/MgO) catalyst for chirality-selective synthesis of SWNTs. Detailed characterizations reveal that (6,5) tubes with a selectivity higher than 70% are grown from the Re-rich MnRe/MgO catalyst. By comparing the SWNT growth results with those of monometallic Mn or Re, the formation of sigma phase, an intermetallic compound occurring in transition-metal alloy systems, is revealed to be crucial for the dominant synthesis of (6,5) SWNTs. This work not only extends the application of sigma phase alloy for catalytic synthesis of SWNTs, but also sheds lights on the growth of SWNTs with a high chirality selectivity.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Highly selective growth of (6,5) single-walled carbon nanotubes from sigma phase alloy catalyst

Show Author's information Liantao Xin1,§Chen Ma1,§Qianru Wu1,§Shaokang Liu2,§Linhai Li3Xiuyun Zhang4Liu Qian5Maoshuai He1( )Dong Li1Fangqian Han1Shulan Hao1Lihu Feng1Yahan Li1Huaping Liu3Lili Zhang2( )Chang Liu2Jin Zhang5( )
College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
College of Physics Science and Technology, Yangzhou University, Yangzhou 225002, China
Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

§ Liantao Xin, Chen Ma, Qianru Wu, and Shaokang Liu contributed equally to this work.

Abstract

The chirality structure of a single-walled carbon nanotube (SWNT) strongly depends on the composition of catalyst used in the chemical vapor deposition process. In this study, we develop a porous magnesia supported manganese-rhenium (MnRe/MgO) catalyst for chirality-selective synthesis of SWNTs. Detailed characterizations reveal that (6,5) tubes with a selectivity higher than 70% are grown from the Re-rich MnRe/MgO catalyst. By comparing the SWNT growth results with those of monometallic Mn or Re, the formation of sigma phase, an intermetallic compound occurring in transition-metal alloy systems, is revealed to be crucial for the dominant synthesis of (6,5) SWNTs. This work not only extends the application of sigma phase alloy for catalytic synthesis of SWNTs, but also sheds lights on the growth of SWNTs with a high chirality selectivity.

Keywords: selective growth, single-walled carbon nanotubes, sigma phase, manganese-rhenium catalyst, transition-metal alloy

References(25)

[1]

He, M.; Zhang, S.; Zhang, J. Horizontal single-walled carbon nanotube arrays: Controlled synthesis, characterizations, and applications. Chem. Rev. 2020, 120, 12592–12684.

[2]

Yang, F.; Wang, M.; Zhang, D.; Yang, J.; Zheng, M.; Li, Y. Chirality pure carbon nanotubes: Growth, sorting, and characterization. Chem. Rev. 2020, 120, 2693–2758.

[3]

Shulaker, M. M.; Hills, G.; Patil, N.; Wei, H.; Chen, H. Y.; Wong, H. S.; Mitra, S. Carbon nanotube computer. Nature 2013, 501, 526–530.

[4]

Hills, G.; Lau, C.; Wright, A.; Fuller, S.; Bishop, M. D.; Srimani, T.; Kanhaiya, P.; Ho, R.; Amer, A.; Stein, Y.; Murphy, D.; Arvind.; Chandrakasan, A.; Shulaker, M. M. Modern microprocessor built from complementary carbon nanotube transistors. Nature 2019, 572, 595–602.

[5]

Antaris, A. L.; Robinson, J. T.; Yaghi, O. K.; Hong, G.; Diao, S.; Luong, R.; Dai, H. Ultra-low doses of chirality sorted (6,5) carbon nanotubes for simultaneous tumor imaging and photothermal therapy. ACS Nano 2013, 7, 3644–3652.

[6]

Hong, G.; Diao, S.; Chang, J.; Antaris, A. L.; Chen, C.; Zhang, B.; Zhao, S.; Atochin, D. N.; Huang, P. L.; Andreasson, K. I. Through-skull fluorescence imaging of the brain in a new near-infrared window. Nat. Photonics 2014, 8, 723–730.

[7]

He, M.; Zhang, S.; Wu, Q.; Xue, H.; Xin, B.; Wang, D.; Zhang, J. Designing catalysts for chirality-selective synthesis of single-walled carbon nanotubes: Past success and future opportunity. Adv. Mater. 2019, 31, 1800805.

[8]

He, M.; Wang, X.; Zhang, S.; Jiang, H.; Cavalca, F.; Cui, H.; Wagner, J. B.; Hansen, T. W.; Kauppinen, E.; Zhang, J. Growth kinetics of single-walled carbon nanotubes with a (2n,n) chirality selection. Sci. Adv. 2019, 5, eaav9668.

[9]

Hao, S.; Qian, L.; Wu, Q.; Li, D.; Han, F.; Feng, L.; Xin, L.; Yang, T.; Wang, S.; Zhang, J.; He, M. Subnanometer single-walled carbon nanotube growth from Fe-containing layered double hydroxides. Chem. Eng. J. 2022, 446, 137087.

[10]

Yang, D.; Li, L.; Wei, X.; Wang, Y.; Zhou, W.; Kataura, H.; Xie, S.; Liu, H. Submilligram-scale separation of near-zigzag single-chirality carbon nanotubes by temperature controlling a binary surfactant system. Sci. Adv. 2021, 7, eabe0084.

[11]

Ma, C.; Liu, Y.; Zhang, L.; Qian, L.; Zhao, Y.; Tian, Y.; Wu, Q.; Li, D.; Zhao, N.; Zhang, X.; Xin, L.; Liu, H.; Hou, P.; Liu, C.; He, M.; Zhang, J. Bulk growth and separation of single-walled carbon nanotubes from Rhenium catalyst. Nano Res. 2022, 15, 5775–5780.

[12]

Ghosh, S.; Bachilo, S. M.; Weisman, R. B. Advanced sorting of single-walled carbon nanotubes by nonlinear density-gradient ultracentrifugation. Nat. Nanotechnol. 2010, 5, 443–450.

[13]

Fagan, J. A.; Khripin, C. Y.; Silvera Batista, C. A.; Simpson, J. R.; Hároz, E. H.; Hight Walker, A. R.; Zheng, M. Isolation of specific small-diameter single-wall carbon nanotube species via aqueous two-phase extraction. Adv. Mater. 2014, 26, 2800–2804.

[14]

Samanta, S. K.; Fritsch, M.; Scherf, U.; Gomulya, W.; Bisri, S. Z.; Loi, M. A. Conjugated polymer-assisted dispersion of single-wall carbon nanotubes: The power of polymer wrapping. Acc. Chem. Res. 2014, 47, 2446–2456.

[15]

Cheng, Q.; Debnath, S.; Gregan, E.; Byrne, H. J. Ultrasound-assisted SWNTs dispersion: effects of sonication parameters and solvent properties. J. Phys. Chem. C 2010, 114, 8821–8827.

[16]

Chiang, W.-H.; Mohan Sankaran, R. Linking catalyst composition to chirality distributions of as-grown single-walled carbon nanotubes by tuning NixFe1−x nanoparticles. Nat. Mater. 2009, 8, 882–886.

[17]

Yang, F.; Wang, X.; Zhang, D.; Yang, J.; Luo, D.; Xu, Z.; Wei, J.; Wang, J. Q.; Peng, F.; Li, X.; Li, R.; Li, Y.; Li, M.; Bai, X.; Ding, F. Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts. Nature 2014, 510, 522–524.

[18]

He, M.; Jin, H.; Zhang, L.; Jiang, H.; Yang, T.; Cui, H.; Fossard, F.; Wagner, J. B.; Karppinen, M.; Kauppinen, E. I. Environmental transmission electron microscopy investigations of Pt-Fe2O3 nanoparticles for nucleating carbon nanotubes. Carbon 2016, 110, 243–248.

[19]

Qiu, L.; Ding, F. Contact-induced phase separation of alloy catalyst to promote carbon nanotube growth. Phys. Rev. Lett. 2019, 123, 256101.

[20]

Joubert, J.-M. Crystal chemistry and calphad modeling of the σ phase. Prog. Mater. Sci. 2008, 53, 528–583.

[21]

Flynn P C, Wanke S E. Experimental studies of sintering of supported Platinum catalysts. J. Catal. 1975, 37, 432–448.

[22]

Morgan K, Goguet A, Hardacre C. Metal redispersion strategies for recycling of supported metal catalysts: a perspective. ACS Catal. 2015, 5, 3430–3445.

[23]
Savitskii, E.; Tylkina, M.; Kirilinko, R.; Kopetskii, C. V. Constitution diagram of Mn-Re alloys, Zhur. Neorg. Khim. 1961, 6.
[24]

Ding, F.; Harutyunyan, A. R.; Yakobson, B. I. Dislocation theory of chirality-controlled nanotube growth. Proc. Natl. Acad. Sci. 2009, 106, 2506–2509.

[25]

He, M.; Magnin, Y.; Jiang, H.; Amara, H.; Kauppinen, E. I.; Loiseau, A.; Bichara, C. Growth modes and chiral selectivity of single-walled carbon nanotubes. Nanoscale 2018, 10, 6744–6750.

File
12274_2023_5930_MOESM1_ESM.pdf (610.7 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 April 2023
Revised: 03 June 2023
Accepted: 14 June 2023
Published: 24 July 2023
Issue date: March 2024

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This research was supported by the Key Basic Research Project of Shandong Province, China (No. ZR2019ZD49), the National Natural Science Foundation of China (Nos. 51972184 and 51802316), and the Natural Science Foundation of Liaoning Province, China (No. 2020-MS-009).

Return