Journal Home > Volume 16 , Issue 7

The microenvironment of hypoxia and immune-cold limits the therapeutic outcomes of immune checkpoint blockade (ICB) therapy in solid tumors. It is important and imperative to search new strategies to relieve tumor hypoxia and reverse immunosuppression of cold tumors. In this study, the oxygen (O2) self-replenishing nano-enabled coordination platform can be used to induce potent antitumor immune response in cold tumors. The nanoplatform can produce O2 by catalyzing hydrogen peroxide (H2O2) in tumor site effectively, showing excellent photodynamic therapy (PDT) performance. Meanwhile, it can further trigger immunogenic cell death (ICD), enhance T cell infiltration, reverse immunosuppression, and reprogram the immune-cold tumor microenvironment. In vitro and in vivo results demonstrate that the nanoplatform has potential for eradicating tumors and long-term immunological memory effect. The nanoplatform opens up a strategy for reprograming the immunosuppressive microenvironment in cold tumors.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ferric iron coordinated cisplatin prodrug reprograms the immune-cold tumor microenvironment through tumor hypoxia relief for enhanced cancer photodynamic-immunotherapy

Show Author's information Yinchu Ma1,2,§( )Yingli Luo1,§Xinfeng Tang3Wei Jiang3Hongjun Li4( )Jilong Wang5( )
Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
Zhuhai Interventional Medical Center, Zhuhai Precision Medical Center, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai 519000, China
School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
Joint Centre of Translational Medicine, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China

§ Yinchu Ma and Yingli Luo contributed equally to this work.

Abstract

The microenvironment of hypoxia and immune-cold limits the therapeutic outcomes of immune checkpoint blockade (ICB) therapy in solid tumors. It is important and imperative to search new strategies to relieve tumor hypoxia and reverse immunosuppression of cold tumors. In this study, the oxygen (O2) self-replenishing nano-enabled coordination platform can be used to induce potent antitumor immune response in cold tumors. The nanoplatform can produce O2 by catalyzing hydrogen peroxide (H2O2) in tumor site effectively, showing excellent photodynamic therapy (PDT) performance. Meanwhile, it can further trigger immunogenic cell death (ICD), enhance T cell infiltration, reverse immunosuppression, and reprogram the immune-cold tumor microenvironment. In vitro and in vivo results demonstrate that the nanoplatform has potential for eradicating tumors and long-term immunological memory effect. The nanoplatform opens up a strategy for reprograming the immunosuppressive microenvironment in cold tumors.

Keywords: immune response, immunogenic cell death, long-term immunological memory effect, reprograming cold tumor microenvironment

References(57)

[1]

Chowell, D.; Yoo, S. K.; Valero, C.; Pastore, A.; Krishna, C.; Lee, M.; Hoen, D.; Shi, H. Y.; Kelly, D. W.; Patel, N. et al. Improved prediction of immune checkpoint blockade efficacy across multiple cancer types. Nat. Biotechnol. 2022, 40, 499–506.

[2]

Huang, A. C.; Zappasodi, R. A decade of checkpoint blockade immunotherapy in melanoma: Understanding the molecular basis for immune sensitivity and resistance. Nat. Immunol. 2022, 23, 660–670.

[3]

Anagnostou, V.; Bardelli, A.; Chan, T. A.; Turajlic, S. The status of tumor mutational burden and immunotherapy. Nat. Cancer 2022, 3, 652–656.

[4]

de Miguel, M.; Calvo, E. Clinical challenges of immune checkpoint inhibitors. Cancer Cell 2020, 38, 326–333.

[5]

Kalbasi, A.; Ribas, A. Tumour-intrinsic resistance to immune checkpoint blockade. Nat. Rev. Immunol. 2020, 20, 25–39.

[6]

Li, L.; Li, Y. C.; Yang, C. H.; Radford, D. C.; Wang, J. W.; Janát-Amsbury, M.; Kopeček, J.; Yang, J. Y. Inhibition of immunosuppressive tumors by polymer-assisted inductions of immunogenic cell death and multivalent PD-L1 crosslinking. Adv. Funct. Mater. 2020, 30, 1908961.

[7]

Galon, J.; Bruni, D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat. Rev. Drug Discov. 2019, 18, 197–218.

[8]

Yang, Z.; Gao, D.; Guo, X. Q.; Jin, L.; Zheng, J. J.; Wang, Y.; Chen, S. J.; Zheng, X. W.; Zeng, L.; Guo, M. et al. Fighting immune cold and reprogramming immunosuppressive tumor microenvironment with red blood cell membrane-camouflaged nanobullets. ACS Nano 2020, 14, 17442–17457.

[9]

Li, Y. H.; Liu, X. H.; Zhang, X.; Pan, W.; Li, N.; Tang, B. Immune cycle-based strategies for cancer immunotherapy. Adv. Funct. Mater. 2021, 31, 2107540.

[10]

Haanen, J. B. A. G. Converting cold into hot tumors by combining immunotherapies. Cell 2017, 170, 1055–1056.

[11]

Chen, G. J.; Chen, Z. T.; Wen, D.; Wang, Z. J.; Li, H. J.; Zeng, Y.; Dotti, G.; Wirz, R. E.; Gu, Z. Transdermal cold atmospheric plasma-mediated immune checkpoint blockade therapy. Proc. Natl. Acad. Sci. USA 2020, 117, 3687–3692.

[12]

Wang, C.; Wang, J. Q.; Zhang, X. D.; Yu, S. J.; Wen, D.; Hu, Q. Y.; Ye, Y. Q.; Bomba, H.; Hu, X. L.; Liu, Z. et al. In situ formed reactive oxygen species-responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy. Sci. Transl. Med. 2018, 10, eaan3682.

[13]

Galluzzi, L.; Buqué, A.; Kepp, O.; Zitvogel, L.; Kroemer, G. Immunogenic cell death in cancer and infectious disease. Nat. Rev. Immunol. 2017, 17, 97–111.

[14]

Xie, L. S.; Wang, G. H.; Sang, W.; Li, J.; Zhang, Z.; Li, W. X.; Yan, J.; Zhao, Q.; Dai, Y. L. Phenolic immunogenic cell death nanoinducer for sensitizing tumor to PD-1 checkpoint blockade immunotherapy. Biomaterials 2021, 269, 120638.

[15]

Yang, W. J.; Zhang, F. W.; Deng, H. Z.; Lin, L. S.; Wang, S.; Kang, F.; Yu, G. C.; Lau, J.; Tian, R.; Zhang, M. R. et al. Smart nanovesicle-mediated immunogenic cell death through tumor microenvironment modulation for effective photodynamic immunotherapy. ACS Nano 2020, 14, 620–631.

[16]

Li, J. B.; Cai, W. X.; Yu, J.; Zhou, S.; Li, X. L.; He, Z. G.; Ouyang, D. F.; Liu, H. Z.; Wang, Y. J. Autophagy inhibition recovers deficient ICD-based cancer immunotherapy. Biomaterials 2022, 287, 121651.

[17]

Jin, L. J.; Shen, S.; Huang, Y. J.; Li, D. D.; Yang, X. Z. Corn-like Au/Ag nanorod-mediated NIR-II photothermal/photodynamic therapy potentiates immune checkpoint antibody efficacy by reprogramming the cold tumor microenvironment. Biomaterials 2021, 268, 120582.

[18]

Tang, H. L.; Xu, X. J.; Chen, Y. X.; Xin, H. H.; Wan, T.; Li, B. W.; Pan, H. M.; Li, D.; Ping, Y. Reprogramming the tumor microenvironment through second-near-infrared-window photothermal genome editing of PD-L1 mediated by supramolecular gold nanorods for enhanced cancer immunotherapy. Adv. Mater. 2021, 33, 2006003.

[19]

Ding, F. X.; Li, F.; Tang, D. S.; Wang, B.; Liu, J. Y.; Mao, X. Y.; Yin, J. Y.; Xiao, H. H.; Wang, J.; Liu, Z. Q. Restoration of the immunogenicity of tumor cells for enhanced cancer therapy via nanoparticle-mediated copper chaperone inhibition. Angew. Chem., Int. Ed. 2022, 61, e202203546.

[20]

Jiang, W.; Wang, L.; Wang, Q.; Zhou, H.; Ma, Y. C.; Dong, W.; Xu, H. X.; Wang, Y. C. Reversing immunosuppression in hypoxic and immune-cold tumors with ultrathin oxygen self-supplementing polymer nanosheets under near infrared light irradiation. Adv. Funct. Mater. 2021, 31, 2100354.

[21]

Ma, Y. C.; Zhang, Y. X.; Li, X. Q.; Zhao, Y. Y.; Li, M.; Jiang, W.; Tang, X. F.; Dou, J. X.; Lu, L. G.; Wang, F. et al. Near-infrared II phototherapy induces deep tissue immunogenic cell death and potentiates cancer immunotherapy. ACS Nano 2019, 13, 11967–11980.

[22]

Sun, S.; Chen, Q.; Tang, Z. D.; Liu, C.; Li, Z. J.; Wu, A. G.; Lin, H. W. Tumor microenvironment stimuli-responsive fluorescence imaging and synergistic cancer therapy by carbon-dot-Cu2+ nanoassemblies. Angew. Chem., Int. Ed. 2020, 59, 21041–21048.

[23]

Wang, Y. X.; Ding, Y. W.; Yao, D.; Dong, H.; Ji, C. W.; Wu, J. H.; Hu, Y. Q.; Yuan, A. H. Copper-based nanoscale coordination polymers augmented tumor radioimmunotherapy for immunogenic cell death induction and T-cell infiltration. Small 2021, 17, 2006231.

[24]

Zhao, L. P.; Zheng, R. R.; Liu, L. S.; Chen, X. Y.; Guan, R. T.; Yang, N.; Chen, A. L.; Yu, X. Y.; Cheng, H.; Li, S. Y. Self-delivery oxidative stress amplifier for chemotherapy sensitized immunotherapy. Biomaterials 2021, 275, 120970.

[25]

Xie, Q.; Li, Z.; Liu, Y.; Zhang, D. W.; Su, M.; Niitsu, H.; Lu, Y. Y.; Coffey, R. J.; Bai, M. F. Translocator protein-targeted photodynamic therapy for direct and abscopal immunogenic cell death in colorectal cancer. Acta Biomater. 2021, 134, 716–729.

[26]

Liu, H. J.; Hu, Y.; Sun, Y. J.; Wan, C.; Zhang, Z. J.; Dai, X. M.; Lin, Z. H.; He, Q. Y.; Yang, Z.; Huang, P. et al. Co-delivery of bee venom melittin and a photosensitizer with an organic-inorganic hybrid nanocarrier for photodynamic therapy and immunotherapy. ACS Nano 2019, 13, 12638–12652.

[27]

Jin, F. Y.; Qi, J.; Liu, D.; You, Y. C.; Shu, G. F.; Du, Y.; Wang, J.; Xu, X. L.; Ying, X. Y.; Ji, J. S. et al. Cancer-cell-biomimetic Upconversion nanoparticles combining chemo-photodynamic therapy and CD73 blockade for metastatic triple-negative breast cancer. J. Control. Release 2021, 337, 90–104.

[28]

Wei, D. S.; Chen, Y. B.; Huang, Y.; Li, P.; Zhao, Y.; Zhang, X. H.; Wan, J.; Yin, X. Y.; Liu, T.; Yin, J. Y. et al. NIR-light triggered dual-cascade targeting core-shell nanoparticles enhanced photodynamic therapy and immunotherapy. Nano Today 2021, 41, 101288.

[29]

Liu, X.; Liu, Y.; Li, X.; Huang, J. X.; Guo, X. M.; Zhang, J. L.; Luo, Z. Y.; Shi, Y. Y.; Jiang, M. S.; Qin, B. et al. ER-targeting PDT converts tumors into in situ therapeutic tumor vaccines. ACS Nano 2022, 16, 9240–9253.

[30]

Huang, J.; Xiao, Z. C.; Chen, G. J.; Li, T.; Peng, Y.; Shuai, X. T. A pH-sensitive nanomedicine incorporating catalase gene and photosensitizer augments photodynamic therapy and activates antitumor immunity. Nano Today 2022, 43, 101390.

[31]

Hu, L. Q.; Cao, Z. Y.; Ma, L. L.; Liu, Z. Q.; Liao, G. C.; Wang, J. X.; Shen, S.; Li, D. D.; Yang, X. Z. The potentiated checkpoint blockade immunotherapy by ROS-responsive nanocarrier-mediated cascade chemo-photodynamic therapy. Biomaterials 2019, 223, 119469.

[32]

Lou, X.; Wang, H.; Liu, Y.; Huang, Y. W.; Liu, Z. H.; Zhang, W.; Wang, T. Perylene-based reactive oxygen species supergenerator for immunogenic photochemotherapy against hypoxic tumors. Angew. Chem., Int. Ed. 2023, 62, e202214586.

[33]

Liu, L. L.; He, H. M.; Luo, Z. Y.; Zhou, H. M.; Liang, R. J.; Pan, H.; Ma, Y. F.; Cai, L. T. In situ photocatalyzed oxygen generation with photosynthetic bacteria to enable robust immunogenic photodynamic therapy in triple-negative breast cancer. Adv. Funct. Mater. 2020, 30, 1910176.

[34]

Zhou, Z. G.; Liu, Y.; Song, W.; Jiang, X.; Deng, Z. A.; Xiong, W.; Shen, J. L. Metabolic reprogramming mediated PD-L1 depression and hypoxia reversion to reactivate tumor therapy. J. Control. Release 2022, 352, 793–812.

[35]

Zhang, S. W.; Wang, J.; Kong, Z. Q.; Sun, X. X.; He, Z. G.; Sun, B. J.; Luo, C.; Sun, J. Emerging photodynamic nanotherapeutics for inducing immunogenic cell death and potentiating cancer immunotherapy. Biomaterials 2022, 282, 121433.

[36]

You, Q.; Zhang, K. Y.; Liu, J. Y.; Liu, C. L.; Wang, H. Y.; Wang, M. T.; Ye, S. Y.; Gao, H. Q.; Lv, L. T.; Wang, C. et al. Persistent regulation of tumor hypoxia microenvironment via a bioinspired Pt-based oxygen nanogenerator for multimodal imaging-guided synergistic phototherapy. Adv. Sci. 2020, 7, 1903341.

[37]

Hou, G. H.; Qian, J. M.; Guo, M.; Xu, W. J.; Wang, J. L.; Wang, Y. P.; Suo, A. L. Copper coordinated nanozyme-assisted photodynamic therapy for potentiating PD-1 blockade through amplifying oxidative stress. Chem. Eng. J. 2022, 435, 134778.

[38]

Zhang, Y. F.; Liao, Y. Y.; Tang, Q. N.; Lin, J.; Huang, P. Biomimetic nanoemulsion for synergistic photodynamic-immunotherapy against hypoxic breast tumor. Angew. Chem., Int. Ed. 2021, 60, 10647–10653.

[39]

He, L. Y.; Wang, J. F.; Zhu, P. Y.; Chen, J. M.; Zhao, S. J.; Liu, X. X.; Li, Y. N.; Guo, X. L.; Yan, Z. H.; Shen, X. et al. Intelligent manganese dioxide nanocomposites induce tumor immunogenic cell death and remould tumor microenvironment. Chem. Eng. J. 2023, 461, 141369.

[40]

Huang, C.; Lin, B. Q.; Chen, C. Y.; Wang, H. M.; Lin, X. S.; Liu, J. M.; Ren, Q. F.; Tao, J.; Zhao, P.; Xu, Y. K. Synergistic reinforcing of immunogenic cell death and transforming tumor-associated macrophages via a multifunctional cascade bioreactor for optimizing cancer immunotherapy. Adv. Mater. 2022, 34, 2207593.

[41]

Liu, L. H.; Zhang, Y. H.; Qiu, W. X.; Zhang, L.; Gao, F.; Li, B.; Xu, L.; Fan, J. X.; Li, Z. H.; Zhang, X. Z. Dual-stage light amplified photodynamic therapy against hypoxic tumor based on an O2 self-sufficient nanoplatform. Small 2017, 13, 1701621.

[42]

Huang, L.; Zhao, S. J.; Wu, J. S.; Yu, L.; Singh, N.; Yang, K.; Lan, M. H.; Wang, P. F.; Kim, J. S. Photodynamic therapy for hypoxic tumors: Advances and perspectives. Coordin. Chem. Rev. 2021, 438, 213888.

[43]

Shi, C.; Li, M. L.; Zhang, Z.; Yao, Q. C.; Shao, K.; Xu, F.; Xu, N.; Li, H. D.; Fan, J. L.; Sun, W. et al. Catalase-based liposomal for reversing immunosuppressive tumor microenvironment and enhanced cancer chemo-photodynamic therapy. Biomaterials 2020, 233, 119755.

[44]

Hao, H. S.; Yu, M.; Yi, Y. F.; Sun, S. J.; Huang, X. Y.; Huang, C. Y.; Liu, Y. Q.; Huang, W. X.; Wang, J. Q.; Zhao, J. et al. Mesoporous calcium peroxide-ignited NO generation for amplifying photothermal immunotherapy of breast cancer. Chem. Eng. J. 2022, 437, 135371.

[45]

Wu, W. C.; Pu, Y. Y.; Zhou, B. G.; Shen, Y. C.; Gao, S.; Zhou, M.; Shi, J. L. Photoactivatable immunostimulatory nanomedicine for immunometabolic cancer therapy. J. Am. Chem. Soc. 2022, 144, 19038–19050.

[46]

Wang, D. D.; Wu, H. H.; Phua, S. Z. F.; Yang, G. B.; Lim, W. Q.; Gu, L.; Qian, C.; Wang, H. B.; Guo, Z.; Chen, H. Z. et al. Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor. Nat. Commun. 2020, 11, 357.

[47]

Zhang, L.; Yang, Z.; Ren, J. H.; Ba, L.; He, W. S.; Wong, C. Y. Multifunctional oxygen-enriching nano-theranostics for cancer-specific magnetic resonance imaging and enhanced photodynamic/photothermal therapy. Nano Res. 2020, 13, 1389–1398.

[48]

Liu, J. J.; Wu, M.; Pan, Y. T.; Duan, Y. K.; Dong, Z. L.; Chao, Y.; Liu, Z.; Liu, B. Biodegradable nanoscale coordination polymers for targeted tumor combination therapy with oxidative stress amplification. Adv. Funct. Mater. 2020, 30, 1908865.

[49]

He, C. B.; Liu, D. M.; Lin, W. B. Nanomedicine applications of hybrid nanomaterials built from metal-ligand coordination bonds: Nanoscale metal-organic frameworks and nanoscale coordination polymers. Chem. Rev. 2015, 115, 11079–11108.

[50]

Lan, G. X.; Ni, K. Y.; Lin, W. B. Nanoscale metal-organic frameworks for phototherapy of cancer. Coordin. Chem. Rev. 2019, 379, 65–81.

[51]

Huang, Z. S.; Wang, Y. X.; Yao, D.; Wu, J. H.; Hu, Y. Q.; Yuan, A. H. Nanoscale coordination polymers induce immunogenic cell death by amplifying radiation therapy mediated oxidative stress. Nat. Commun. 2021, 12, 145.

[52]

Liu, P.; Zhu, H. J.; Wang, M. Z.; Wei, M. J.; Liu, B. X.; Hu, P. W.; Lin, J. X.; Niu, X. H. Bimodal ratiometric fluorescence and colorimetric sensing of paraoxon based on trifunctional Ce, Tb co-coordinated polymers. Sens. Actuat. B: Chem. 2022, 360, 131616.

[53]

Meng, T. J.; Shang, N. Z.; Zhao, J. N.; Su, M.; Wang, C.; Zhang, Y. F. Facile one-pot synthesis of Co coordination polymer spheres doped macroporous carbon and its application for electrocatalytic oxidation of glucose. J. Colloid Interf Sci. 2021, 589, 135–146.

[54]

Zhang, Y. Z.; Cui, H. G.; Zhang, R. Q.; Zhang, H. B.; Huang, W. Nanoparticulation of prodrug into medicines for cancer therapy. Adv. Sci. 2021, 8, 2101454.

[55]

Liu, J. J.; Chen, Q.; Zhu, W. W.; Yi, X.; Yang, Y.; Dong, Z. L.; Liu, Z. Nanoscale-coordination-polymer-shelled manganese dioxide composite nanoparticles: A multistage redox/pH/H2O2-responsive cancer theranostic nanoplatform. Adv. Funct. Mater. 2017, 27, 1605926.

[56]

Wang, J. L.; Huang, M. W.; Chen, S. B.; Luo, Y. L.; Shen, S.; Du, X. J. Nanomedicine-mediated ubiquitination inhibition boosts antitumor immune response via activation of dendritic cells. Nano Res. 2021, 14, 3900–3906.

[57]

Jiang, W.; Dong, W.; Li, M.; Guo, Z. X.; Wang, Q.; Liu, Y.; Bi, Y. H.; Zhou, H.; Wang, Y. C. Nitric oxide induces immunogenic cell death and potentiates cancer immunotherapy. ACS Nano 2022, 16, 3881–3894.

File
12274_2023_5919_MOESM1_ESM.pdf (1,009.1 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 23 March 2023
Revised: 09 June 2023
Accepted: 12 June 2023
Published: 30 June 2023
Issue date: July 2023

Copyright

© Tsinghua University Press 2023

Acknowledgements

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 52103164, and 52173142), Guangdong Basic and Applied Basic Research Foundation (Nos. 2021A1515220033 and 2020A1515111059), and the Fundamental Research Funds for the Central Universities (No. JUSRP123079).

Return