Journal Home > Volume 16 , Issue 11

The development of novel and effective methods for the activation of methane is fascinating, which offers a promising potential for the sustainable development of chemical industry and the mitigation of greenhouse effect. Here we successfully synthesize two-dimensional (2D) Zr/5,10,15,20-tetrakis (4-carboxyphenyl) porphyrin (TCPP) ultrathin nanobelts (UNBs) as a high efficiency catalyst for methane (CH4) oxidation to carbon monoxide (CO). The Co-UNBs show well photo-coupled electrocatalytic performances for CH4 activation (CO production rates are 0.171 and 8.416 mmol·g−1·h−1 under dark/visible light, respectively). Density functional theory (DFT) calculations were performed to illustrate the mechanism of photoelectrocatalytic process and the high efficiency oxidation of CH4 to CO. Based on the ultrathin structure and highly efficient catalytic properties, this work provides a prospecting avenue for the design and synthesis of methane oxidation catalyst.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ultrathin zirconium-porphyrin based nanobelts as photo-coupled electrocatalysis for CH4 oxidation to CO

Show Author's information Haoming Guo1Liang Wu2Siyang Nie1Deren Yang3( )Xun Wang1( )
Key Lab of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
Institute of Energy Power Innovation, North China Electric Power University, Beijing 102206, China

Abstract

The development of novel and effective methods for the activation of methane is fascinating, which offers a promising potential for the sustainable development of chemical industry and the mitigation of greenhouse effect. Here we successfully synthesize two-dimensional (2D) Zr/5,10,15,20-tetrakis (4-carboxyphenyl) porphyrin (TCPP) ultrathin nanobelts (UNBs) as a high efficiency catalyst for methane (CH4) oxidation to carbon monoxide (CO). The Co-UNBs show well photo-coupled electrocatalytic performances for CH4 activation (CO production rates are 0.171 and 8.416 mmol·g−1·h−1 under dark/visible light, respectively). Density functional theory (DFT) calculations were performed to illustrate the mechanism of photoelectrocatalytic process and the high efficiency oxidation of CH4 to CO. Based on the ultrathin structure and highly efficient catalytic properties, this work provides a prospecting avenue for the design and synthesis of methane oxidation catalyst.

Keywords: density functional theory (DFT) calculation, photo-coupled electrocatalyst, ultrathin Co-Zr/5,10,15,20-tetrakis (4-carboxyphenyl) porphyrin (TCPP) nanobelts, CH4 oxidation

References(42)

[1]

Schwach, P.; Pan, X. L.; Bao, X. H. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: Challenges and prospects. Chem. Rev. 2017, 117, 8497–8520.

[2]

Bu, Y. H.; Du, W. X.; Du, J. P.; Zhou, A. N.; Lu, C.; Liu, H. J.; Guo, S. L. The potential utilization of lecithin as natural gas hydrate decomposition inhibitor in oil well cement at low temperatures. Constr. Build. Mater. 2021, 269, 121274.

[3]

Shindell, D. T.; Faluvegi, G.; Koch, D. M.; Schmidt, G. A.; Unger, N.; Bauer, S. E. Improved attribution of climate forcing to emissions. Science 2009, 326, 716–718.

[4]

Brandt, A. R.; Heath, G. A.; Kort, E. A.; O’Sullivan, F.; Petron, G.; Jordaan, S. M.; Tans, P.; Wilcox, J.; Gopstein, A. M.; Arent, D. et al. Methane leaks from North American natural gas systems. Science 2014, 343, 733–735.

[5]

Li, X. Y.; Xie, J. J.; Rao, H.; Wang, C.; Tang, J. W. Platinum- and CuOx-decorated TiO2 photocatalyst for oxidative coupling of methane to C2 hydrocarbons in a flow reactor. Angew. Chem., Int. Ed. 2020, 59, 19702–19707.

[6]

Kwon, Y.; Kim, T. Y.; Kwon, G.; Yi, J.; Lee, H. Selective activation of methane on single-atom catalyst of rhodium dispersed on zirconia for direct conversion. J. Am. Chem. Soc. 2017, 139, 17694–17699.

[7]

Shan, J. J.; Li, M. W.; Allard, L. F.; Lee, S.; Flytzani-Stephanopoulos, M. Mild oxidation of methane to methanol or acetic acid on supported isolated rhodium catalysts. Nature 2017, 551, 605–608.

[8]

Agarwal, N.; Freakley, S. J.; McVicker, R. U.; Althahban, S. M.; Dimitratos, N.; He, Q.; Morgan, D. J.; Jenkins, R. L.; Willock, D. J.; Taylor, S. H. et al. Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions. Science 2017, 358, 223–227.

[9]

Luo, L.; Gong, Z. Y.; Xu, Y. X.; Ma, J. N.; Liu, H. F.; Xing, J. L.; Tang, J. W. Binary Au-Cu reaction sites decorated ZnO for selective methane oxidation to C1 oxygenates with nearly 100% selectivity at room temperature. J. Am. Chem. Soc. 2022, 144, 740–750.

[10]

Lin, J.; Wang, X. D. Rh single atom catalyst for direct conversion of methane to oxygenates. Sci. China Mater. 2018, 61, 758–760.

[11]

Yu, D.; Jia, Y. Y.; Yang, Z.; Zhang, H. W.; Zhao, J. W.; Zhao, Y. B.; Weng, B.; Dai, W. X.; Li, Z. H.; Wang, P. Z. et al. Solar photocatalytic oxidation of methane to methanol with water over RuOx/ZnO/CeO2 nanorods. ACS Sustainable Chem. Eng. 2022, 10, 16–22.

[12]

Lin, S. R.; Tristan, J. B.; Wang, Y.; Bao, J. L. Dry reforming of methane on doped Ni nanoparticles: Feature-assisted optimizations and ranking of doping metals for direct activations of CH4 and CO2. Nano Res. 2022, 15, 9670–9682.

[13]

Mehmood, A.; Chae, S. Y.; Park, E. D. Photoelectrochemical conversion of methane into value-added products. Catalysts 2021, 11, 1387.

[14]

Yang, D. R.; Wang, G. X.; Wang, X. Photo- and thermo-coupled electrocatalysis in carbon dioxide and methane conversion. Sci. China Mater. 2019, 62, 1369–1373.

[15]

Ma, M.; Jin, B. J.; Li, P.; Jung, M. S.; Kim, J. I.; Cho, Y.; Kim, S.; Moon, J. H.; Park, J. H. Ultrahigh electrocatalytic conversion of methane at room temperature. Adv. Sci. (Weinh.) 2017, 4, 1700379.

[16]

Zakaria, Z.; Kamarudin, S. K. Direct conversion technologies of methane to methanol: An overview. Renew. Sust. Energ. Rev. 2016, 65, 250–261.

[17]

Sivula, K.; Van De Krol, R. Semiconducting materials for photoelectrochemical energy conversion. Nat. Rev. Mater. 2016, 1, 15010.

[18]

Yang, D. R.; Yu, H. D.; He, T.; Zuo, S. W.; Liu, X. Z.; Yang, H. Z.; Ni, B.; Li, H. Y.; Gu, L.; Wang, D. et al. Visible-light-switched electron transfer over single porphyrin-metal atom center for highly selective electroreduction of carbon dioxide. Nat. Commun. 2019, 10, 3844.

[19]

Ma, J.; Mao, K. K.; Low, J.; Wang, Z. H.; Xi, D. W.; Zhang, W. Q.; Ju, H. X.; Qi, Z. M.; Long, R.; Wu, X. J. et al. Efficient photoelectrochemical conversion of methane into ethylene glycol by WO3 nanobar arrays. Angew. Chem., Int. Ed. 2021, 60, 9357–9361.

[20]

Kadosh, Y.; Korin, E.; Bettelheim, A. Room-temperature conversion of the photoelectrochemical oxidation of methane into electricity at nanostructured TiO2. Sustain. Energy Fuels 2021, 5, 127–134.

[21]

Amano, F.; Shintani, A.; Tsurui, K.; Mukohara, H.; Ohno, T.; Takenaka, S. Photoelectrochemical homocoupling of methane under blue light irradiation. ACS Energy Lett. 2019, 4, 502–507.

[22]

Xu, M. S.; Liang, T.; Shi, M. M.; Chen, H. Z. Graphene-like two-dimensional materials. Chem. Rev. 2013, 113, 3766–3798.

[23]

Liu, H. Q.; Zhou, F.; Shi, X. Y.; Shi, Q.; Wu, Z. S. Recent advances and prospects of graphene-based fibers for application in energy storage devices. Acta Phys. Chim. Sin. 2022, 38, 2204017.

[24]

Feng, D. W.; Gu, Z. Y.; Li, J. R.; Jiang, H. L.; Wei, Z. W.; Zhou, H. C. Zirconium-metalloporphyrin PCN-222: Mesoporous metal-organic frameworks with ultrahigh stability as biomimetic catalysts. Angew. Chem., Int. Ed. 2012, 51, 10307–10310.

[25]

Ren, X. D.; Zhao, Q.; McCulloch, W. D.; Wu, Y. Y. MoS2 as a long-life host material for potassium ion intercalation. Nano Res. 2017, 10, 1313–1321.

[26]

Wang, S. H.; Wang, L. L.; Xie, L. B.; Zhao, W. W.; Liu, X.; Zhuang, Z. C.; Zhuang, Y. L.; Chen, J.; Liu, S. J.; Zhao, Q. Dislocation-strained MoS2 nanosheets for high-efficiency hydrogen evolution reaction. Nano Res. 2022, 15, 4996–5003.

[27]

Yang, Y. C.; Yang, Y. W.; Liu, Y. Y.; Zhao, S. L.; Tang, Z. Y. Metal-organic frameworks for electrocatalysis: Beyond their derivatives. Small Sci. 2021, 1, 24.

[28]

Sun, J. Z.; Du, H.; Chen, Z. J.; Wang, L. L.; Shen, G. Z. MXene quantum dot within natural 3D watermelon peel matrix for biocompatible flexible sensing platform. Nano Res. 2022, 15, 3653–3659.

[29]

Zhang, Y.; Xu, M. K.; Wang, Z. G.; Zhao, T. Y.; Liu, L. X.; Zhang, H. B.; Yu, Z. Z. Strong and conductive reduced graphene oxide-MXene porous films for efficient electromagnetic interference shielding. Nano Res. 2022, 15, 4916–4924.

[30]

He, T.; Ni, B.; Zhang, S. M.; Gong, Y.; Wang, H. Q.; Gu, L.; Zhuang, J.; Hu, W. P.; Wang, X. Ultrathin 2D zirconium metal-organic framework nanosheets: Preparation and application in photocatalysis. Small 2018, 14, 1703929.

[31]

He, T.; Chen, S. M.; Ni, B.; Gong, Y.; Wu, Z.; Song, L.; Gu, L.; Hu, W. P.; Wang, X. Zirconium-porphyrin-based metal-organic framework hollow nanotubes for immobilization of noble-metal single atoms. Angew. Chem., Int. Ed. 2018, 57, 3493–3498.

[32]

Zhang, W.; Lai, W. Z.; Cao, R. Energy-related small molecule activation reactions: Oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin- and corrole-based systems. Chem. Rev. 2017, 117, 3717–3797.

[33]

Chang, C.; Chen, W.; Chen, Y.; Chen, Y. H.; Chen, Y.; Ding, F.; Fan, C. H.; Fan, H. J.; Fan, Z. X.; Gong, C. et al. Recent progress on two-dimensional materials. Acta Phys. Chim. Sin. 2021, 37, 2108017.

[34]

Johnson, D. G.; Niemczyk, M. P.; Minsek, D. W.; Wiederrecht, G. P.; Svec, W. A.; Gaines, G. L.; Wasielewski, M. R. Photochemical electron transfer in chlorophyll-porphyrin-quinone triads: The role of the porphyrin-bridging molecule. J. Am. Chem. Soc. 1993, 115, 5692–5701.

[35]

Tanaka, T.; Osuka, A. Conjugated porphyrin arrays: Synthesis, properties, and applications for functional materials. Chem. Soc. Rev. 2015, 44, 943–969.

[36]

Guo, J. C.; Zhang, Y. K.; Tian, G. F.; Ji, D. Y.; Qi, S. L.; Wu, D. Z.; Hu, W. P. Electron configurations at 3d orbital of metal ion determining charge transition process in memory devices. Sci. China Mater. 2021, 64, 1713–1722.

[37]

Zhang, R.; Lu, Y.; Wei, L.; Fang, Z. G.; Lu, C. H.; Ni, Y. R.; Xu, Z. Z.; Tao, S. Y.; Li, P. W. Synthesis and conductivity properties of Gd0.8Ca0.2BaCo2O5+δ double perovskite by sol-gel combustion. J. Mater. Sci. Mater. Electron. 2015, 26, 9941–9948.

[38]

Bespalov, I.; Datler, M.; Buhr, S.; Drachsel, W.; Rupprechter, G.; Suchorski, Y. Initial stages of oxide formation on the Zr surface at low oxygen pressure: An in situ FIM and XPS study. Ultramicroscopy 2015, 159, 147–151.

[39]

Liang, P. P.; Tang, H.; Gu, R.; Xue, L.; Chen, D. P.; Wang, W. J.; Yang, Z.; Si, W. L.; Dong, X. C. A pH-responsive zinc(II) metalated porphyrin for enhanced photodynamic/photothermal combined cancer therapy. Sci. China Mater. 2019, 62, 1199–1209.

[40]

Li, W.; He, D.; Hu, G. X.; Li, X.; Banerjee, G.; Li, J. Y.; Lee, S. H.; Dong, Q.; Gao, T. Y.; Brudvig, G. W. et al. Selective CO production by photoelectrochemical methane oxidation on TiO2. ACS Central Sci. 2018, 4, 631–637.

[41]

Yang, W. Q.; Wang, Z. B.; Tan, W. Z.; Peng, R. R.; Wu, X. J.; Lu, Y. L. First principles study on methane reforming over Ni/TiO2 (110) surface in solid oxide fuel cells under dry and wet atmospheres. Sci. China Mater. 2020, 63, 364–374.

[42]

Hwang, J.; Rao, R. R.; Giordano, L.; Katayama, Y.; Yu, Y.; Shao-Horn, Y. Perovskites in catalysis and electrocatalysis. Science 2017, 358, 751–756.

File
12274_2023_5929_MOESM1_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 April 2023
Revised: 13 June 2023
Accepted: 14 June 2023
Published: 27 July 2023
Issue date: November 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work was supported by the National Key R&D Program of China (Nos. 2017YFA0700101 and 2016YFA0202801), the National Natural Science Foundation of China (Nos. 22035004 and 22205061), and the XPLORER PRIZE and the China Postdoctoral Science Foundation (No. 2019M660608). We thank Beijing Synchrotron Radiation Facility (BSRF) for providing the EXAFS tests in 1W1B station.

Return