AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Recent progress in co-detection of single-cell transcripts and proteins

Shanqing Huang1,§Qian Fan2,4,§Yidi Wang1Zhi Huang2Weixiong Shi1Yanli Gong2Ting Yang4Jie Wang3( )Lingling Wu2( )Chaoyong Yang1,2( )
Discipline of Intelligent Instrument and Equipment, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
Department of General Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China

§ Shanqing Huang and Qian Fan contributed equally to this work.

Show Author Information

Graphical Abstract

Co-analysis of transcripts and proteins from the same single cells opens the way to decipher complex RNA regulatory frameworks and phenotypes. Herein, we review the state-of-art advances in the development of methodologies for co-analysis of single-cell transcripts and proteins.

Abstract

Cellular heterogeneity is a universal property of living systems, and the interrogation of single cells facilitates in-depth understanding of distinct cellular states and functions in various biological processes. Co-analysis of transcripts and proteins from the same single cells opens the way to decipher complex RNA regulatory frameworks and phenotypes, facilitating the understanding of cellular fate and function regulations, discovery of novel cell types, and construction of a high-resolution cell atlas. Herein, we review the state-of-art advances in the development of methodologies for co-analysis of single-cell transcripts and proteins. First, imaging-based methods are summarized with particular emphasis on optical and mass spectrometry imaging. Next, sequencing-based approaches for high-throughput and sensitive co-analysis of single-cell transcripts and proteins are described, including droplet-, microwell-, and split-pool-based platforms. Subsequently, combined methods with more flexibility and universality are discussed. These methods commonly employ different strategies or reactions to convert transcripts and proteins of single cells into distinct signals simultaneously, which can be detected by different instruments or platforms. Lastly, some perspectives on the future challenges and development trends in this field are presented.

References

[1]

Yuan, G. C.; Cai, L.; Elowitz, M.; Enver, T.; Fan, G. P.; Guo, G. J.; Irizarry, R.; Kharchenko, P.; Kim, J.; Orkin, S. et al. Challenges and emerging directions in single-cell analysis. Genome Biol. 2017, 18, 84.

[2]

Saadatpour, A.; Lai, S. J.; Guo, G. J.; Yuan, G. C. Single-cell analysis in cancer genomics. Trends Genet. 2015, 31, 576–586.

[3]

Toriello, N. M.; Douglas, E. S.; Thaitrong, N.; Hsiao, S. C.; Francis, M. B.; Bertozzi, C. R.; Mathies, R. A. Integrated microfluidic bioprocessor for single-cell gene expression analysis. Proc. Natl. Acad. Sci. USA 2008, 105, 20173–20178.

[4]

Piras, V.; Tomita, M.; Selvarajoo, K. Is central dogma a global property of cellular information flow? Front. Physiol. 2012, 3, 439.

[5]

Cech, T. R. The RNA worlds in context. Cold Spring Harb Perspect. Biol. 2012, 4, a006742.

[6]

Wu, M. Y.; Singh, A. K. Single-cell protein analysis. Curr. Opin. Biotechnol. 2012, 23, 83–88.

[7]

Wu, A. R.; Wang, J. B.; Streets, A. M.; Huang, Y. Y. Single-cell transcriptional analysis. Annu. Rev. Anal. Chem. 2017, 10, 439–462.

[8]

Grün, D.; Lyubimova, A.; Kester, L.; Wiebrands, K.; Basak, O.; Sasaki, N.; Clevers, H.; Van Oudenaarden, A. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 2015, 525, 251–255.

[9]

Vistain, L. F.; Tay, S. Single-cell proteomics. Trends Biochem. Sci. 2021, 46, 661–672.

[10]

Battle, A.; Khan, Z.; Wang, S. H.; Mitrano, A.; Ford, M. J.; Pritchard, J. K.; Gilad, Y. Impact of regulatory variation from RNA to protein. Science 2014, 347, 664–667.

[11]

Li, J. J.; Biggin, M. D. Statistics requantitates the central dogma. Science 2015, 347, 1066–1067.

[12]

Kristensen, A. R.; Gsponer, J.; Foster, L. J. Protein synthesis rate is the predominant regulator of protein expression during differentiation. Mol. Syst. Biol. 2013, 9, 689.

[13]

Schwanhäusser, B.; Busse, D.; Li, N.; Dittmar, G.; Schuchhardt, J.; Wolf, J.; Chen, W.; Selbach, M. Global quantification of mammalian gene expression control. Nature 2011, 473, 337–342.

[14]

Mondal, M.; Liao, R. J.; Guo, J. Highly multiplexed single-cell protein analysis. Chem.—Eur. J. 2018, 24, 7083–7091.

[15]

Li, R.; Zou, Z. Y.; Wang, W. T.; Zou, P. Metabolic incorporation of electron-rich ribonucleosides enhances APEX-seq for profiling spatially restricted nascent transcriptome. Cell Chem. Biol. 2022, 29, 1218–1231.e8.

[16]

Schmid, A.; Kortmann, H.; Dittrich, P. S.; Blank, L. M. Chemical and biological single cell analysis. Curr. Opin. Biotechnol. 2010, 21, 12–20.

[17]

Xie, H. Y.; Ding, X. T. The intriguing landscape of single-cell protein analysis. Adv. Sci. 2022, 9, 2105932.

[18]

Tang, F. C.; Barbacioru, C.; Wang, Y. Z.; Nordman, E.; Lee, C.; Xu, N. L.; Wang, X. H.; Bodeau, J.; Tuch, B. B.; Siddiqui, A. et al. mRNA-Seq whole-transcriptome analysis of a single cell. Nat. Methods 2009, 6, 377–382.

[19]
Method of the year 2013. Nat. Methods 2014, 11, 1.
[20]

Ramsköld, D.; Luo, S. J.; Wang, Y. C.; Li, R.; Deng, Q. L.; Faridani, O. R.; Daniels, G. A.; Khrebtukova, I.; Loring, J. F.; Laurent, L. C. et al. Full-length mRNA-Seq from single-cell levels of RNA and individual circulating tumor cells. Nat. Biotechnol. 2012, 30, 777–782.

[21]

Picelli, S.; Faridani, O. R.; Björklund, Å. K.; Winberg, G.; Sagasser, S.; Sandberg, R. Full-length RNA-seq from single cells using Smart-seq2. Nat. Protoc. 2014, 9, 171–181.

[22]

Rūmnieks, J.; Tārs, K. Protein–RNA interactions in the single-stranded RNA bacteriophages. Subcell. Biochem. 2018, 88, 281–303.

[23]

Lionnet, T.; Czaplinski, K.; Darzacq, X.; Shav-Tal, Y.; Wells, A. L.; Chao, J. A.; Park, H. Y.; De Turris, V.; Lopez-Jones, M.; Singer, R. H. A transgenic mouse for in vivo detection of endogenous labeled mRNA. Nat. Methods 2011, 8, 165–170.

[24]

Han, Y.; Wang, S. F.; Zhang, Z. P.; Ma, X. H.; Li, W.; Zhang, X. W.; Deng, J. Y.; Wei, H. P.; Li, Z. Y.; Zhang, X. E. et al. In vivo imaging of protein-protein and RNA–protein interactions using novel far-red fluorescence complementation systems. Nucleic Acids Res. 2014, 42, e103.

[25]

Katz, Z. B.; English, B. P.; Lionnet, T.; Yoon, Y. J.; Monnier, N.; Ovryn, B.; Bathe, M.; Singer, R. H. Mapping translation “hot-spots” in live cells by tracking single molecules of mRNA and ribosomes. eLife 2016, 5, e10415.

[26]

Chouaib, R.; Safieddine, A.; Pichon, X.; Imbert, A.; Kwon, O. S.; Samacoits, A.; Traboulsi, A. M.; Robert, M. C.; Tsanov, N.; Coleno, E. et al. A dual protein-mRNA localization screen reveals compartmentalized translation and widespread co-translational RNA targeting. Dev. Cell 2020, 54, 773–791.e5.

[27]

Taniguchi, Y.; Choi, P. J.; Li, G. W.; Chen, H. Y.; Babu, M.; Hearn, J.; Emili, A.; Xie, X. S. Quantifying E. coli proteome and transcriptome with single-molecule sensitivity in single cells. Science 2010, 329, 533–538.

[28]

Akita, H.; Umetsu, Y.; Kurihara, D.; Harashima, H. Dual imaging of mRNA and protein production: An investigation of the mechanism of heterogeneity in cationic lipid-mediated transgene expression. Int. J. Pharm. 2011, 415, 218–220.

[29]

Xu, H.; Sepúlveda, L. A.; Figard, L.; Sokac, A. M.; Golding, I. Combining protein and mRNA quantification to decipher transcriptional regulation. Nat. Methods 2015, 12, 739–742.

[30]

Kochan, J.; Wawro, M.; Kasza, A. Simultaneous detection of mRNA and protein in single cells using immunofluorescence-combined single-molecule RNA FISH. Biotechniques 2015, 59, 209–221.

[31]

Eliscovich, C.; Shenoy, S. M.; Singer, R. H. Imaging mRNA and protein interactions within neurons. Proc. Natl. Acad. Sci. USA 2017, 114, E1875–E1884.

[32]

Morrison, J. A.; McKinney, M. C.; Kulesa, P. M. Resolving in vivo gene expression during collective cell migration using an integrated RNAscope, immunohistochemistry and tissue clearing method. Mech. Dev. 2017, 148, 100–106.

[33]

Junger, H.; Dobi, D.; Chen, A.; Lee, L.; Vasquez, J. J.; Tang, Q. Z.; Laszik, Z. G. Novel in situ hybridization and multiplex immunofluorescence technology combined with whole-slide digital image analysis in kidney transplantation. J. Histochem. Cytochem. 2020, 68, 445–459.

[34]

Vu, T.; Vallmitjana, A.; Gu, J.; La, K.; Xu, Q.; Flores, J.; Zimak, J.; Shiu, J.; Hosohama, L.; Wu, J. et al. Spatial transcriptomics using combinatorial fluorescence spectral and lifetime encoding, imaging and analysis. Nat. Commun. 2022, 13, 169.

[35]

Ranjan, A. K.; Joglekar, M. V.; Atre, A. N.; Patole, M.; Bhonde, R. R.; Hardikar, A. Simultaneous imaging of microRNA or mRNA territories with protein territory in mammalian cells at single cell resolution. RNA Biol. 2012, 9, 949–953.

[36]

Basiji, D. A.; Ortyn, W. E.; Liang, L. C.; Venkatachalam, V.; Morrissey, P. Cellular image analysis and imaging by flow cytometry. Clin. Lab. Med. 2007, 27, 653–670.

[37]

Pekle, E.; Smith, A.; Rosignoli, G.; Sellick, C.; Smales, C. M.; Pearce, C. Application of imaging flow cytometry for the characterization of intracellular attributes in Chinese hamster ovary cell lines at the single-cell level. Biotechnol. J. 2019, 14, 1800675.

[38]

Giesen, C.; Wang, H. A. O.; Schapiro, D.; Zivanovic, N.; Jacobs, A.; Hattendorf, B.; Schüffler, P. J.; Grolimund, D.; Buhmann, J. M.; Brandt, S. et al. Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat. Methods 2014, 11, 417–422.

[39]

Sämfors, S.; Fletcher, J. S. Lipid diversity in cells and tissue using imaging SIMS. Annu. Rev. Anal. Chem. 2020, 13, 249–271.

[40]

Wang, F.; Flanagan, J.; Su, N.; Wang, L. C.; Bui, S.; Nielson, A.; Wu, X. Y.; Vo, H. T.; Ma, X. J.; Luo, Y. L. RNAscope: A novel in situ RNA analysis platform for formalin-fixed, paraffin-embedded tissues. J. Mol. Diagn. 2012, 14, 22–29.

[41]

Schulz, D.; Zanotelli, V. R. T.; Fischer, J. R.; Schapiro, D.; Engler, S.; Lun, X. K.; Jackson, H. W.; Bodenmiller, B. Simultaneous multiplexed imaging of mRNA and proteins with subcellular resolution in breast cancer tissue samples by mass cytometry. Cell Syst. 2018, 6, 25–36.e5.

[42]

Keren, L.; Bosse, M.; Thompson, S.; Risom, T.; Vijayaragavan, K.; McCaffrey, E.; Marquez, D.; Angoshtari, R.; Greenwald, N. F.; Fienberg, H. et al. MIBI-TOF: A multiplexed imaging platform relates cellular phenotypes and tissue structure. Sci. Adv. 2019, 5, eaax5851.

[43]

Jiang, S. Z.; Chan, C. N.; Rovira-Clavé, X.; Chen, H.; Bai, Y. H.; Zhu, B. K.; McCaffrey, E.; Greenwald, N. F.; Liu, C.; Barlow, G. L. et al. Combined protein and nucleic acid imaging reveals virus-dependent B cell and macrophage immunosuppression of tissue microenvironments. Immunity 2022, 55, 1118–1134.e8.

[44]

Le, M. U. T.; Shon, H. K.; Nguyen, H. P.; Lee, C. H.; Kim, K. S.; Na, H. K.; Lee, T. G. Simultaneous multiplexed imaging of biomolecules in transgenic mouse brain tissues using mass spectrometry imaging: A multi-omic approach. Anal. Chem. 2022, 94, 9297–9305.

[45]

Shendure, J.; Balasubramanian, S.; Church, G. M.; Gilbert, W.; Rogers, J.; Schloss, J. A.; Waterston, R. H. DNA sequencing at 40: Past, present and future. Nature 2017, 550, 345–353.

[46]

Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63.

[47]

Streets, A. M.; Zhang, X. N.; Cao, C.; Pang, Y. H.; Wu, X. L.; Xiong, L.; Yang, L.; Fu, Y. S.; Zhao, L.; Tang, F. C. et al. Microfluidic single-cell whole-transcriptome sequencing. Proc. Natl. Acad. Sci. USA 2014, 111, 7048–7053.

[48]

Xin, Y. R.; Kim, J.; Ni, M.; Wei, Y.; Okamoto, H.; Lee, J.; Adler, C.; Cavino, K.; Murphy, A. J.; Yancopoulos, G. D. et al. Use of the Fluidigm C1 platform for RNA sequencing of single mouse pancreatic islet cells. Proc. Natl. Acad. Sci. USA 2016, 113, 3293–3298.

[49]

Xu, X.; Zhang, Q. Q.; Song, J.; Ruan, Q. Y.; Ruan, W. D.; Chen, Y. J.; Yang, J.; Zhang, X. B.; Song, Y. L.; Zhu, Z. et al. A highly sensitive, accurate, and automated single-cell RNA sequencing platform with digital microfluidics. Anal. Chem. 2020, 92, 8599–8606.

[50]

Macosko, E. Z.; Basu, A.; Satija, R.; Nemesh, J.; Shekhar, K.; Goldman, M.; Tirosh, I.; Bialas, A. R.; Kamitaki, N.; Martersteck, E. M. et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 2015, 161, 1202–1214.

[51]

Klein, A. M.; Mazutis, L.; Akartuna, I.; Tallapragada, N.; Veres, A.; Li, V.; Peshkin, L.; Weitz, D. A.; Kirschner, M. W. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 2015, 161, 1187–1201.

[52]

Fan, H. C.; Fu, G. K.; Fodor, S. P. A. Expression profiling. Combinatorial labeling of single cells for gene expression cytometry. Science 2015, 347, 1258367.

[53]

Bues, J.; Biočanin, M.; Pezoldt, J.; Dainese, R.; Chrisnandy, A.; Rezakhani, S.; Saelens, W.; Gardeux, V.; Gupta, R.; Sarkis, R. et al. Deterministic scRNA-seq captures variation in intestinal crypt and organoid composition. Nat. Methods 2022, 19, 323–330.

[54]

Cao, J. Y.; Packer, J. S.; Ramani, V.; Cusanovich, D. A.; Huynh, C.; Daza, R.; Qiu, X. J.; Lee, C.; Furlan, S. N.; Steemers, F. J. et al. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 2017, 357, 661–667.

[55]

Datlinger, P.; Rendeiro, A. F.; Boenke, T.; Senekowitsch, M.; Krausgruber, T.; Barreca, D.; Bock, C. Ultra-high-throughput single-cell RNA sequencing and perturbation screening with combinatorial fluidic indexing. Nat. Methods 2021, 18, 635–642.

[56]

Zhang, M. X.; Zou, Y.; Xu, X.; Zhang, X. B.; Gao, M. X.; Song, J.; Huang, P. F.; Chen, Q.; Zhu, Z.; Lin, W. et al. Highly parallel and efficient single cell mRNA sequencing with paired picoliter chambers. Nat. Commun. 2020, 11, 2118.

[57]

Zheng, G. X. Y.; Terry, J. M.; Belgrader, P.; Ryvkin, P.; Bent, Z. W.; Wilson, R.; Ziraldo, S. B.; Wheeler, T. D.; McDermott, G. P.; Zhu, J. J. et al. Massively parallel digital transcriptional profiling of single cells. Nat. Commun. 2017, 8, 14049.

[58]

Peterson, V. M.; Zhang, K. X.; Kumar, N.; Wong, J.; Li, L. X.; Wilson, D. C.; Moore, R.; McClanahan, T. K.; Sadekova, S.; Klappenbach, J. A. Multiplexed quantification of proteins and transcripts in single cells. Nat. Biotechnol. 2017, 35, 936–939.

[59]

Stoeckius, M.; Hafemeister, C.; Stephenson, W.; Houck-Loomis, B.; Chattopadhyay, P. K.; Swerdlow, H.; Satija, R.; Smibert, P. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 2017, 14, 865–868.

[60]

Leblay, N.; Maity, R.; Barakat, E.; McCulloch, S.; Duggan, P.; Jimenez-Zepeda, V.; Bahlis, N. J.; Neri, P. Cite-seq profiling of T cells in multiple myeloma patients undergoing BCMA targeting CAR-T or bites immunotherapy. Blood 2020, 136, 11–12.

[61]

Saigusa, R.; Vallejo, J.; Gulati, R.; Suthahar, S. S. A.; Suryawanshi, V.; Alimadadi, A.; Makings, J.; Durant, C. P.; Freuchet, A.; Roy, P. et al. Sex differences in coronary artery disease and diabetes revealed by scRNA-seq and CITE-seq of human CD4+ T cells. Int. J. Mol. Sci. 2022, 23, 9875.

[62]

Saigusa, R.; Ley, K. CITE-Seq hits vascular medicine. Clin. Chem. 2020, 66, 751–753.

[63]

Cadot, S.; Valle, C.; Tosolini, M.; Pont, F.; Largeaud, L.; Laurent, C.; Fournie, J. J.; Ysebaert, L.; Quillet-Mary, A. Longitudinal CITE-Seq profiling of chronic lymphocytic leukemia during ibrutinib treatment: Evolution of leukemic and immune cells at relapse. Biomark. Res. 2020, 8, 72.

[64]

Buus, T. B.; Herrera, A.; Ivanova, E.; Mimitou, E.; Cheng, A.; Herati, R. S.; Papagiannakopoulos, T.; Smibert, P.; Odum, N.; Koralov, S. B. Improving oligo-conjugated antibody signal in multimodal single-cell analysis. eLife 2021, 10, e61973.

[65]

Stoeckius, M.; Zheng, S. W.; Houck-Loomis, B.; Hao, S.; Yeung, B. Z.; Mauck III, W. M.; Smibert, P.; Satija, R. Cell Hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. Genome Biol. 2018, 19, 224.

[66]

Wimmers, F.; Subedi, N.; Van Buuringen, N.; Heister, D.; Vivié, J.; Beeren-Reinieren, I.; Woestenenk, R.; Dolstra, H.; Piruska, A.; Jacobs, J. F. M. et al. Single-cell analysis reveals that stochasticity and paracrine signaling control interferon-alpha production by plasmacytoid dendritic cells. Nat. Commun. 2018, 9, 3317.

[67]

Chen, Z.; Lu, Y.; Zhang, K. R.; Xiao, Y.; Lu, J.; Fan, R. Multiplexed, sequential secretion analysis of the same single cells reveals distinct effector response dynamics dependent on the initial basal state. Adv. Sci. 2019, 6, 1801361.

[68]

Uhlén, M.; Karlsson, M. J.; Hober, A.; Svensson, A. S.; Scheffel, J.; Kotol, D.; Zhong, W.; Tebani, A.; Strandberg, L.; Edfors, F. et al. The human secretome. Sci. Signaling 2019, 12, eaaz0274.

[69]

Wu, T. J.; Womersley, H. J.; Wang, J. R.; Scolnick, J.; Cheow, L. F. Time-resolved assessment of single-cell protein secretion by sequencing. Nat. Methods 2023, 20, 723–734.

[70]

Zhang, Y.; Tang, Y.; Sun, S.; Wang, Z. H.; Wu, W. J.; Zhao, X. D.; Czajkowsky, D. M.; Li, Y.; Tian, J. H.; Xu, L. et al. Single-cell codetection of metabolic activity, intracellular functional proteins, and genetic mutations from rare circulating tumor cells. Anal. Chem. 2015, 87, 9761–9768.

[71]

Rivello, F.; Van Buijtenen, E.; Matula, K.; Van Buggenum, J. A. G. L.; Vink, P.; Van Eenennaam, H.; Mulder, K. W.; Huck, W. T. S. Single-cell intracellular epitope and transcript detection reveals signal transduction dynamics. Cells Rep. Methods 2021, 1, 100070.

[72]

Xu, X.; Zhang, M. X.; Zhang, X. B.; Liu, Y. L.; Cai, L. F.; Zhang, Q. Q.; Chen, Q.; Lin, L.; Lin, S. C.; Song, Y. L. et al. Decoding expression dynamics of protein and transcriptome at the single-cell level in paired picoliter chambers. Anal. Chem. 2022, 94, 8164–8173.

[73]

Saliba, A. E.; Westermann, A. J.; Gorski, S. A.; Vogel, J. Single-cell RNA-seq: Advances and future challenges. Nucleic Acids Res. 2014, 42, 8845–8860.

[74]

Grindberg, R. V.; Yee-Greenbaum, J. L.; McConnell, M. J.; Novotny, M.; O’Shaughnessy, A. L.; Lambert, G. M.; Araúzo-Bravo, M. J.; Lee, J.; Fishman, M.; Robbins, G. E. et al. RNA-sequencing from single nuclei. Proc. Natl. Acad. Sci. USA 2013, 110, 19802–19807.

[75]

Habib, N.; Avraham-Davidi, I.; Basu, A.; Burks, T.; Shekhar, K.; Hofree, M.; Choudhury, S. R.; Aguet, F.; Gelfand, E.; Ardlie, K. et al. Massively parallel single-nucleus RNA-seq with DroNc-seq. Nat. Methods 2017, 14, 955–958.

[76]

Huang, H. L.; Hsing, H. W.; Lai, T. C.; Chen, Y. W.; Lee, T. R.; Chan, H. T.; Lyu, P. C.; Wu, C. L.; Lu, Y. C.; Lin, S. T. et al. Trypsin-induced proteome alteration during cell subculture in mammalian cells. J. Biomed. Sci. 2010, 17, 36.

[77]

Lake, B. B.; Chen, S.; Sos, B. C.; Fan, J.; Kaeser, G. E.; Yung, Y. C.; Duong, T. E.; Gao, D.; Chun, J.; Kharchenko, P. V. et al. Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain. Nat. Biotechnol. 2018, 36, 70–80.

[78]

Bakken, T. E.; Hodge, R. D.; Miller, J. A.; Yao, Z. Z.; Nguyen, T. N.; Aevermann, B.; Barkan, E.; Bertagnolli, D.; Casper, T.; Dee, N. et al. Single-nucleus and single-cell transcriptomes compared in matched cortical cell types. PLoS One 2018, 13, e0209648.

[79]

Lake, B. B.; Ai, R.; Kaeser, G. E.; Salathia, N. S.; Yung, Y. C.; Liu, R.; Wildberg, A.; Gao, D.; Fung, H. L.; Chen, S. et al. Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain. Science 2016, 352, 1586–1590.

[80]

Fischer, J.; Ayers, T. Single nucleus RNA-sequencing: How it’s done, applications and limitations. Emerg. Top. Life Sci. 2021, 5, 687–690.

[81]

Chung, H.; Parkhurst, C. N.; Magee, E. M.; Phillips, D.; Habibi, E.; Chen, F.; Yeung, B. Z.; Waldman, J.; Artis, D.; Regev, A. Joint single-cell measurements of nuclear proteins and RNA in vivo. Nat. Methods 2021, 18, 1204–1212.

[82]

Mair, F.; Erickson, J. R.; Voillet, V.; Simoni, Y.; Bi, T.; Tyznik, A. J.; Martin, J.; Gottardo, R.; Newell, E. W.; Prlic, M. A targeted multi-omic analysis approach measures protein expression and low-abundance transcripts on the single-cell level. Cell Rep. 2020, 31, 107499.

[83]

Gerlach, J. P.; Van Buggenum, J. A. G.; Tanis, S. E. J.; Hogeweg, M.; Heuts, B. M. H.; Muraro, M. J.; Elze, L.; Rivello, F.; Rakszewska, A.; Van Oudenaarden, A. et al. Combined quantification of intracellular (phospho-)proteins and transcriptomics from fixed single cells. Sci. Rep. 2019, 9, 1469.

[84]

Hashimshony, T.; Senderovich, N.; Avital, G.; Klochendler, A.; De Leeuw, Y.; Anavy, L.; Gennert, D.; Li, S. Q.; Livak, K. J.; Rozenblatt-Rosen, O. et al. CEL-Seq2: Sensitive highly-multiplexed single-cell RNA-Seq. Genome. Biol. 2016, 17, 77.

[85]

O'Huallachain, M.; Bava, F. A.; Shen, M.; Dallett, C.; Paladugu, S.; Samusik, N.; Yu, S.; Hussein, R.; Hillman, G. R.; Higgins, S. et al. Ultra-high throughput single-cell analysis of proteins and RNAs by split-pool synthesis. Commun. Biol. 2020, 3, 213.

[86]

Hwang, B.; Lee, D. S.; Tamaki, W.; Sun, Y.; Ogorodnikov, A.; Hartoularos, G. C.; Winters, A.; Yeung, B. Z.; Nazor, K. L.; Song, Y. S. et al. SCITO-seq: Single-cell combinatorial indexed cytometry sequencing. Nat. Methods 2021, 18, 903–911.

[87]

Rouhanifard, S. H.; Mellis, I. A.; Dunagin, M.; Bayatpour, S.; Jiang, C. L.; Dardani, I.; Symmons, O.; Emert, B.; Torre, E.; Cote, A. et al. ClampFISH detects individual nucleic acid molecules using click chemistry-based amplification. Nat. Biotechnol. 2019, 37, 84–89.

[88]

Alles, J.; Karaiskos, N.; Praktiknjo, S. D.; Grosswendt, S.; Wahle, P.; Ruffault, P. L.; Ayoub, S.; Schreyer, L.; Boltengagen, A.; Birchmeier, C. et al. Cell fixation and preservation for droplet-based single-cell transcriptomics. BMC Biol. 2017, 15, 44.

[89]

Aydin, S. A short history, principles, and types of ELISA, and our laboratory experience with peptide/protein analyses using ELISA. Peptides 2015, 72, 4–15.

[90]

Asensio, L.; González, I.; García, T.; Martín, R. Determination of food authenticity by enzyme-linked immunosorbent assay (ELISA). Food Control 2008, 19, 1–8.

[91]

Xu, A. M.; Liu, Q. H.; Takata, K. L.; Jeoung, S.; Su, Y. P.; Antoshechkin, I.; Chen, S. S.; Thomson, M.; Heath, J. R. Integrated measurement of intracellular proteins and transcripts in single cells. Lab Chip 2018, 18, 3251–3262.

[92]

George, J.; Wang, J. Assay of genome-wide transcriptome and secreted proteins on the same single immune cells by microfluidics and RNA sequencing. Anal. Chem. 2016, 88, 10309–10315.

[93]

Fulwyler, M. J. Electronic separation of biological cells by volume. Science 1965, 150, 910–911.

[94]

Spitzer, M. H.; Nolan, G. P. Mass cytometry: Single cells, many features. Cell 2016, 165, 780–791.

[95]

Iyer, A.; Hamers, A. A. J.; Pillai, A. B. CyTOF® for the masses. Front. Immunol. 2022, 13, 815828.

[96]

Jaitin, D. A.; Kenigsberg, E.; Keren-Shaul, H.; Elefant, N.; Paul, F.; Zaretsky, I.; Mildner, A.; Cohen, N.; Jung, S.; Tanay, A. et al. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 2014, 343, 776–779.

[97]

Katzenelenbogen, Y.; Sheban, F.; Yalin, A.; Yofe, I.; Svetlichnyy, D.; Jaitin, D. A.; Bornstein, C.; Moshe, A.; Keren-Shaul, H.; Cohen, M. et al. Coupled scRNA-seq and intracellular protein activity reveal an immunosuppressive role of TREM2 in cancer. Cell 2020, 182, 872–885.e19.

[98]

Gubin, M. M.; Esaulova, E.; Ward, J. P.; Malkova, O. N.; Runci, D.; Wong, P.; Noguchi, T.; Arthur, C. D.; Meng, W.; Alspach, E. et al. High-dimensional analysis delineates myeloid and lymphoid compartment remodeling during successful immune-checkpoint cancer therapy. Cell 2018, 175, 1014–1030.e19.

[99]

Giordani, L.; He, G. J.; Negroni, E.; Sakai, H.; Law, J. Y. C.; Siu, M. M.; Wan, R.; Corneau, A.; Tajbakhsh, S.; Cheung, T. H. et al. High-dimensional single-cell cartography reveals novel skeletal muscle-resident cell populations. Mol. Cell 2019, 74, 609–621.e6.

[100]

Paul, F.; Arkin, Y.; Giladi, A.; Jaitin, D. A.; Kenigsberg, E.; Keren-Shaul, H.; Winter, D.; Lara-Astiaso, D.; Gury, M.; Weiner, A. et al. Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 2015, 163, 1663–1677.

[101]

Fredriksson, S.; Gullberg, M.; Jarvius, J.; Olsson, C.; Pietras, K.; Gústafsdóttir, S. M.; Östman, A.; Landegren, U. Protein detection using proximity-dependent DNA ligation assays. Nat. Biotechnol. 2002, 20, 473–477.

[102]

Lundberg, M.; Eriksson, A.; Tran, B.; Assarsson, E.; Fredriksson, S. Homogeneous antibody-based proximity extension assays provide sensitive and specific detection of low-abundant proteins in human blood. Nucleic Acids Res. 2011, 39, e102.

[103]

Gullberg, M.; Gústafsdóttir, S. M.; Schallmeiner, E.; Jarvius, J.; Bjarnegård, M.; Betsholtz, C.; Landegren, U.; Fredriksson, S. Cytokine detection by antibody-based proximity ligation. Proc. Natl. Acad. Sci. USA 2004, 101, 8420–8424.

[104]

Weibrecht, I.; Lundin, E.; Kiflemariam, S.; Mignardi, M.; Grundberg, I.; Larsson, C.; Koos, B.; Nilsson, M.; Söderberg, O. In situ detection of individual mRNA molecules and protein complexes or post-translational modifications using padlock probes combined with the in situ proximity ligation assay. Nat. Protoc. 2013, 8, 355–372.

[105]

Taylor, S.; Wakem, M.; Dijkman, G.; Alsarraj, M.; Nguyen, M. A practical approach to RT-qPCR-publishing data that conform to the MIQE guidelines. Methods 2010, 50, S1–S5.

[106]

Pabinger, S.; Rödiger, S.; Kriegner, A.; Vierlinger, K.; Weinhäusel, A. A survey of tools for the analysis of quantitative PCR (qPCR) data. Biomol. Detect. Quantif. 2014, 1, 23–33.

[107]

Nolan, T.; Hands, R. E.; Bustin, S. A. Quantification of mRNA using real-time RT-PCR. Nat. Protoc. 2006, 1, 1559–1582.

[108]

Darmanis, S.; Gallant, C. J.; Marinescu, V. D.; Niklasson, M.; Segerman, A.; Flamourakis, G.; Fredriksson, S.; Assarsson, E.; Lundberg, M.; Nelander, S. et al. Simultaneous multiplexed measurement of RNA and proteins in single cells. Cell Rep. 2016, 14, 380–389.

[109]

Genshaft, A. S.; Li, S. Q.; Gallant, C. J.; Darmanis, S.; Prakadan, S. M.; Ziegler, C. G. K.; Lundberg, M.; Fredriksson, S.; Hong, J.; Regev, A. et al. Multiplexed, targeted profiling of single-cell proteomes and transcriptomes in a single reaction. Genome Biol. 2016, 17, 188.

[110]

Ståhlberg, A.; Thomsen, C.; Ruff, D.; Åman, P. Quantitative PCR analysis of DNA, RNAs, and proteins in the same single cell. Clin. Chem. 2012, 58, 1682–1691.

[111]

Albayrak, C.; Jordi, C. A.; Zechner, C.; Lin, J.; Bichsel, C. A.; Khammash, M.; Tay, S. Digital quantification of proteins and mRNA in single mammalian cells. Mol. Cell 2016, 61, 914–924.

[112]

Lin, J.; Jordi, C.; Son, M.; Van Phan, H.; Drayman, N.; Abasiyanik, M. F.; Vistain, L.; Tu, H. L.; Tay, S. Ultra-sensitive digital quantification of proteins and mRNA in single cells. Nat. Commun. 2019, 10, 3544.

[113]

Hindson, C. M.; Chevillet, J. R.; Briggs, H. A.; Gallichotte, E. N.; Ruf, I. K.; Hindson, B. J.; Vessella, R. L.; Tewari, M. Absolute quantification by droplet digital PCR versus analog real-time PCR. Nat. Methods 2013, 10, 1003–1005.

[114]

Hindson, B. J.; Ness, K. D.; Masquelier, D. A.; Belgrader, P.; Heredia, N. J.; Makarewicz, A. J.; Bright, I. J.; Lucero, M. Y.; Hiddessen, A. L.; Legler, T. C. et al. High-throughput droplet digital PCR system for absolute quantitation of DNA copy number. Anal. Chem. 2011, 83, 8604–8610.

[115]

Reimegård, J.; Tarbier, M.; Danielsson, M.; Schuster, J.; Baskaran, S.; Panagiotou, S.; Dahl, N.; Friedländer, M. R.; Gallant, C. J. A combined approach for single-cell mRNA and intracellular protein expression analysis. Commun. Biol. 2021, 4, 624.

[116]

Vistain, L.; Van Phan, H.; Keisham, B.; Jordi, C.; Chen, M. J.; Reddy, S. T.; Tay, S. Quantification of extracellular proteins, protein complexes and mRNAs in single cells by proximity sequencing. Nat. Methods 2022, 19, 1578–1589.

[117]

Barbieri, I.; Kouzarides, T. Role of RNA modifications in cancer. Nat. Rev. Cancer 2020, 20, 303–322.

[118]

Roundtree, I. A.; Evans, M. E.; Pan, T.; He, C. Dynamic RNA modifications in gene expression regulation. Cell 2017, 169, 1187–1200.

[119]

Minguez, P.; Letunic, I.; Parca, L.; Bork, P. PTMcode: A database of known and predicted functional associations between post-translational modifications in proteins. Nucleic Acids Res. 2013, 41, D306–D311.

[120]

Mimitou, E. P.; Lareau, C. A.; Chen, K. Y.; Zorzetto-Fernandes, A. L.; Hao, Y. H.; Takeshima, Y.; Luo, W.; Huang, T. S.; Yeung, B. Z.; Papalexi, E. et al. Scalable, multimodal profiling of chromatin accessibility, gene expression and protein levels in single cells. Nat. Biotechnol. 2021, 39, 1246–1258.

[121]

Swanson, E.; Lord, C.; Reading, J.; Heubeck, A. T.; Genge, P. C.; Thomson, Z.; Weiss, M. D. A.; Li, X. J.; Savage, A. K.; Green, R. R. et al. Simultaneous trimodal single-cell measurement of transcripts, epitopes, and chromatin accessibility using TEA-seq. eLife 2021, 10, e63632.

[122]

Chen, A. F.; Parks, B.; Kathiria, A. S.; Ober-Reynolds, B.; Goronzy, J. J.; Greenleaf, W. J. NEAT-seq: Simultaneous profiling of intra-nuclear proteins, chromatin accessibility and gene expression in single cells. Nat. Methods 2022, 19, 547–553.

[123]

Kukurba, K. R.; Montgomery, S. B. RNA sequencing and analysis. Cold Spring Harb Protoc. 2015, 2015, 951–969.

[124]

Cao, Z. J.; Gao, G. Multi-omics single-cell data integration and regulatory inference with graph-linked embedding. Nat. Biotechnol. 2022, 40, 1458–1466.

[125]

Van Vliet, S.; Dal Co, A.; Winkler, A. R.; Spriewald, S.; Stecher, B.; Ackermann, M. Spatially correlated gene expression in bacterial groups: The role of lineage history, spatial gradients, and cell–cell interactions. Cell Syst. 2018, 6, 496–507.e6.

[126]

Scadden, D. T. Nice neighborhood: Emerging concepts of the stem cell niche. Cell 2014, 157, 41–50.

[127]

Lavin, Y.; Winter, D.; Blecher-Gonen, R.; David, E.; Keren-Shaul, H.; Merad, M.; Jung, S.; Amit, I. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell 2014, 159, 1312–1326.

[128]

Vickovic, S.; Eraslan, G.; Salmén, F.; Klughammer, J.; Stenbeck, L.; Schapiro, D.; Äijö, T.; Bonneau, R.; Bergenstråhle, L.; Navarro, J. F. et al. High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 2019, 16, 987–990.

[129]

Ståhl, P. L.; Salmén, F.; Vickovic, S.; Lundmark, A.; Navarro, J. F.; Magnusson, J.; Giacomello, S.; Asp, M.; Westholm, J. O.; Huss, M. et al. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. Science 2016, 353, 78–82.

[130]

Rodriques, S. G.; Stickels, R. R.; Goeva, A.; Martin, C. A.; Murray, E.; Vanderburg, C. R.; Welch, J.; Chen, L. M.; Chen, F.; Macosko, E. Z. Slide-seq: A scalable technology for measuring genome-wide expression at high spatial resolution. Science 2019, 363, 1463–1467.

[131]

Xing, Q. R.; Cipta, N. O.; Hamashima, K.; Liou, Y. C.; Koh, C. G.; Loh, Y. H. Unraveling heterogeneity in transcriptome and its regulation through single-cell multi-omics technologies. Front. Genet. 2020, 11, 662.

[132]

Vickovic, S.; Lötstedt, B.; Klughammer, J.; Mages, S.; Segerstolpe, Å.; Rozenblatt-Rosen, O.; Regev, A. SM-Omics is an automated platform for high-throughput spatial multi-omics. Nat. Commun. 2022, 13, 795.

[133]

Liu, Y.; Yang, M. Y.; Deng, Y. X.; Su, G.; Enninful, A.; Guo, C. C.; Tebaldi, T.; Zhang, D.; Kim, D.; Bai, Z. L. et al. High-spatial-resolution multi-omics sequencing via deterministic barcoding in tissue. Cell 2020, 183, 1665–1681.e18.

Nano Research
Pages 132-150
Cite this article:
Huang S, Fan Q, Wang Y, et al. Recent progress in co-detection of single-cell transcripts and proteins. Nano Research, 2024, 17(1): 132-150. https://doi.org/10.1007/s12274-023-5924-3
Topics:

544

Views

1

Crossref

0

Web of Science

0

Scopus

0

CSCD

Altmetrics

Received: 05 May 2023
Revised: 11 June 2023
Accepted: 12 June 2023
Published: 01 August 2023
© Tsinghua University Press 2023
Return