AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Glioblastoma cell-derived exosomes functionalized with peptides as efficient nanocarriers for synergistic chemotherapy of glioblastoma with improved biosafety

Ying Zhou1,2,§Long Wang1,2,§Lufei Chen1,§Wei Wu1,§Zhimin Yang1,2Yuanzhuo Wang2,3Anqi Wang1,2Sujun Jiang1,2Xuzhen Qin4( )Zucheng Ye1( )Zhiyuan Hu1,2,3,5( )Zihua Wang1,2( )
Fujian Key Laboratory of Translational Research in Cancer and Neurodegenerative Diseases, Fujian Provincial Key Laboratory of Brain Aging and Neurodegenerative Diseases, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
School of Nanoscience and Technology, Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
Department of Laboratory Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College Hospital, Beijing 100730, China
School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430205, China

§ Ying Zhou, Long Wang, Lufei Chen, and Wei Wu contributed equally to this work.

Show Author Information

Graphical Abstract

An effective strategy to engineer glioblastoma (GBM) cell-derived exosomes as biosafe nanocarriers for GBM targeted chemotherapy was developed, offering new possibilities for the application of tumor cell-derived exosomes for brain tumor treatment.

Abstract

Glioblastoma (GBM) has been regarded as one of the most deadly and challenging cancers to treat with extremely poor prognosis. The limited efficacy of current chemotherapies might be attributed to the presence of glioma stem cells (GSCs) as well as the difficulties in passing through the blood–brain barrier (BBB) and targeting tumor cells. Tumor-derived exosomes are emerging as novel and promising drug delivery systems. However, great concerns regarding the biosafety and BBB penetrability remain to be addressed. Herein, we have developed a simple and feasible strategy to engineer GBM cell-derived exosomes with improved biosafety termed “Exo@TDPs” to deliver the cargos of chemotherapeutic agents temozolomide (TMZ) and doxorubicin (DOX) into GBM tissues. Exo@TDPs decorated with angiopep-2 (Ang-2) and CD133-targeted peptides improve the capacity to penetrate the BBB and target tumor cells. Both in vitro and in vivo studies demonstrate that Exo@TDPs can cross the BBB, target GBM cells, penetrate into deep tumor parenchyma, and release the therapeutic cargos effectively. Synergistic delivery of TMZ and DOX by Exo@TDPs exerts therapeutic effects to suppress the tumor growth and prolong the survival time of orthotopic syngeneic mouse GBM models. These findings suggest that our developed Exo@TDPs loaded with chemotherapeutic drugs may bring new possibilities for the application of tumor cell-derived exosomes for brain tumor treatment.

Electronic Supplementary Material

Download File(s)
12274_2023_5921_MOESM1_ESM.pdf (5.1 MB)

References

[1]

Wen, P. Y.; Kesari, S. Malignant gliomas in adults. N. Engl. J. Med. 2008, 359, 492–507.

[2]

Alexander, B. M.; Cloughesy, T. F. Adult glioblastoma. J. Clin. Oncol. 2017, 35, 2402–2409.

[3]

Lapointe, S.; Perry, A.; Butowski, N. A. Primary brain tumours in adults. Lancet 2018, 392, 432–446.

[4]

Stupp, R.; Mason, W. P.; van den Bent, M. J.; Weller, M.; Fisher, B.; Taphoorn, M. J. B.; Belanger, K.; Brandes, A. A.; Marosi, C.; Bogdahn, U. et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N. Engl. J. Med. 2005, 352, 987–996.

[5]

Stupp, R.; Hegi, M. E.; Mason, W. P.; van den Bent, M. J.; Taphoorn, M. J. B.; Janzer, R. C.; Ludwin, S. K.; Allgeier, A.; Fisher, B.; Belanger, K. et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009, 10, 459–466.

[6]

Hammond, L. A.; Eckardt, J. R.; Baker, S. D.; Eckhardt, S. G.; Dugan, M.; Forral, K.; Reidenberg, P.; Statkevich, P.; Weiss, G. R.; Rinaldi, D. A. et al. Phase I and pharmacokinetic study of temozolomide on a daily-for-5-days schedule in patients with advanced solid malignancies. J. Clin. Oncol. 1999, 17, 2604.

[7]

Ostermann, S.; Csajka, C.; Buclin, T.; Leyvraz, S.; Lejeune, F.; Decosterd, L. A.; Stupp, R. Plasma and cerebrospinal fluid population pharmacokinetics of temozolomide in malignant glioma patients. Clin. Cancer Res. 2004, 10, 3728–3736.

[8]

Portnow, J.; Badie, B.; Chen, M. K.; Liu, A.; Blanchard, S.; Synold, T. W. The neuropharmacokinetics of temozolomide in patients with resectable brain tumors: Potential implications for the current approach to chemoradiation. Clin. Cancer Res. 2009, 15, 7092–7098.

[9]

Jatyan, R.; Singh, P.; Sahel, D. K.; Karthik, Y. G.; Mittal, A.; Chitkara, D. Polymeric and small molecule-conjugates of temozolomide as improved therapeutic agents for glioblastoma multiforme. J. Control. Release 2022, 350, 494–513.

[10]

Chua, S. L.; Rosenthal, M. A.; Wong, S. S.; Ashley, D. M.; Woods, A. M.; Dowling, A.; Cher, L. M. Phase 2 study of temozolomide and Caelyx in patients with recurrent glioblastoma multiforme. Neuro-Oncol. 2004, 6, 38–43.

[11]

Ananda, S.; Nowak, A. K.; Cher, L.; Dowling, A.; Brown, C.; Simes, J.; Rosenthal, M. A.; Cooperative Trials Group for Neuro-Oncology (COGNO). Phase 2 trial of temozolomide and pegylated liposomal doxorubicin in the treatment of patients with glioblastoma multiforme following concurrent radiotherapy and chemotherapy. J. Clin. Neurosci. 2011, 18, 1444–1448.

[12]

Liu, Y. B.; Chen, L. G. Comparison of clinical effects of temozolomide single agent and combined doxorubicin in the treatment of glioma. J. Healthc. Eng. 2022, 2022, 7995385.

[13]

Zhou, Y.; Wang, L.; Wang, C. J.; Wu, Y. L.; Chen, D. M.; Lee, T. H. Potential implications of hydrogen peroxide in the pathogenesis and therapeutic strategies of gliomas. Arch. Pharm. Res. 2020, 43, 187–203.

[14]

Yasaswi, P. S.; Shetty, K.; Yadav, K. S. Temozolomide nano enabled medicine: Promises made by the nanocarriers in glioblastoma therapy. J. Control. Release 2021, 336, 549–571.

[15]

Wang, X. Y.; Li, C.; Wang, Y. G.; Chen, H. B.; Zhang, X. X.; Luo, C.; Zhou, W. H.; Li, L. L.; Teng, L. S.; Yu, H. J. et al. Smart drug delivery systems for precise cancer therapy. Acta Pharm. Sin. B 2022, 12, 4098–4121.

[16]
Zhang, Y. F.; Cheng, Q.; Xue, Y. H.; Yao, K.; Syeda, Z. M.; Xu, J.; Wu, J. H.; Wang, Z. J.; Tang, L. G.; Mu, Q. C. LAT1 targeted brain delivery of temozolomide and sorafenib for effective glioma therapy. Nano Res., in press, https://doi.org/10.1007/s12274-023-5568-3.
[17]

Batrakova, E. V.; Kim, M. S. Using exosomes, naturally-equipped nanocarriers, for drug delivery. J. Control. Release 2015, 219, 396–405.

[18]

Kalluri, R.; LeBleu, V. S. The biology, function, and biomedical applications of exosomes. Science 2020, 367, eaau6977.

[19]

Yong, T. Y.; Zhang, X. Q.; Bie, N. N.; Zhang, H. B.; Zhang, X. T.; Li, F. Y.; Hakeem, A.; Hu, J.; Gan, L.; Santos, H. A. et al. Tumor exosome-based nanoparticles are efficient drug carriers for chemotherapy. Nat. Commun. 2019, 10, 3838.

[20]

Qiao, L.; Hu, S. Q.; Huang, K.; Su, T.; Li, Z. H.; Vandergriff, A.; Cores, J.; Dinh, P. U.; Allen, T.; Shen, D. L. et al. Tumor cell-derived exosomes home to their cells of origin and can be used as Trojan horses to deliver cancer drugs. Theranostics 2020, 10, 3474–3487.

[21]

Zhang, X.; Zhang, H. B.; Gu, J. M.; Zhang, J. Y.; Shi, H.; Qian, H.; Wang, D. Q.; Xu, W. R.; Pan, J. M.; Santos, H. A. Engineered extracellular vesicles for cancer therapy. Adv. Mater. 2021, 33, 2005709.

[22]

Wang, A. Z.; Gu, F.; Zhang, L. F.; Chan, J. M.; Radovic-Moreno, A.; Shaikh, M. R.; Farokhzad, O. C. Biofunctionalized targeted nanoparticles for therapeutic applications. Expert Opin. Biol. Ther. 2008, 8, 1063–1070.

[23]

Israel, L. L.; Braubach, O.; Galstyan, A.; Chiechi, A.; Shatalova, E. S.; Grodzinski, Z.; Ding, H.; Black, K. L.; Ljubimova, J. Y.; Holler, E. A combination of tri-leucine and angiopep-2 drives a polyanionic polymalic acid nanodrug platform across the blood-brain barrier. ACS Nano 2019, 13, 1253–1271.

[24]

Zou, Y.; Sun, X. H.; Wang, Y. B.; Yan, C. N.; Liu, Y. J.; Li, J.; Zhang, D. Y.; Zheng, M.; Chung, R. S.; Shi, B. Y. Single siRNA nanocapsules for effective siRNA brain delivery and glioblastoma treatment. Adv. Mater. 2020, 32, 2000416.

[25]

Zhu, Z. C.; Zhai, Y. X.; Hao, Y.; Wang, Q. W.; Han, F.; Zheng, W. L.; Hong, J.; Cui, L. S.; Jin, W.; Ma, S. C. et al. Specific anti-glioma targeted-delivery strategy of engineered small extracellular vesicles dual-functionalised by angiopep-2 and TAT peptides. J. Extracell. Vesicles 2022, 11, e12255.

[26]

Singh, S. K.; Hawkins, C.; Clarke, I. D.; Squire, J. A.; Bayani, J.; Hide, T.; Henkelman, R. M.; Cusimano, M. D.; Dirks, P. B. Identification of human brain tumour initiating cells. Nature 2004, 432, 396–401.

[27]

Cho, J. H.; Kim, A. R.; Kim, S. H.; Lee, S. J.; Chung, H.; Yoon, M. Y. Development of a novel imaging agent using peptide-coated gold nanoparticles toward brain glioma stem cell marker CD133. Acta Biomater. 2017, 47, 182–192.

[28]

Wang, Z. H.; Sun, M. Q.; Li, W.; Fan, L. Y.; Zhou, Y.; Hu, Z. Y. A novel CD133- and EpCAM-targeted liposome with redox-responsive properties capable of synergistically eliminating liver cancer stem cells. Front. Chem. 2020, 8, 649.

[29]

Wang, Y. H.; Jia, F.; Wang, Z. H.; Qian, Y. X.; Fan, L. Y.; Gong, H.; Luo, A. Q.; Sun, J.; Hu, Z. Y.; Wang, W. Z. Boosting the theranostic effect of liposomal probes toward prominin-1 through optimized dual-site targeting. Anal. Chem. 2019, 91, 7245–7253.

[30]

Wang, W. Z.; Wang, Z. H.; Bu, X. L.; Li, R.; Zhou, M. X.; Hu, Z. Y. Discovering of tumor-targeting peptides using Bi-functional microarray. Adv. Healthc. Mater. 2015, 4, 2802–2808.

[31]

Kamerkar, S.; LeBleu, V. S.; Sugimoto, H.; Yang, S. J.; Ruivo, C. F.; Melo, S. A.; Lee, J. J.; Kalluri, R. Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature 2017, 546, 498–503.

[32]

You, L. H.; Wang, J.; Liu, T. Q.; Zhang, Y. L.; Han, X. X.; Wang, T.; Guo, S. S.; Dong, T. Y.; Xu, J. C.; Anderson, G. J. et al. Targeted brain delivery of rabies virus glycoprotein 29-modified deferoxamine-loaded nanoparticles reverses functional deficits in parkinsonian mice. ACS Nano 2018, 12, 4123–4139.

[33]

Tönjes, M.; Barbus, S.; Park, Y. J.; Wang, W.; Schlotter, M.; Lindroth, A. M.; Pleier, S. V.; Bai, A. H. C.; Karra, D.; Piro, R. M. et al. BCAT1 promotes cell proliferation through amino acid catabolism in gliomas carrying wild-type IDH1. Nat. Med. 2013, 19, 901–908.

[34]

Di Tacchio, M.; Macas, J.; Weissenberger, J.; Sommer, K.; Bähr, O.; Steinbach, J. P.; Senft, C.; Seifert, V.; Glas, M.; Herrlinger, U. et al. Tumor vessel normalization, immunostimulatory reprogramming, and improved survival in glioblastoma with combined inhibition of PD-1, angiopoietin-2, and VEGF. Cancer Immunol. Res. 2019, 7, 1910–1927.

[35]

Fang, R. P.; Chen, X.; Zhang, S. C.; Shi, H.; Ye, Y. Q.; Shi, H. L.; Zou, Z. Y.; Li, P.; Guo, Q.; Ma, L. et al. EGFR/SRC/ERK-stabilized YTHDF2 promotes cholesterol dysregulation and invasive growth of glioblastoma. Nat. Commun. 2021, 12, 177.

[36]

Jiang, Y.; Yang, W. J.; Zhang, J.; Meng, F. H.; Zhong, Z. Y. Protein toxin chaperoned by LRP-1-targeted virus-mimicking vesicles induces high-efficiency glioblastoma therapy in vivo. Adv. Mater. 2018, 30, 1800316.

[37]

Wang, W. Z.; Ma, Z. R.; Zhu, S. J.; Wan, H.; Yue, J. Y.; Ma, H. L.; Ma, R.; Yang, Q. L.; Wang, Z. H.; Li, Q. et al. Molecular cancer imaging in the second near-infrared window using a renal-excreted NIR-II fluorophore-peptide probe. Adv. Mater. 2018, 30, 1800106.

[38]

Naghibi, S.; Sabouri, S.; Hong, Y. N.; Jia, Z. F.; Tang, Y. H. Brush-like polymer prodrug with aggregation-induced emission features for precise intracellular drug tracking. Biosensors 2022, 12, 373.

[39]

Zhou, Y.; Guo, Y. X.; Chen, L. F.; Zhang, X. L.; Wu, W.; Yang, Z. M.; Li, X. J.; Wang, Y. Z.; Hu, Z. Y.; Wang, Z. H. Co-delivery of phagocytosis checkpoint and STING agonist by a Trojan horse nanocapsule for orthotopic glioma immunotherapy. Theranostics 2022, 12, 5488–5503.

[40]

Zhao, Z.; Zhang, K. N.; Wang, Q. W.; Li, G. Z.; Zeng, F.; Zhang, Y.; Wu, F.; Chai, R. C.; Wang, Z.; Zhang, C. B. et al. Chinese Glioma Genome Atlas (CGGA): A comprehensive resource with functional genomic data from chinese glioma patients. Genom. Proteom. Bioinf. 2021, 19, 1–12.

[41]

Qian, R. J.; Jing, B. P.; Jiang, D. W.; Gai, Y. K.; Zhu, Z. Y.; Huang, X. J.; Gao, Y.; Lan, X. L.; An, R. Multi-antitumor therapy and synchronous imaging monitoring based on exosome. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 2668–2681.

[42]

Paskeh, M. D. A.; Entezari, M.; Mirzaei, S.; Zabolian, A.; Saleki, H.; Naghdi, M. J.; Sabet, S.; Khoshbakht, M. A.; Hashemi, M.; Hushmandi, K. et al. Emerging role of exosomes in cancer progression and tumor microenvironment remodeling. J. Hematol. Oncol. 2022, 15, 83.

[43]

Guo, Y. H.; Hu, G. W.; Xia, Y. G.; Li, H. Y.; Yuan, J.; Zhang, J. T.; Chen, Y.; Guo, H.; Yang, Y. L.; Wang, Y. et al. Eliminating the original cargos of glioblastoma cell-derived small extracellular vesicles for efficient drug delivery to glioblastoma with improved biosafety. Bioact. Mater. 2022, 16, 204–217.

[44]

Khan, I.; Baig, M. H.; Mahfooz, S.; Imran, M. A.; Khan, M. I.; Dong, J. J.; Cho, J. Y.; Hatiboglu, M. A. Nanomedicine for glioblastoma: Progress and future prospects. Semin. Cancer Biol. 2022, 86, 172–186.

[45]

Zhao, M. N.; van Straten, D.; Broekman, M. L. D.; Préat, V.; Schiffelers, R. M. Nanocarrier-based drug combination therapy for glioblastoma. Theranostics 2020, 10, 1355–1372.

[46]

Kim, J. S.; Shin, D. H.; Kim, J. S. Dual-targeting immunoliposomes using angiopep-2 and CD133 antibody for glioblastoma stem cells. J. Control. Release 2018, 269, 245–257.

[47]

Guo, M. F.; Wu, F.; Hu, G. R.; Chen, L.; Xu, J. J.; Xu, P. W.; Wang, X.; Li, Y. M.; Liu, S. Q.; Zhang, S. et al. Autologous tumor cell-derived microparticle-based targeted chemotherapy in lung cancer patients with malignant pleural effusion. Sci. Transl. Med. 2019, 11, eaat5690.

[48]

Villa, A.; Garofalo, M.; Crescenti, D.; Rizzi, N.; Brunialti, E.; Vingiani, A.; Belotti, P.; Sposito, C.; Franzè, S.; Cilurzo, F. et al. Transplantation of autologous extracellular vesicles for cancer-specific targeting. Theranostics 2021, 11, 2034–2047.

[49]

Wang, Y. M.; Xu, X. Y.; Chen, X. Y.; Li, J. S. Multifunctional biomedical materials derived from biological membranes. Adv. Mater. 2022, 34, 2107406.

[50]

Guo, X.; Sui, R.; Piao, H. Z. Tumor-derived small extracellular vesicles: Potential roles and mechanism in glioma. J. Nanobiotechnol. 2022, 20, 383.

[51]

Ruan, S. B.; Greenberg, Z.; Pan, X. S.; Zhuang, P.; Erwin, N.; He, M. Extracellular vesicles as an advanced delivery biomaterial for precision cancer immunotherapy. Adv. Healthc. Mater. 2022, 11, 2100650.

[52]

Zhang, Q. P.; Xu, B. C.; Chen, J. L.; Chen, F. R.; Chen, Z. P. Clinical significance of CD133 and Nestin in astrocytic tumor: The correlation with pathological grade and survival. J. Clin. Lab. Anal. 2020, 34, e23082.

Nano Research
Pages 13283-13293
Cite this article:
Zhou Y, Wang L, Chen L, et al. Glioblastoma cell-derived exosomes functionalized with peptides as efficient nanocarriers for synergistic chemotherapy of glioblastoma with improved biosafety. Nano Research, 2023, 16(12): 13283-13293. https://doi.org/10.1007/s12274-023-5921-6
Topics:
Part of a topical collection:

834

Views

13

Crossref

14

Web of Science

14

Scopus

0

CSCD

Altmetrics

Received: 31 March 2023
Revised: 10 June 2023
Accepted: 12 June 2023
Published: 05 July 2023
© Tsinghua University Press 2023
Return