AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Optical responses of metallic plasmonic arrays under the localized excitation

Sen Yan1,2Hao Ma1,2Yi-Fan Bao1,2Maofeng Cao1,2Chuan Liu1,2Kaifeng Zhang3,4Xiaowei Wu2Jianbo He2Xiang Wang1,2( )Bin Ren1,2
State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
Research & Development Group, Hitachi, Ltd., Yokohama 244-0817, Kanagawa, Japan
Department of Electronic Science and Engineering, Kyoto University, Kyoto 615-8510, Japan
Show Author Information

Graphical Abstract

Precise fabrication and systematic spectroscopic study established the relationship between the unit number and near-/far-field responses of metallic plasmonic arrays under the localized excitation, providing guidance for the rational design of plasmonic nanostructures.

Abstract

The metallic plasmonic array that can support both propagating surface plasmon polaritons (PSPPs) and localized surface plasmon resonance (LSPR) possesses rich optical properties and remarkable optical performance, making it a powerful platform for applications in photonics, chemistry, and materials. For practical applications, the excitation spot is usually smaller than the area of metal arrays. It is thus imperative to address “how many array units are enough?” towards a rational design of plasmonic nanostructures. Herein, we employed focused ion beam (FIB) to precisely fabricate a series of plasmonic array structures with increased unit number. By utilizing photoluminescence (PL) and surface-enhanced Raman spectroscopy (SERS), we found that the array units outside the excitation spot still have a significant impact on the optical response within the spot. Combined with the numerical simulation, we found that the boundary of the finite array leads to the loss of PSPP outside the excitation point, which subsequently affects the coupling of PSPP and LSPR in the excitation spot, leading to variations in PL and SERS intensity. Based on the findings, we further tuned the LSPR mode of the metal arrays by electrodeposition to obtain strong near-field enhancement without any influence on the PSPP mode. This work advances the understanding of near-field and far-field optical behavior in finite-size array structures and provides guidance for designing highly-efficient photonic devices.

Electronic Supplementary Material

Download File(s)
12274_2023_5927_MOESM1_ESM.pdf (1.7 MB)

References

[1]

Kravets, V. G.; Kabashin, A. V.; Barnes, W. L.; Grigorenko, A. N. Plasmonic surface lattice resonances: A review of properties and applications. Chem. Rev. 2018, 118, 5912–5951.

[2]

Cherqui, C.; Bourgeois, M. R.; Wang, D. Q.; Schatz, G. C. Plasmonic surface lattice resonances: Theory and computation. Acc. Chem. Res. 2019, 52, 2548–2558.

[3]

Li, R.; Bourgeois, M. R.; Cherqui, C.; Guan, J.; Wang, D. Q.; Hu, J. T.; Schaller, R. D.; Schatz, G. C.; Odom, T. W. Hierarchical hybridization in plasmonic honeycomb lattices. Nano Lett. 2019, 19, 6435–6441.

[4]

Liu, Y.; Tian, X. R.; Guo, W. R.; Wang, W. Q.; Guan, Z. Q.; Xu, H. X. Real-time Raman detection by the cavity mode enhanced Raman scattering. Nano Res. 2019, 12, 1643–1649.

[5]

Halas, N. J.; Lal, S.; Chang, W. S.; Link, S.; Nordlander, P. Plasmons in strongly coupled metallic nanostructures. Chem. Rev. 2011, 111, 3913–3961.

[6]

Wang, B. Q.; Yu, P.; Wang, W. H.; Zhang, X. T.; Kuo, H. C.; Xu, H. X.; Wang, Z. M. M. High-Q plasmonic resonances: Fundamentals and applications. Adv. Opt. Mater. 2021, 9, 2001520.

[7]

Yang, K.; Yao, X.; Liu, B. W.; Ren, B. Metallic plasmonic array structures: Principles, fabrications, properties, and applications. Adv. Mater. 2021, 33, 2007988.

[8]

Ding, S. Y.; You, E. M.; Tian, Z. Q.; Moskovits, M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 2017, 46, 4042–4076.

[9]

Li, Z. W.; Fan, Q. S.; Yin, Y. D. Colloidal self-assembly approaches to smart nanostructured materials. Chem. Rev. 2022, 122, 4976–5067.

[10]

Gerasimov, V. S.; Ershov, A. E.; Bikbaev, R. G.; Rasskazov, I. L.; Isaev, I. L.; Semina, P. N.; Kostyukov, A. S.; Zakomirnyi, V. I.; Polyutov, S. P.; Karpov, S. V. Plasmonic lattice Kerker effect in ultraviolet–visible spectral range. Phys. Rev. B 2021, 103, 035402.

[11]

Utyushev, A. D.; Zakomirnyi, V. I.; Rasskazov, I. L. Collective lattice resonances: Plasmonics and beyond. Rev. Phys. 2021, 6, 100051.

[12]

Kostyukov, A. S.; Rasskazov, I. L.; Gerasimov, V. S.; Polyutov, S. P.; Karpov, S. V.; Ershov, A. E. Multipolar lattice resonances in plasmonic finite-size metasurfaces. Photonics 2021, 8, 109.

[13]

Zakomirnyi, V. I.; Ershov, A. E.; Gerasimov, V. S.; Karpov, S. V.; Ågren, H.; Rasskazov, I. L. Collective lattice resonances in arrays of dielectric nanoparticles: A matter of size. Opt. Lett. 2019, 44, 5743–5746.

[14]

Zundel, L.; Manjavacas, A. Finite-size effects on periodic arrays of nanostructures. J. Phys. Photonics 2018, 1, 015004.

[15]

Wang, P.; Krasavin, A. V.; Liu, L. F.; Jiang, Y. L.; Li, Z. Y.; Guo, X.; Tong, L. M.; Zayats, A. V. Molecular plasmonics with metamaterials. Chem. Rev. 2022, 122, 15031–15081.

[16]

Rajeeva, B. B.; Lin, L. H.; Zheng, Y. B. Design and applications of lattice plasmon resonances. Nano Res. 2018, 11, 4423–4440.

[17]

Deng, S. K.; Li, R.; Park, J. E.; Guan, J.; Choo, P.; Hu, J. T.; Smeets, P. J. M.; Odom, T. W. Ultranarrow plasmon resonances from annealed nanoparticle lattices. Proc. Natl. Acad. Sci. USA 2020, 117, 23380–23384.

[18]

Mayer, M.; Potapov, P. L.; Pohl, D.; Steiner, A. M.; Schultz, J.; Rellinghaus, B.; Lubk, A.; König, T. A. F.; Fery, A. Direct observation of plasmon band formation and delocalization in quasi-infinite nanoparticle chains. Nano Lett. 2019, 19, 3854–3862.

[19]

Büchner, R.; Weber, T.; Kühner, L.; Maier, S. A.; Tittl, A. Tip coupling and array effects of gold nanoantennas in near-field microscopy. ACS Photonics 2021, 8, 3486–3494.

[20]

Ding, S. Y.; Yi, J.; Li, J. F.; Ren, B.; Wu, D. Y.; Panneerselvam, R.; Tian, Z. Q. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 2016, 1, 16021.

[21]

Zong, C.; Xu, M. X.; Xu, L. J.; Wei, T.; Ma, X.; Zheng, X. S.; Hu, R.; Ren, B. Surface-enhanced Raman spectroscopy for bioanalysis: Reliability and challenges. Chem. Rev. 2018, 118, 4946–4980.

[22]

Wang, X.; Huang, S. C.; Hu, S.; Yan, S.; Ren, B. Fundamental understanding and applications of plasmon-enhanced Raman spectroscopy. Nat. Rev. Phys. 2020, 2, 253–271.

[23]

Wang, X.; Li, M. H.; Meng, L. Y.; Lin, K. Q.; Feng, J. M.; Huang, T. X.; Yang, Z. L.; Ren, B. Probing the location of hot spots by surface-enhanced Raman spectroscopy: Toward uniform substrates. ACS Nano 2014, 8, 528–536.

[24]

Chen, S.; Meng, L. Y.; Shan, H. Y.; Li, J. F.; Qian, L. H.; Williams, C. T.; Yang, Z. L.; Tian, Z. Q. How to light special hot spots in multiparticle-film configurations. ACS Nano 2016, 10, 581–587.

[25]

Chen, Y. Q.; Bi, K. X.; Wang, Q. J.; Zheng, M. J.; Liu, Q.; Han, Y. X.; Yang, J. B.; Chang, S. L.; Zhang, G. H.; Duan, H. G. Rapid focused ion beam milling based fabrication of plasmonic nanoparticles and assemblies via “sketch and peel” strategy. ACS Nano 2016, 10, 11228–11236.

[26]

Zhan, Y. H.; Zhang, L.; Rahmani, M.; Giannini, V.; Miroshnichenko, A. E.; Hong, M. H.; Li, X. F.; Maier, S. A.; Lei, D. Y. Synthetic plasmonic nanocircuits and the evolution of their correlated spatial arrangement and resonance spectrum. ACS Photonics 2021, 8, 166–174.

[27]

Liu, N.; Mukherjee, S.; Bao, K.; Brown, L. V.; Dorfmüller, J.; Nordlander, P.; Halas, N. J. Magnetic plasmon formation and propagation in artificial aromatic molecules. Nano Lett. 2012, 12, 364–369.

[28]

Babicheva, V. E.; Evlyukhin, A. B. Metasurfaces with electric quadrupole and magnetic dipole resonant coupling. ACS Photonics 2018, 5, 2022–2033.

[29]

Hu, H. L.; Duan, H. G.; Yang, J. K. W.; Shen, Z. X. Plasmon-modulated photoluminescence of individual gold nanostructures. ACS Nano 2012, 6, 10147–10155.

[30]

Fang, Y.; Chang, W. S.; Willingham, B.; Swanglap, P.; Dominguez-Medina, S.; Link, S. Plasmon emission quantum yield of single gold nanorods as a function of aspect ratio. ACS Nano 2012, 6, 7177–7184.

[31]

Lebsir, Y.; Boroviks, S.; Thomaschewski, M.; Bozhevolnyi, S. I.; Zenin, V. A. Ultimate limit for optical losses in gold, revealed by quantitative near-field microscopy. Nano Lett. 2022, 22, 5759–5764.

[32]

Lin, K. Q.; Yi, J.; Hu, S.; Liu, B. J.; Liu, J. Y.; Wang, X.; Ren, B. Size effect on SERS of gold nanorods demonstrated via single nanoparticle spectroscopy. J. Phys. Chem. C 2016, 120, 20806–20813.

[33]

Yao, X.; Jiang, S.; Luo, S. S.; Liu, B. W.; Huang, T. X.; Hu, S.; Zhu, J. F.; Wang, X.; Ren, B. Uniform periodic bowtie SERS substrate with narrow nanogaps obtained by monitored pulsed electrodeposition. ACS Appl. Mater. Interfaces 2020, 12, 36505–36512.

[34]

Johnson, P. B.; Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 1972, 6, 4370–4379.

Nano Research
Pages 1571-1577
Cite this article:
Yan S, Ma H, Bao Y-F, et al. Optical responses of metallic plasmonic arrays under the localized excitation. Nano Research, 2024, 17(3): 1571-1577. https://doi.org/10.1007/s12274-023-5927-0
Topics:

813

Views

4

Crossref

3

Web of Science

4

Scopus

0

CSCD

Altmetrics

Received: 06 March 2023
Revised: 13 June 2023
Accepted: 14 June 2023
Published: 31 July 2023
© Tsinghua University Press 2023
Return