Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Glioblastoma (GBM) has been regarded as one of the most deadly and challenging cancers to treat with extremely poor prognosis. The limited efficacy of current chemotherapies might be attributed to the presence of glioma stem cells (GSCs) as well as the difficulties in passing through the blood–brain barrier (BBB) and targeting tumor cells. Tumor-derived exosomes are emerging as novel and promising drug delivery systems. However, great concerns regarding the biosafety and BBB penetrability remain to be addressed. Herein, we have developed a simple and feasible strategy to engineer GBM cell-derived exosomes with improved biosafety termed “Exo@TDPs” to deliver the cargos of chemotherapeutic agents temozolomide (TMZ) and doxorubicin (DOX) into GBM tissues. Exo@TDPs decorated with angiopep-2 (Ang-2) and CD133-targeted peptides improve the capacity to penetrate the BBB and target tumor cells. Both in vitro and in vivo studies demonstrate that Exo@TDPs can cross the BBB, target GBM cells, penetrate into deep tumor parenchyma, and release the therapeutic cargos effectively. Synergistic delivery of TMZ and DOX by Exo@TDPs exerts therapeutic effects to suppress the tumor growth and prolong the survival time of orthotopic syngeneic mouse GBM models. These findings suggest that our developed Exo@TDPs loaded with chemotherapeutic drugs may bring new possibilities for the application of tumor cell-derived exosomes for brain tumor treatment.
Wen, P. Y.; Kesari, S. Malignant gliomas in adults. N. Engl. J. Med. 2008, 359, 492–507.
Alexander, B. M.; Cloughesy, T. F. Adult glioblastoma. J. Clin. Oncol. 2017, 35, 2402–2409.
Lapointe, S.; Perry, A.; Butowski, N. A. Primary brain tumours in adults. Lancet 2018, 392, 432–446.
Stupp, R.; Mason, W. P.; van den Bent, M. J.; Weller, M.; Fisher, B.; Taphoorn, M. J. B.; Belanger, K.; Brandes, A. A.; Marosi, C.; Bogdahn, U. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005, 352, 987–996.
Stupp, R.; Hegi, M. E.; Mason, W. P.; van den Bent, M. J.; Taphoorn, M. J. B.; Janzer, R. C.; Ludwin, S. K.; Allgeier, A.; Fisher, B.; Belanger, K. et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009, 10, 459–466.
Hammond, L. A.; Eckardt, J. R.; Baker, S. D.; Eckhardt, S. G.; Dugan, M.; Forral, K.; Reidenberg, P.; Statkevich, P.; Weiss, G. R.; Rinaldi, D. A. et al. Phase I and pharmacokinetic study of temozolomide on a daily-for-5-days schedule in patients with advanced solid malignancies. J. Clin. Oncol. 1999, 17, 2604.
Ostermann, S.; Csajka, C.; Buclin, T.; Leyvraz, S.; Lejeune, F.; Decosterd, L. A.; Stupp, R. Plasma and cerebrospinal fluid population pharmacokinetics of temozolomide in malignant glioma patients. Clin. Cancer Res. 2004, 10, 3728–3736.
Portnow, J.; Badie, B.; Chen, M. K.; Liu, A.; Blanchard, S.; Synold, T. W. The neuropharmacokinetics of temozolomide in patients with resectable brain tumors: Potential implications for the current approach to chemoradiation. Clin. Cancer Res. 2009, 15, 7092–7098.
Jatyan, R.; Singh, P.; Sahel, D. K.; Karthik, Y. G.; Mittal, A.; Chitkara, D. Polymeric and small molecule-conjugates of temozolomide as improved therapeutic agents for glioblastoma multiforme. J. Control. Release 2022, 350, 494–513.
Chua, S. L.; Rosenthal, M. A.; Wong, S. S.; Ashley, D. M.; Woods, A. M.; Dowling, A.; Cher, L. M. Phase 2 study of temozolomide and Caelyx in patients with recurrent glioblastoma multiforme. Neuro-Oncol. 2004, 6, 38–43.
Ananda, S.; Nowak, A. K.; Cher, L.; Dowling, A.; Brown, C.; Simes, J.; Rosenthal, M. A.; Cooperative Trials Group for Neuro-Oncology (COGNO). Phase 2 trial of temozolomide and pegylated liposomal doxorubicin in the treatment of patients with glioblastoma multiforme following concurrent radiotherapy and chemotherapy. J. Clin. Neurosci. 2011, 18, 1444–1448.
Liu, Y. B.; Chen, L. G. Comparison of clinical effects of temozolomide single agent and combined doxorubicin in the treatment of glioma. J. Healthc. Eng. 2022, 2022, 7995385.
Zhou, Y.; Wang, L.; Wang, C. J.; Wu, Y. L.; Chen, D. M.; Lee, T. H. Potential implications of hydrogen peroxide in the pathogenesis and therapeutic strategies of gliomas. Arch. Pharm. Res. 2020, 43, 187–203.
Yasaswi, P. S.; Shetty, K.; Yadav, K. S. Temozolomide nano enabled medicine: Promises made by the nanocarriers in glioblastoma therapy. J. Control. Release 2021, 336, 549–571.
Wang, X. Y.; Li, C.; Wang, Y. G.; Chen, H. B.; Zhang, X. X.; Luo, C.; Zhou, W. H.; Li, L. L.; Teng, L. S.; Yu, H. J. et al. Smart drug delivery systems for precise cancer therapy. Acta Pharm. Sin. B 2022, 12, 4098–4121.
Batrakova, E. V.; Kim, M. S. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J. Control. Release 2015, 219, 396–405.
Kalluri, R.; LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science 2020, 367, eaau6977.
Yong, T. Y.; Zhang, X. Q.; Bie, N. N.; Zhang, H. B.; Zhang, X. T.; Li, F. Y.; Hakeem, A.; Hu, J.; Gan, L.; Santos, H. A. et al. Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy. Nat. Commun. 2019, 10, 3838.
Qiao, L.; Hu, S. Q.; Huang, K.; Su, T.; Li, Z. H.; Vandergriff, A.; Cores, J.; Dinh, P. U.; Allen, T.; Shen, D. L. et al. Tumor cell-derived exosomes home to their cells of origin and can be used as Trojan horses to deliver cancer drugs. Theranostics 2020, 10, 3474–3487.
Zhang, X.; Zhang, H. B.; Gu, J. M.; Zhang, J. Y.; Shi, H.; Qian, H.; Wang, D. Q.; Xu, W. R.; Pan, J. M.; Santos, H. A. Engineered extracellular vesicles for cancer therapy. Adv. Mater. 2021, 33, 2005709.
Wang, A. Z.; Gu, F.; Zhang, L. F.; Chan, J. M.; Radovic-Moreno, A.; Shaikh, M. R.; Farokhzad, O. C. Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opin. Biol. Ther. 2008, 8, 1063–1070.
Israel, L. L.; Braubach, O.; Galstyan, A.; Chiechi, A.; Shatalova, E. S.; Grodzinski, Z.; Ding, H.; Black, K. L.; Ljubimova, J. Y.; Holler, E. A combination of tri-leucine and angiopep-2 drives a polyanionic polymalic acid nanodrug platform across the blood-brain barrier. ACS Nano 2019, 13, 1253–1271.
Zou, Y.; Sun, X. H.; Wang, Y. B.; Yan, C. N.; Liu, Y. J.; Li, J.; Zhang, D. Y.; Zheng, M.; Chung, R. S.; Shi, B. Y. Single siRNA nanocapsules for effective siRNA brain delivery and glioblastoma treatment. Adv. Mater. 2020, 32, 2000416.
Zhu, Z. C.; Zhai, Y. X.; Hao, Y.; Wang, Q. W.; Han, F.; Zheng, W. L.; Hong, J.; Cui, L. S.; Jin, W.; Ma, S. C. et al. Specific anti-glioma targeted-delivery strategy of engineered small extracellular vesicles dual-functionalised by angiopep-2 and TAT peptides. J. Extracell. Vesicles 2022, 11, e12255.
Singh, S. K.; Hawkins, C.; Clarke, I. D.; Squire, J. A.; Bayani, J.; Hide, T.; Henkelman, R. M.; Cusimano, M. D.; Dirks, P. B. Identification of human brain tumour initiating cells. Nature 2004, 432, 396–401.
Cho, J. H.; Kim, A. R.; Kim, S. H.; Lee, S. J.; Chung, H.; Yoon, M. Y. Development of a novel imaging agent using peptide-coated gold nanoparticles toward brain glioma stem cell marker CD133. Acta Biomater. 2017, 47, 182–192.
Wang, Z. H.; Sun, M. Q.; Li, W.; Fan, L. Y.; Zhou, Y.; Hu, Z. Y. A novel CD133- and EpCAM-targeted liposome with redox-responsive properties capable of synergistically eliminating liver cancer stem cells. Front. Chem. 2020, 8, 649.
Wang, Y. H.; Jia, F.; Wang, Z. H.; Qian, Y. X.; Fan, L. Y.; Gong, H.; Luo, A. Q.; Sun, J.; Hu, Z. Y.; Wang, W. Z. Boosting the theranostic effect of liposomal probes toward prominin-1 through optimized dual-site targeting. Anal. Chem. 2019, 91, 7245–7253.
Wang, W. Z.; Wang, Z. H.; Bu, X. L.; Li, R.; Zhou, M. X.; Hu, Z. Y. Discovering of tumor-targeting peptides using Bi-functional microarray. Adv. Healthc. Mater. 2015, 4, 2802–2808.
Kamerkar, S.; LeBleu, V. S.; Sugimoto, H.; Yang, S. J.; Ruivo, C. F.; Melo, S. A.; Lee, J. J.; Kalluri, R. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 2017, 546, 498–503.
You, L. H.; Wang, J.; Liu, T. Q.; Zhang, Y. L.; Han, X. X.; Wang, T.; Guo, S. S.; Dong, T. Y.; Xu, J. C.; Anderson, G. J. et al. Targeted brain delivery of rabies virus glycoprotein 29-modified deferoxamine-loaded nanoparticles reverses functional deficits in parkinsonian mice. ACS Nano 2018, 12, 4123–4139.
Tönjes, M.; Barbus, S.; Park, Y. J.; Wang, W.; Schlotter, M.; Lindroth, A. M.; Pleier, S. V.; Bai, A. H. C.; Karra, D.; Piro, R. M. et al. BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1. Nat. Med. 2013, 19, 901–908.
Di Tacchio, M.; Macas, J.; Weissenberger, J.; Sommer, K.; Bähr, O.; Steinbach, J. P.; Senft, C.; Seifert, V.; Glas, M.; Herrlinger, U. et al. Tumor vessel normalization, immunostimulatory reprogramming, and improved survival in glioblastoma with combined inhibition of PD-1, angiopoietin-2, and VEGF. Cancer Immunol. Res. 2019, 7, 1910–1927.
Fang, R. P.; Chen, X.; Zhang, S. C.; Shi, H.; Ye, Y. Q.; Shi, H. L.; Zou, Z. Y.; Li, P.; Guo, Q.; Ma, L. et al. EGFR/SRC/ERK-stabilized YTHDF2 promotes cholesterol dysregulation and invasive growth of glioblastoma. Nat. Commun. 2021, 12, 177.
Jiang, Y.; Yang, W. J.; Zhang, J.; Meng, F. H.; Zhong, Z. Y. Protein toxin chaperoned by LRP-1-targeted virus-mimicking vesicles induces high-efficiency glioblastoma therapy in vivo. Adv. Mater. 2018, 30, 1800316.
Wang, W. Z.; Ma, Z. R.; Zhu, S. J.; Wan, H.; Yue, J. Y.; Ma, H. L.; Ma, R.; Yang, Q. L.; Wang, Z. H.; Li, Q. et al. Molecular cancer imaging in the second near-infrared window using a renal-excreted NIR-II fluorophore-peptide probe. Adv. Mater. 2018, 30, 1800106.
Naghibi, S.; Sabouri, S.; Hong, Y. N.; Jia, Z. F.; Tang, Y. H. Brush-like polymer prodrug with aggregation-induced emission features for precise intracellular drug tracking. Biosensors 2022, 12, 373.
Zhou, Y.; Guo, Y. X.; Chen, L. F.; Zhang, X. L.; Wu, W.; Yang, Z. M.; Li, X. J.; Wang, Y. Z.; Hu, Z. Y.; Wang, Z. H. Co-delivery of phagocytosis checkpoint and STING agonist by a Trojan horse nanocapsule for orthotopic glioma immunotherapy. Theranostics 2022, 12, 5488–5503.
Zhao, Z.; Zhang, K. N.; Wang, Q. W.; Li, G. Z.; Zeng, F.; Zhang, Y.; Wu, F.; Chai, R. C.; Wang, Z.; Zhang, C. B. et al. Chinese Glioma Genome Atlas (CGGA): A comprehensive resource with functional genomic data from chinese glioma patients. Genom. Proteom. Bioinf. 2021, 19, 1–12.
Qian, R. J.; Jing, B. P.; Jiang, D. W.; Gai, Y. K.; Zhu, Z. Y.; Huang, X. J.; Gao, Y.; Lan, X. L.; An, R. Multi-antitumor therapy and synchronous imaging monitoring based on exosome. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 2668–2681.
Paskeh, M. D. A.; Entezari, M.; Mirzaei, S.; Zabolian, A.; Saleki, H.; Naghdi, M. J.; Sabet, S.; Khoshbakht, M. A.; Hashemi, M.; Hushmandi, K. et al. Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. J. Hematol. Oncol. 2022, 15, 83.
Guo, Y. H.; Hu, G. W.; Xia, Y. G.; Li, H. Y.; Yuan, J.; Zhang, J. T.; Chen, Y.; Guo, H.; Yang, Y. L.; Wang, Y. et al. Eliminating the original cargos of glioblastoma cell-derived small extracellular vesicles for efficient drug delivery to glioblastoma with improved biosafety. Bioact. Mater. 2022, 16, 204–217.
Khan, I.; Baig, M. H.; Mahfooz, S.; Imran, M. A.; Khan, M. I.; Dong, J. J.; Cho, J. Y.; Hatiboglu, M. A. Nanomedicine for glioblastoma: Progress and future prospects. Semin. Cancer Biol. 2022, 86, 172–186.
Zhao, M. N.; van Straten, D.; Broekman, M. L. D.; Préat, V.; Schiffelers, R. M. Nanocarrier-based drug combination therapy for glioblastoma. Theranostics 2020, 10, 1355–1372.
Kim, J. S.; Shin, D. H.; Kim, J. S. Dual-targeting immunoliposomes using angiopep-2 and CD133 antibody for glioblastoma stem cells. J. Control. Release 2018, 269, 245–257.
Guo, M. F.; Wu, F.; Hu, G. R.; Chen, L.; Xu, J. J.; Xu, P. W.; Wang, X.; Li, Y. M.; Liu, S. Q.; Zhang, S. et al. Autologous tumor cell-derived microparticle-based targeted chemotherapy in lung cancer patients with malignant pleural effusion. Sci. Transl. Med. 2019, 11, eaat5690.
Villa, A.; Garofalo, M.; Crescenti, D.; Rizzi, N.; Brunialti, E.; Vingiani, A.; Belotti, P.; Sposito, C.; Franzè, S.; Cilurzo, F. et al. Transplantation of autologous extracellular vesicles for cancer-specific targeting. Theranostics 2021, 11, 2034–2047.
Wang, Y. M.; Xu, X. Y.; Chen, X. Y.; Li, J. S. Multifunctional biomedical materials derived from biological membranes. Adv. Mater. 2022, 34, 2107406.
Guo, X.; Sui, R.; Piao, H. Z. Tumor-derived small extracellular vesicles: Potential roles and mechanism in glioma. J. Nanobiotechnol. 2022, 20, 383.
Ruan, S. B.; Greenberg, Z.; Pan, X. S.; Zhuang, P.; Erwin, N.; He, M. Extracellular vesicles as an advanced delivery biomaterial for precision cancer immunotherapy. Adv. Healthc. Mater. 2022, 11, 2100650.
Zhang, Q. P.; Xu, B. C.; Chen, J. L.; Chen, F. R.; Chen, Z. P. Clinical significance of CD133 and Nestin in astrocytic tumor: The correlation with pathological grade and survival. J. Clin. Lab. Anal. 2020, 34, e23082.